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Abstract. We prove a Macdonald polynomial analogue of the celebrated

Nekrasov–Okounkov hook-length formula from the theory of random parti-
tions. As an application we obtain a proof of one of the main conjectures of

Hausel and Rodriguez-Villegas from their work on mixed Hodge polynomials

of the moduli space of stable Higgs bundles on Riemann surfaces.

1. Introduction

In their paper Mixed Hodge polynomials of character varieties [22], Hausel and
Rodriguez-Villegas study the non-singular affine variety

Mn :=
{
A1, B1, . . . , Ag, Bg ∈ GL(n,C) : (A1, B1) · · · (Ag, Bg) = ζnI

}
//GL(n,C),

where g is a nonnegative integer, (A,B) is shorthand for the commutatorABA−1B−1,
ζn is a primitive nth-root of unity, and // is a GIT quotient by the conjugation action
of GL(n,C). Mn, which is the twisted character variety of a closed Riemann sur-
face Σ of genus g with points the twisted homomorphisms from π1(Σ) to GL(n,C)
modulo conjugation, has dimension dn = 2n2(g − 1) + 2 (g > 1). For low values of
the rank, Mn was previously considered by Hitchin [23] (n = 2) and Gothen [16]
(n = 3) in their work on the moduli space of stable Higgs bundles of rank n on
Σ. The main focus of Hausel and Rodriguez-Villegas is to extend the computation
of the two-variable mixed Hodge polynomial H(Mn; q, t) by Hitchin and Gothen
to arbitrary n, and thus to obtain the Poincaré and E-polynomials P (Mn; t) and
E(Mn; q) corresponding to the one-dimensional subfamilies

P (Mn; t) = H(Mn; 1, t) and E(Mn; q) = qdnH(Mn; q−1,−1).

(For an arbitrary complex algebraic variety X the mixed Hodge polynomial is de-
fined as the three-variable generating function H(X;x, y, t) of mixed Hodge num-
bers hp,q;t(X), but since the cohomology of Mn is of type (p, p) [22, Corollary
4.1.11], hp,q;t(Mn) vanishes unless unless p = q and one can define H(Mn; q, t) :=
H(Mn; q, q, t). In [22, Corollary 2.2.4] it is also shown that H(Mn; q, t) does not
depend on the choice of ζn so that H(Mn; q, t) is indeed well defined.)

Determining H(Mn; q, t) for arbitrary rank n and genus g is a very hard prob-
lem. The breakthrough observation by Hausel and Rodriguez-Villegas is that, con-
jecturally, the mixed Hodge polynomial are related to Macdonald polynomials from
the theory of symmetric functions, resulting in an alternative means of computing
H(Mn; q, t) as follows. Let λ = (λ1, λ2, . . . ) be an integer partition identified as
usual with its Young or Ferrers diagram. For s a square (in the diagram) of λ, the
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arm-length and leg-length a(s) = aλ(s) and l(s) = lλ(s) are given by the number
of boxes to the right, respectively, below s. That is, if s has coordinates (i, j) then
a(s) = λi − j and l(s) = λ′j − i, where λ′ is the conjugate of λ. For example, the
arm-length and leg-length of the square (3, 3) in the partition (8, 7, 7, 6, 4, 3, 1)

are 4 and 3 respectively. Hausel and Rodriguez-Villegas define the genus-g hook
function Hλ(z, w) as

Hλ(z, w) =
∏
s∈λ

(z2a(s)+1 − w2l(s)+1)2g

(z2a(s)+2 − w2l(s))(z2a(s) − w2l(s)+2)
,

and use this to define two further families of rational functions {Un(z, w)}n>1 and

{Hn(z, w)}n>1 by ∑
λ

Hλ(z, w)T |λ| = exp

(∑
n>1

Un(z, w)
Tn

n

)
,

where |λ| = λ1 + λ2 + · · · is the size of the partition λ, and

(1.1) Hn(z, w) :=
1

n
(z2 − 1)(1− w2)

∑
d|n

µ(d)Un/d(z
d, wd),

with µ the Möbius function.1

Conjecture 1.1 ([22, Conjecture 4.2.1]). The mixed Hodge polynomial of Mn is
given by

(1.2) H(Mn; q, t) =
(
tq1/2

)dn
Hn

(
q1/2,−t−1q−1/2

)
.

This remarkable conjecture has several further implications. Since H(Mn; q, t)
is a polynomial with positive coefficients, (1.2) implies that the rational function
Hn(z,−w) also must be a polynomial with nonnegative coefficients. In the opposite
direction, by aλ(s) = lλ′(s) we have Hλ(z, w) = Hλ′(w, z), which implies the
“curious Poincaré duality” [22, Conjecture 4.2.4]

H(Mn; q, t) = (qt)dnH
(
Mn; q−1t−2, t

)
.

A non-rigorous, string theoretic derivation of (1.2) in the more general case of
punctured Riemann surfaces [20,21] has recently been given in [8].

In the genus-0 case Mn has a single point for n = 1 and no points for higher
rank. Hence H(Mn; q, t) = δn,1 and, by (1.1), (1.2) and

∑
d|n µ(d) = δn,1, this gives

1Alternatively, Hn(z, w) may be defined by∑
λ

Hλ(z, w)T |λ| = Exp

(∑
n>1

Hn(z, w)Tn

(z2 − 1)(1− w2)

)
,

where Exp is a plethystic exponential [7, 15], defined for formal power series f(z, w;T ) :=∑
n>1 cn(z, w)Tn as Exp

(
f(z, w;T )

)
:= exp

(∑
r>1 f(zr, wr;T r)/r

)
.
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Hn(z, w) = Hn/d(z
d, wd) = w−2n/(1− z2n)(1−w−2n). For genus 0 the conjecture

is thus equivalent to the combinatorial identity

(1.3)
∑
λ

H
(
q1/2, t−1/2

)
T |λ| =

∏
i,j>1

1

1− qi−1tjT
,

which follows immediately as a special case of the Kaneko–Macdonald binomial
theorem for Macdonald polynomials [26,38].2

More interesting is the genus-1 case. Then H(Mn; q, t) = (1 + qt)2 for all n > 1,
which by (1.2) implies Hn(z, w) = (z − w)2. Solving (1.1) for Un(z, w) leads to

Un(z, w) =
∑
k|n

n

k
· (1− zkw−k)2

(1− z2k)(1− w−2k)
.

Since
∑
d|n µ(d)

∑
m|(n/d) f(md) = f(1), Conjecture 1.1 for g = 1 is thus equivalent

to the following combinatorial identity.

Conjecture 1.2 ([22, Conjecture 4.3.2]). For g = 1,∑
λ

Hλ
(
q1/2, t−1/2

)
T |λ| =

∏
i,j,k>1

(1− qi−1/2tj−1/2T k)2

(1− qi−1tj−1T k)(1− qitjT k)
.

In this paper we settle this conjecture by proving the following more general
combinatorial identity.

Theorem 1.3 (q, t-Nekrasov–Okounkov formula). We have

(1.4)
∑
λ

T |λ|
∏
s∈λ

(1− uqa(s)+1tl(s))(1− u−1qa(s)tl(s)+1)

(1− qa(s)+1tl(s))(1− qa(s)tl(s)+1)

=
∏

i,j,k>1

(1− uqitj−1T k)(1− u−1qi−1tjT k)

(1− qi−1tj−1T k)(1− qitjT k)
.

For u = (t/q)1/2 this is Conjecture 1.2 and for general u it is a q, t-analogue
of the Nekrasov–Okounkov formula discovered by Nekrasov and Okounkov in their
work on random partitions and Seiberg–Witten theory [41]. Indeed, if h(s) :=
a(s) + l(s) + 1 is the hook-length of s and H (λ) := {h(s) : s ∈ λ} is the multiset
of hook-lengths of λ, then (1.4) for t = q simplifies to∑

λ

T |λ|
∏

h∈H (λ)

(1− uqh)(1− u−1qh)

(1− qh)2
=
∏
k,r>1

(1− uqrT k)r(1− u−1qrT k)r

(1− qr−1T k)r(1− qr+1T k)r
,

first found in [25, p. 749] and [9, Theorem 5]. Setting u = qz and letting q tend
to 1 this yields the Nekrasov–Okounkov formula [41, Equation (6.12)] (see also [18,
Corollary 1.9], [52])

(1.5)
∑
λ

T |λ|
∏

h∈H (λ)

(
1− z2

h2

)
=
∏
k>1

(1− T k)z
2−1.

2Hausel and Rodriguez-Villegas prove (1.3) differently, using a duality of Garsia and Haiman
[11] and the Cauchy identity for Schur functions.
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In [52, Proposition 6.1] Westbury has shown that for fixed λ and p a sufficiently
large integer (p > |λ| suffices) ∏

h∈H (λ)

( p2
h2
− 1
)

is the dimension of the irreducible sl(p,C)-module indexed by the partition

µ := (λ1, . . . , λp) + (λ′1 − λ′p, . . . , λ′1 − λ′2, 0).

Using the q-analogue of Weyl’s dimension formula for sl(p,C) [35, p. 124] (see
also [4, Lemma 3.1]) or Stanley’s hook content formula [49, Theorem 15.3] (see
also [50, Lemma 7.21.2]) it is not hard to show that in the q-case∏

h∈H (λ)

(1− qh+p)(1− qh−p)
(1− qh)2

= (−1)|λ|q−l(λ)(
p
2)sµ(1, q, . . . , qp),

where l(λ) is the length of λ (the number of non-zero λi) and sµ a Schur function.
We did not find a similar such interpretation of the product in (1.4) in terms of
Macdonald polynomials.

The remainder of this paper is organised as follows. In the next section we
first review some basic material from the theory of Macdonald polynomials and
interpolation Macdonald polynomials. Then we apply these polynomials to prove
a number of key identities needed in our proof of Theorem 1.3. This includes the
following elegant Cauchy-like identity for principally specialised skew Macdonald
polynomials.

Theorem 1.4. Let ρ := (0, 1, 2, . . . ) and qρ := (1, q, q2, . . . ). Then

(1.6)
∑

λ,µ,ν,τ

a|λ|b|µ|c|ν|d|τ |bν(q, t)bτ (t, q)Qλ/ν(tρ; q, t)Qλ′/τ (qρ; t, q)

×Qµ/ν(tρ; q; t)Qµ′/τ (qρ; t, q) =
1

(abcd; abcd)∞
· (−a,−b; q, t, abcd)∞

(abc, abd; q, t, abcd)∞
,

In the above, bλ(q, t) is Macdonald’s q, t-hook function

bλ(q, t) :=
∏
s∈λ

1− qa(s)tl(s)+1

1− qa(s)+1tl(s)

and

(a; q1, q2, . . . , qm)∞ :=
∏

i1,...,im>0

(1− aqi11 · · · qimm ),

(a1, . . . , ak; q1, q2, . . . , qm)∞ := (a1; q1, q2, . . . , qm)∞ · · · (ak; q1, q2, . . . , qm)∞

are generalised q-shifted factorials. In Section 3 we study a function fn,m which
may be viewed as a rational function analogue of
(1.7)

f(u, T ; q, t) := (uq; q, t)∞
∑
λ

T |λ|
∏
s∈λ

(1− uqa(s)+1tl(s))(1− u−1qa(s)tl(s)+1)

(1− qa(s)+1tl(s))(1− qa(s)tl(s)+1)
,

see Proposition 3.3. We determine a number of hidden symmetries of fn,m, con-
jecture its polynomiality, and show that up to the factor (uq; q, t)∞ the limit
limn,m→∞ fn,m is given by the product side of (1.4), thus proving Theorem 1.3.
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Then, in Section 4 we discuss a number of special cases of the q, t-Nekrasov–
Okounkov formula, as well as a close link between our work and that of Iqbal,
Kozçaz and Shabbir [24] on the topological vertex formalism. Finally, in the ap-
pendix we give an alternative proof of the q, t-Nekrasov–Okounkov formula, sug-
gested to us by Jim Bryan, which is based on Waelder’s equivariant Dijkgraaf–
Moore–Verlinde–Verlinde (DMVV) formula for the Hilbert scheme of points in the
plane [51].

Acknowledgement. The second author is grateful to Masoud Kamgarpour for
pointing out the papers of Hausel and Rodriguez-Villegas [22], and Hausel, Letellier
and Rodriguez-Villegas [20,21] on mixed Hodge polynomials, and to Dennis Stanton
for helpful discussions on p-core partitions. We thank Fernando Rodriguez-Villegas
for sending us a preliminary version of his paper [6] with Carlsson, which contains a
different proof of Conjecture 1.1 based on the Carlsson–Nekrasov–Okounkov vertex
operator [5]. We also thank Amer Iqbal for alerting us to the connection between
our work and [24] and Jim Bryan for explaining the work of Waelder, which implies
the elliptic Nekrasov–Okounkov formula described in the appendix. We thank the
two referees for their helpful comments and corrections.

2. Macdonald polynomials

2.1. Partitions. A partition λ = (λ1, λ2, . . . ) is a weakly-decreasing sequence of
nonnegative integers such that only finitely-many λi are non-zero. The positive λi
are called the parts of λ and the number of parts, denoted l(λ), is called the length
of the partition. If |λ| := λ1 + λ2 + · · · = n we say that λ is a partition of n, and
denote this by λ ` n. As is customary, the unique partition of 0 will be denoted
by 0. We identify a partition λ with its Young diagram diagram consisting of l(λ)
left-aligned rows of squares with λi squares in the ith row. The conjugate of λ,
denoted λ′, is given by reflecting λ in the main diagonal i = j, i.e., its parts are the
columns of λ. If µ is contained in λ, that is, µi 6 λi for all i we write µ ⊂ λ. We
also adopt the standard dominance order on partitions, writing µ 6 λ if and only
if µ1 + · · · + µi 6 λ1 + · · · + λi for all i > 1, where λ, µ are partitions such that
|λ| = |µ|. Throughout the paper we repeatedly use

δn := (n− 1, . . . , 1, 0), ρn := (0, 1, . . . , n− 1)

and ρ := (0, 1, 2, . . . ). Of course, if f(x) is a symmetric function, then f(tδn) =
f(tρn). Apart from the arm and leg lengths of a partition defined in the intro-
duction, we also need to arm-colength a′(s) = a′λ(s) and leg-colength l′(s) = l′λ(s)
of s ∈ λ, given by the number of boxes in λ immediately to the left or above s,
respectively. Equivalently, a′(s) = j − 1 and l′(s) = i− 1 for s = (i, j). Finally we
recall the following standard statistic on partitions [37]:

n(λ) :=
∑
s∈λ

l′(s) =
∑
i>1

(i− 1)λi =
∑
i>1

(
λ′i
2

)
.
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2.2. Hook functions. In the introduction we already defined the hook functions
Hλ(z, w) and bλ(q, t). We will further need

cλ(q, t) :=
∏
s∈λ

(
1− qa(s)tl(s)+1

)
c′λ(q, t) :=

∏
s∈λ

(
1− qa(s)+1tl(s)

)
,

so that

bλ(q, t) =
cλ(q, t)

c′λ(q, t)

and

(z; q, t)λ :=
∏
s∈λ

(
1− zqa

′(s)t−l
′(s)
)

(2.1)

=
∏
i,j>1

1− zqi−1tj−λ′i
1− zqi−1tj

=

n∏
i=1

(zt1−i; q)λi
,

where (z; q)n := (1− z) · · · (1− zqn−1) is the usual q-shifted factorial.
It is easy to check from the definition that

(2.2) c′λ′(q, t) = cλ(t, q),

and hence

(2.3) bλ′(q, t) =
1

bλ(t, q)
.

It is also an elementary exercise to verify the relation

(2.4) c′λ(1/q, 1/t) = (−1)|λ|q−n(λ
′)−|λ|t−n(λ)c′λ(q, t).

2.3. Macdonald polynomials. Let F = Q(q, t) and ΛF the ring of symmetric
functions in x = (x1, x2, . . . ) with coefficients in F . Further denote by Λn,F the
analogous ring over the finite alphabet (x1, . . . , xn). The Newton power sums pλ
and monomial symmetric functions mλ are defined as

pλ(x) :=
∏
i>1

pλi(x)

where pr(x) := xr1 + xr2 + · · · and p0 := 1, and

mλ =
∑
α

xα,

where the sum is over distinct permutations α of λ and xα := xα1
1 xα2

2 · · · . Both
families of symmetric functions are bases for ΛF .

Following Macdonald [37] we define the q, t-Hall scalar product on ΛF as

〈pλ, pµ〉q,t := δλµzλ
∏
i>1

1− qλi

1− tλi
,

where zλ :=
∏
i>1mi(λ)! imi(λ) and mi(λ) := λ′i − λ′i+1. The Macdonald poly-

nomials Pλ(q, t) = Pλ(x; q, t) are the unique family of symmetric functions such
that [37, p. 322]

Pλ(q, t) = mλ +
∑
µ<λ

uλµ(q, t)mµ, uλµ ∈ F
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and

〈Pλ(q, t), Pµ(q, t)〉q,t = 0 if λ 6= µ.

We also require the skew Macdonald polynomials Pλ/µ(q, t) defined by

〈Pλ/µ(q, t), Pν(q, t)〉q,t = 〈Pλ(q, t), Pµ(q, t)Pν(q, t)〉q,t.
The polynomial Pλ/µ(q, t) vanishes unless µ ⊂ λ. Moreover, in Λn,F , Pλ(q, t)
vanishes unless l(λ) 6 n.

A second family of Macdonald polynomials Qλ/µ(x; q, t) = Qλ/µ(q, t) may be
defined by

(2.5) Qλ/µ(q, t) =
bλ(q, t)

bµ(q, t)
Pλ/µ(q, t).

Then 〈Pλ(q, t), Qµ(q, t)〉q,t = δλµ, which is equivalent to the Cauchy identity [37,
p. 324]

(2.6)
∑
λ

Pλ(x; q, t)Qλ(y; q, t) =
∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

.

For Macdonald polynomials in n variables we need the principal specialisation
formula [37, p. 337]

(2.7) Pλ(tδn ; q, t) = tn(λ)
∏
s∈λ

1− qa′(s)tn−l′(s)

1− qa(s)tl(s)+1
= tn(λ)

(tn; q, t)λ
cλ(q, t)

and the Macdonald–Koornwinder duality [37, p. 332]

(2.8) Pλ(tδn ; q, t)Pµ(qλtδn ; q, t) = Pµ(tδn ; q, t)Pλ(qµtδn ; q, t)

for l(λ), l(µ) 6 n. Here qλtδn := (qλ1tn−1, qλ2tn−2, . . . , qλnt0).

In our proof of (1.6) it will be convenient to adopt plethystic or λ-ring notation
[17, 31]. In particular, for f ∈ ΛF we use f([(a − b)/(1 − t)]), defined in terms of
the power sums as

(2.9) pr

([a− b
1− t

])
:=

ar − br

1− tr
.

The map εa,b,t : ΛF → F [a, b] given by εa,b,t(f) 7→ f([(a − b)/(1 − t)]) is a ring
homomorphism, and in particular

Pλ/ν

([a− b
1− t

]
; q, t

)
=
∑
µ

Pλ/µ

([ a

1− t

]
; q, t

)
Pµ/ν

([ −b
1− t

]
; q, t

)
(2.10a)

=
∑
µ

Pλ/µ

([ −b
1− t

]
; q, t

)
Pµ/ν

([ a

1− t

]
; q, t

)
.(2.10b)

We also note that

f
([
a

1− tn

1− t

])
= f(atρn) = f(atδn)(2.11a)

f
([ a

1− t

])
= f(atρ).(2.11b)

Let ωq,t be the automorphism of ΛF defined by

ωq,t(pr) = (−1)r−1
1− qr

1− tr
pr.
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Then [37, p. 327]

(2.12) ωq,t
(
Pλ/µ(q, t)

)
= Qλ′/µ′(t, q).

If f ∈ ΛF is homogeneous of degree r then it is readily checked using (2.9) and
(2.12) that

εa,b,t(f) = (−1)rεb,a,q ωq,t(f).

Applying this with f = Pλ/µ(q, t) and using (2.12) implies the duality

(2.13) Pλ/µ

([a− b
1− t

]
; q, t

)
= (−1)|λ|−|µ|Qλ′/µ′

([ b− a
1− q

]
; t, q

)
.

2.4. Interpolation Macdonald polynomials. In this section we work exclu-
sively in Λn,F , and assume that x = (x1, . . . , xn) and µ is a partition of length
at most n. Then the interpolation Macdonald polynomial (or shifted Macdonald
polynomial) P̄ ∗µ = P̄ ∗µ(x; q, t) is the unique (inhomogeneous) symmetric polynomial
of degree |µ| in x such that

(2.14) P̄ ∗µ(qλtδn ; q, t) = 0 for all λ such that µ 6⊂ λ

and

(2.15) [xµ]P̄ ∗µ(x; q, t) = 1.

The polynomials P̄ ∗µ(x; q, t) were first introduced and studied by Knop, Okounkov
and Sahi in [28, 29, 42, 43, 47], and the choice of defining relations differs slightly
from author to author. For example, in (2.14) the “for all” condition is sometimes
replaced by the weaker “for all λ 6= µ such that |λ| 6 |µ|” and the normalisation
(2.15) is sometimes replaced by

(2.16) P̄ ∗µ(qµtδn ; q, t) = (−1)|µ|qn(µ
′)t(n−1)|µ|−2n(µ)c′µ(q, t).

Below we have collected a number of results from the theory of interpolation
Macdonald polynomials needed in our proof of the q, t-Nekrasov–Okounkov for-
mula. In [47, Theorem 1.1] Sahi showed that the top-homogeneous degree term of
P̄ ∗µ(x; q, t) is the Macdonald polynomial Pµ(x; q, t). In other words,

(2.17) lim
a→∞

a−|µ|P̄ ∗µ(ax; q, t) = Pµ(x; q, t).

For µ a partition of length at most n, the interpolation Macdonald polynomials
satisfy the stability property

(2.18) P̄ ∗µ(tx1, . . . , txn, 1; q, t) = t|µ|P̄ ∗µ(x1, . . . , xn; q, t).

Okounkov [42] used this to define the q, t-binomial coefficients

(2.19)

[
λ

µ

]
q,t

:=
P̄ ∗µ(qλtδn ; q, t)

P̄ ∗µ(qµtδn ; q, t)
.

Thanks to (2.18) the left-hand side is independent of n as long as we take n >
l(λ), l(µ). It follows from the vanishing property (2.14) that

[
λ
µ

]
q,t

= 0 unless

µ ⊂ λ. From a duality of P̄ ∗µ(x; q, t) given in [43, Theorem IV] Okounkov inferred
the duality [42, Equation (2.12)]

(2.20)

[
λ

µ

]
q,t

=

[
λ′

µ′

]
1/t,1/q

.
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Finally we need the binomial theorem [42] for interpolation Macdonald polynomials,
given by

(2.21)
∑
ν

a|ν|
[
λ

ν

]
1/q,1/t

P̄ ∗λ (at−δn ; q, t)

P̄ ∗ν (at−δn ; q, t)
P̄ ∗ν (x; 1/q, 1/t) = P̄ ∗λ (ax; q, t).

To conclude this section we apply the binomial theorem to prove the following
sum over the product of two skew Macdonald polynomials.

Proposition 2.1. For λ and µ partitions,

(2.22)
∑
ν

q−n(λ
′)−n(µ′)−|ν|tn(λ)+n(µ)bν(t, q)Qλ′/ν(qρ; t, q)Qµ′/ν(qρ; t, q)

= Pµ(tρ; q, t)Pλ(q−µtρ; q, t).

Proof. Let λ and µ be partitions of length at most n. If we specialise x = q−µt−δn in
the binomial theorem (2.21) and use definition (2.19) of the q, t-binomial coefficient
we obtain∑

ν

a|ν|
[
λ

ν

]
1/q,1/t

[
µ

ν

]
1/q,1/t

P̄ ∗λ (at−δn ; q, t)

P̄ ∗ν (at−δn ; q, t)
P̄ ∗ν (q−νt−δn ; 1/q, 1/t)

= P̄ ∗λ (aq−µt−δn ; q, t).

By the duality (2.20) we may replace
[
λ
ν

]
1/q,1/t

[
µ
ν

]
1/q,1/t

by
[
λ′

ν′

]
t,q

[
µ′

ν′

]
t,q

. Also re-

placing a by atn−1, then multiplying both sides by a−|λ|, and finally letting a tend
to infinity using (2.17) results in

(2.23)
∑
ν

t(n−1)|ν|
[
λ′

ν′

]
t,q

[
µ′

ν′

]
t,q

Pλ(tδn ; q, t)

Pν(tδn ; q, t)
P̄ ∗ν (q−νt−δn ; 1/q, 1/t)

= Pλ(q−µtρn ; q, t).

Next we use [33, p. 323] (see also [12, Equation (3.13)])

(2.24)

[
λ

µ

]
q,t

= tn(µ)−n(λ)
c′λ(q, t)

c′µ(q, t)
Qλ/µ(tρ; q, t)

as well as the principal specialisation formula (2.7) and normalisation formula
(2.16). This allows (2.23) to be rewritten as∑

ν

(−1)|ν|qn(ν
′)−n(λ′)−n(µ′)tn(ν)+n(λ)

(tn; q, t)λ
(tn; q, t)ν

×
cν(q, t)c′ν(1/q, 1/t)c′λ′(t, q)c

′
µ′(t, q)

cλ(q, t)(c′ν′(t, q))
2

Qλ′/ν′(q
ρ; t, q)Qµ′/ν′(q

ρ; t, q)

= Pλ(q−µtρn ; q, t).

Simplifying this using (2.2)–(2.4) yields∑
ν

q−n(λ
′)−n(µ′)−|ν|tn(λ)

(tn; q, t)λ
(tn; q, t)ν

× cµ(q, t)

bν(q, t)
Qλ′/ν′(q

ρ; t, q)Qµ′/ν′(q
ρ; t, q) = Pλ(q−µtρn ; q, t).
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Multiplying both sides by Pµ(tρn ; q, t) = Pµ(tδn ; q, t) and once again using the
principal specialisation formula (2.7), we finally arrive at

(2.25)
∑
ν

q−n(λ
′)−n(µ′)−|ν|tn(λ)+n(µ)

(tn; q, t)λ(tn; q, t)µ
(tn; q, t)ν bν(q, t)

×Qλ′/ν′(qρ; t, q)Qµ′/ν′(qρ; t, q) = Pµ(tρn ; q, t)Pλ(q−µtρn ; q, t).

The identity (2.22) follows in the large-n limit, up to the variable change ν 7→ ν′

and the use of bν′(q, t)bν(t, q) = 1, see (2.3). �

2.5. Proof of Theorem 1.4. In this section we establish the Cauchy-like identity
(1.6) which will be key in our subsequent proof of Theorem 1.3. In fact, we will
prove a slightly less-symmetric but equivalent form obtained by the simultaneous
substitution

(a, b, c, d) 7→ (Tab, cd, 1/ac, 1/bd).

Theorem 2.2. We have

(2.26)
∑

λ,µ,ν,τ

T |λ|bν(q, t)bτ (t, q)Qλ/ν(atρ; q, t)Qλ′/τ (bqρ; t, q)

×Qµ/ν(ctρ; q, t)Qµ′/τ (dqρ; t, q) =
1

(T ;T )∞
· (−abT,−cd; q, t, T )∞

(acT, bdT ; q, t, T )∞
.

Before we prove this we need the following q, t-analogue of a Schur function
identity from page 94 of [37].

Proposition 2.3. We have

(2.27)
∑
λ,ν

T |λ|Pλ/ν(x; q, t)Qλ/ν(y; q, t) =
1

(T ;T )∞

∏
i,j>1

(tTxiyj ; q, T )∞
(Txiyj ; q, T )∞

.

Proof. Denote the left-hand side of (2.27) by f(x, y) and recall the generalisation
of the Cauchy identity (2.6) to skew functions [37, p. 352]

(2.28)
∑
λ

Pλ/ν(x; q, t)Qλ/τ (y; q, t)

=
∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

∑
λ

Pτ/λ(x; q, t)Qν/λ(y; q, t).

Applying this with (x, τ) 7→ (Tx, ν) and multiplying both sides by T |ν|, it follows
from the homogeneity of the Macdonald polynomials that

f(x, y) =
∏
i,j>1

(tTxiyj ; q)∞
(Txiyj ; q)∞

∑
λ,ν

T |ν|Pν/λ(Tx; q, t)Qν/λ(y; q, t).

By the simultaneous variable change (λ, ν) 7→ (ν, λ) this yields

f(x, y) = f(Tx, y)
∏
i,j>1

(tTxiyj ; q)∞
(Txiyj ; q)∞

and thus

f(x, y) = f(0, y)
∏
i,j>1

(tTxiyj ; q, T )∞
(Txiyj ; q, T )∞

.
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By Pλ/ν(0; q, t) = δλν and Qλ/λ(y; q, t) = 1 we finally get

f(0, y) =
∑
λ

T |λ| =
1

(T ;T )∞
,

and the claim follows. �

Proof of Theorem 2.2. If we take Proposition 2.3, replace ν 7→ µ, and then make
the plethystic substitutions x 7→ (a− d)/(1− t) and y 7→ (c− b)/(1− t), we get∑
λ,µ

T |λ|Pλ/µ

([a− d
1− t

]
; q, t

)
Qλ/µ

([c− b
1− t

]
; q, t

)
=

1

(T ;T )∞
· (abT, cdT ; q, t, T )∞

(acT, bdT ; q, t, T )∞
.

Here the product on the right follows from [37, p. 310]

(2.29)
∏
i,j>1

(tTxiyj ; q)∞
(Txiyj ; q)∞

= exp

(∑
r>1

T r

r
· 1− tr

1− qr
pr(x)pr(y)

)
,

equation (2.9) and3

exp

(∑
r>1

∓T r

r(1− qr)(1− tr)

)
= (T ; q, t)±1∞ .

Using both equations in (2.10) (which also hold with P replaced by Q) gives∑
λ,µ,ν,τ

T |λ|Pλ/ν

([ a

1− t

]
; q, t

)
Qλ/τ

([ −b
1− t

]
; q, t

)
× Pν/µ

([ −d
1− t

]
; q, t

)
Qτ/µ

([ c

1− t

]
; q, t

)
=

1

(T ;T )∞
· (abT, cdT ; q, t, T )∞

(acT, bdT ; q, t, T )∞
.

Transforming the sum over µ by the Cauchy identity (2.28) with (λ, ν, τ) 7→ (µ, τ, ν),
x 7→ −d/(1− t) and y 7→ c/(1− t) leads to∑

λ,µ,ν,τ

T |λ|Pλ/ν

([ a

1− t

]
; q, t

)
Qλ/τ

([ −b
1− t

]
; q, t

)
×Qµ/ν

([ c

1− t

]
; q, t

)
Pµ/τ

([ −d
1− t

]
; q, t

)
=

1

(T ;T )∞
· (abT, cd; q, t, T )∞

(acT, bdT ; q, t, T )∞
,

where this time we have used (2.29) with T = 1. By the duality (2.13) this is also∑
λ,µ,ν,τ

(−1)|λ|+|µ|T |λ|Pλ/ν

([ a

1− t

]
; q, t

)
Pλ′/τ ′

([ b

1− q

]
; t, q

)
×Qµ/ν

([ c

1− t

]
; q, t

)
Qµ′/τ ′

([ d

1− q

]
; t, q

)
=

1

(T ;T )∞
· (abT, cd; q, t, T )∞

(acT, bdT ; q, t, T )∞
.

Replacing (b, d; τ) 7→ (−b,−d; τ ′), and using (2.5) and (2.11b) completes the proof
of (2.26). �

3This may be stated more simply as Exp
(
∓T/(1− q)(1− t)

)
= (T ; q, t)±∞.
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3. Proof of Theorem 1.3

Instead of giving a direct proof of the q, t-Nekrasov–Okounkov formula we will
first study a rational function fn,m which, as follows from Proposition 3.3 below,
may be viewed as a rational function analogue of the sum side of (1.4). As it turns
out, almost all of our steps towards proving Theorem 1.3 can be carried out at the
level of fn,m.

Let

(3.1) fn,m(u, T ; q, t) := (−u)nmqn(m+1
2 )tm(n

2)

×
∑

λ,µ⊂(mn)

T |λ|(−uqmtn−1)−|λ|−|µ|Pλ(tδn ; q, t)Pλ′(q
δm ; t, q)

× Pµ(qλtδn ; q, t)Pµ′(t
λ′qδm ; t, q).

An obvious symmetry of fn,m is

fn,m(u, T ; q, t) = fm,n(uq/t, T ; t, q).

Not as apparent are the following two additional symmetries.

Lemma 3.1. We have

fn,m(u, T ; q, t) = Tnmfn,m(u/T, 1/T ; q, t)(3.2a)

= fn,m(tT/uq, T ; q, t).(3.2b)

Proof. By the duality (2.8) we get

fn,m(u, T ; q, t) = (−u)nmqn(m+1
2 )tm(n

2)

×
∑

λ,µ⊂(mn)

T |λ|(−uqmtn−1)−|λ|−|µ|Pµ(tδn ; q, t)Pµ′(q
δm ; t, q)

× Pλ(qµtδn ; q, t)Pλ′(t
µ′qδm ; t, q).

Renaming the summation index λ as µ and vice versa yields

fn,m(u, T ; q, t) = (−u)nmqn(m+1
2 )tm(n

2)

×
∑

λ,µ⊂(mn)

T |µ|(−uqmtn−1)−|λ|−|µ|Pλ(tδn ; q, t)Pλ′(q
δm ; t, q)

× Pµ(qλtδn ; q, t)Pµ′(t
λ′qδm ; t, q).

Comparing this with (3.1) implies (3.2a).

Next we replace the sum over µ in (3.1) by a sum over its complement with
respect to (mn), denoted by µ̃ = (m−µn, . . . ,m−µ1). Recalling that (see e.g., [2,
Equation (4.3)])

Pµ̃(x1, . . . , xn; q, t) = (x1 · · ·xn)mPµ(x−11 , . . . , x−1n ; q, t),

this yields

fn,m(u, T ; q, t) =
∑

λ,µ⊂(mn)

(−tT/u)|λ|(−uqmtn−1)|µ|Pλ(tδn ; q, t)Pλ′(q
δm ; t, q)

× Pµ(q−λt−δn ; q, t)Pµ′(t
−λ′q−δm ; t, q).
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Since Pλ(tδn ; q, t) = Pλ(tρn ; q, t) and Pµ(q−λt−δn ; q, t) = t(1−n)|µ|Pµ(q−λtρn ; q, t),
this can be further transformed into

(3.3) fn,m(u, T ; q, t) =
∑

λ,µ⊂(mn)

(−tT/u)|λ|(−uq)|µ|Pλ(tρn ; q, t)Pλ′(q
ρm ; t, q)

× Pµ(q−λtρn ; q, t)Pµ′(t
−λ′qρm ; t, q).

Applying the symmetry Pλ(x; q, t) = Pλ(x; 1/q, 1/t) (see [37, p. 324]) to (2.8) and
then replacing (q, t) by (1/q, 1/t) we obtain

Pλ(tρn ; q, t)Pµ(q−λtρn ; q, t) = Pµ(tρn ; q, t)Pλ(q−µtρn ; q, t).

Using this in (3.3) and then again swapping λ and µ, we find

fn,m(u, T ; q, t) =
∑

λ,µ⊂(mn)

(−tT/u)|µ|(−uq)|λ|Pλ(tρn ; q, t)Pλ′(q
ρm ; t, q)

× Pµ(q−λtρn ; q, t)Pµ′(t
−λ′qρm ; t, q).

Comparing the above with (3.3) yields (3.2b). �

Next we compute fn,m in two different ways. First, using the homogeneity of
the Macdonald polynomials and the dual Cauchy identity [37, p. 329]

(3.4)
∑
µ

T |µ|Pµ(x; q, t)Pµ′(y; t, q) =
∏
i,j>1

(1 + Txiyj),

we can perform the sum over µ in (3.1). Also using

n∏
i=1

m∏
j=1

(
1− u−1qλi−jtλ

′
j−i+1

)
= (−u)−nmq−n(m+1

2 )t−m(n
2)(qmtn)|λ|

×
n∏
i=1

m∏
j=1

(
1− uqj−λiti−λ

′
j−1
)
,

this gives

(3.5) fn,m(u, T ; q, t) =
∑

λ⊂(mn)

(−tT/u)|λ|Pλ(tδn ; q, t)Pλ′(q
δm ; t, q)

×
n∏
i=1

m∏
j=1

(
1− uqj−λiti−λ

′
j−1
)
.

Before we proceed we remark that if u = t then the summand contains the factor

n∏
i=1

m∏
j=1

(
1− qj−λiti−λ

′
j
)
.

This vanishes for all λ ⊂ (mn) with the exception of λ = 0. Similarly, if u = 1/q
then the summand contains the factor

n∏
i=1

m∏
j=1

(
1− qj−λi−1ti−λ

′
j−1
)
,
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which vanishes unless λ = (mn). Finally, if we replace T by uT and then let u tend
to 0 we are left with

lim
u→0

fn,m(u, uT ; q, t) =
∑

λ⊂(mn)

(−tT )|λ|Pλ(tδn ; q, t)Pλ′(q
δm ; t, q),

which can be summed by (3.4). We summarise these three observations in the fol-
lowing lemma, where we have also used that P(mn)(x1, . . . , xn; q, t) = (x1 · · ·xn)m.

Lemma 3.2. We have

fn,m(t, T ; q, t) =

n∏
i=1

m∏
j=1

(1− qjti)(3.6a)

fn,m(1/q, T ; q, t) = Tmn
n∏
i=1

m∏
j=1

(1− qjti)(3.6b)

lim
u→0

fn,m(u, uT ; q, t) =

n∏
i=1

m∏
j=1

(1− Tqj−1ti).(3.6c)

Returning to (3.5), we use

n∏
i=1

m∏
j=1

(
1− uqj−λiti−λ

′
j−1
)

= (−u)|λ|q−n(λ
′)t−n(λ)−|λ|

×
n∏
i=1

m∏
j=1

(
1− uqjti−1

)∏
s∈λ

(1− uqa(s)+1tl(s))(1− u−1qa(s)tl(s)+1)

(1− uqm−a′(s)tl′(s))(1− uqa′(s)+1tn−l′(s)−1)

together with the principal specialisation formula (2.7) to obtain the following.

Proposition 3.3. The rational function fn,m can be expressed as

fn,m(u, T ; q, t) =

n∏
i=1

m∏
j=1

(
1− uqjti−1

)
×

∑
λ⊂(mn)

T |λ|
∏
s∈λ

(
(1− qa′(s)tn−l′(s))(1− qm−a′(s)tl′(s))

(1− uqa′(s)+1tn−l′(s)−1)(1− uqm−a′(s)tl′(s))

× (1− uqa(s)+1tl(s))(1− u−1qa(s)tl(s)+1)

(1− qa(s)+1tl(s))(1− qa(s)tl(s)+1)

)
.

As an immediate application of the proposition we have that f(u, T ; q, t) defined
in (1.7) is given by

f(u, T ; q, t) = lim
n,m→∞

fn,m(u, T ; q, t).

For our second computation of fn,m we start with the representation given in
(3.3) and twice apply the finite form of Proposition 2.1 given by (2.25). Then

fn,m(u, T ; q, t) =
∑

λ,µ,ν,τ⊂(mn)

(−tT/u)|λ|(−uq)|µ|q−|τ |t−|ν|

× (tn; q, t)λ(tn; q, t)µ
(tn; q, t)τ ′ bτ ′(q, t)

· (qm; t, q)λ′(q
m; t, q)µ′

(qm; t, q)ν′ bν′(t, q)

×Qλ/ν(tρ; q, t)Qλ′/τ (qρ; t, q)Qµ/ν(tρ; q, t)Qµ′/τ (qρ; t, q).
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Since we do not know of a suitable finite analogue of (2.26), we next let n and
m tend to infinity, and use (2.3) as well as the homogeneity of the Macdonald
polynomials. This yields

f(u, T ; q, t) =
∑

λ,µ,ν,τ⊂(mn)

T |λ|bν(q, t)bτ (t, q)Qλ/ν(−tρ+1/u; q, t)Qλ′/τ (qρ; t, q)

×Qµ/ν(−utρ; q, t)Qµ′/τ (qρ+1; t, q).

By (2.26) with (a, b, c, d) = (−t/u, 1,−u, q) the sum evaluates in closed form as

f(u, T ; q, t) =
1

(T ;T )∞
· (uq, u−1tT ; q, t, T )∞

(qT, tT ; q, t, T )∞
(3.7)

=
(uq, u−1tT ; q, t, T )∞

(T, qtT ; q, t, T )∞
.

Equating this with (1.7) and dividing both sides by (uq; q, t)∞ results in (1.4).

To conclude this section we make some final remarks about fn,m and why it is an
interesting function in its own right. First of all, from (3.1) we have fn,m(u, T ; q, t) ∈
Q(q, t)[u, u−1, T ]. A stronger result appears to hold as follows.

Conjecture 3.4. The function fn,m(u, T ; q, t) lies in Z[q, t, u, u−1, T ].

For n = 1 (or m = 1) this is easily seen to be true. For example, taking n = 1
in Proposition 3.3 yields

(3.8) f1,m(u, T ; q, t) =

m∑
k=0

T k
[
m

k

]
q

(t/u; q)k(uq; q)m−k,

where
[
m
k

]
q

is the classical q-binomial coefficient (see e.g., [14, Equation (I.39)]).

Since the summand lies in Z[q, t, u, u−1, T ], so does f1,m(u, T ; q, t). For n,m > 1,
however, the conjectured polynomiality is much deeper.

The function fn,m may be viewed as a generalised basic hypergeometric series,
and some of the symmetries and evaluations proved in this section are generalisa-
tions of well-known results for such series. Defining [45, p. 68]

C−λ (z; q, t) :=
∏
s∈λ

(
1− zqa(s)tl(s)

)
,

we may rewrite Proposition 3.3 as

fn,m(u, T ; q, t) =

n∏
i=1

m∏
j=1

(
1− uqjti−1

)
×

∑
λ⊂(mn)

C−λ (uq; q, t)C−λ (t/u; q, t)

C−λ (q; q, t)C−λ (t; q, t)
· (tn; q, t)λ(q−m; q, t)λ

(uqtn−1; q, t)λ(q−m/u; q, t)λ

(T
u

)|λ|
.

For n = 1 (see also (3.8)) this simplifies to the φ2 1 basic hypergeometric series

(3.9) f1,m(u, T ; q, t) = (uq; q)m φ2 1

[
t/u, q−m

q−m/u
; q,

T

u

]
,

where [14]

φr+1 r

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
:=

∞∑
k=0

(a1; q)k · · · (ar+1; q)k
(q; q)k(b1; q)k · · · (br; q)k

zk.
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The symmetry (3.2a) can thus be viewed as a generalisation of Heine’s well-known
transformation formula [14, Equation (III.2)]

φ2 1

[
aw, q−m

wq−m
; q, z

]
=
( z
w

)m (q/z; q)m
(q/w; q)m

φ2 1

[
az, q−m

zq−m
; q, w

]
.

Similarly, (3.2b) generalises

φ2 1

[
q/w, q−m

aq−m/w
; q, z

]
=

(zq/a; q)m
(wq/a; q)m

φ2 1

[
q/z, q−m

aq−m/z
; q, w

]
,

which is a limiting case of the φ3 2 transformation formula [14, Equation (III.11)].
Also, by (3.2b), the evaluation (3.6a) is equivalent to

(3.10) fn,m(T/q, T ; q, t) =

n∏
i=1

m∏
j=1

(1− qjti).

Comparing this with the u = T/q case of (3.9) shows that (3.10) can be viewed as
generalisations of the q-Chu–Vandermonde summation [14, Equation (II.6)]

φ2 1

[
a, q−m

bq−m
; q, q

]
=

(aq/b; q)m
(q/b; q)m

.

Finally we note that if we let m tend to infinity in (3.9) we can sum the resulting
φ1 0 series by the q-binomial theorem [14, Equation (II.3)]. Hence

(3.11) lim
m→∞

f1,m(u, T ; q, t) =
(uq, tT/u; q)∞

(T ; q)∞
.

Unfortunately, limm→∞ fn,m(u, T ; q, t) for finite n > 1, which interpolates between
(3.7) and (3.11), does not admit a simple factorised expression.

4. Special cases of the q, t-Nekrasov–Okounkov formula

The Nekrasov–Okounkov formula (1.5) contains many classical identities as spe-
cial cases. For µ = 0 it yields Euler’s formula for the generating function of parti-
tions. For z = 2 only the staircase partitions δn for n > 1 contribute to the sum
and (1.5) simplifies to Jacobi’s identity for the third power of the Dedekind eta
function η(τ). More generally, for z = p with p a positive integer, (1.5) it is related
to Macdonald’s expansion [36, pp. 134 and 135] for the (p2−1)th power of η(τ). In
a different vein (see e.g., [18]), by setting z2 = −x/T , taking the T → 0 limit, and
then extracting coefficients of xn, the Nekrasov–Okounkov formula simplifies to

(4.1)
∑
λ`n

∏
s∈λ

1

h(s)2
=

1

n!
,

which is a well-known identity related to the Robinson–Schensted–Knuth corre-
spondence [30,46,48], the Frame–Robinson–Thrall formula [10] and the Plancherel
measure on partitions [3].

Some of the above-mentioned special cases have nice generalisations to the Mac-
donald polynomial or the t = q (i.e., Schur) level. For example, if we replace u by
−u/qT in (1.4), then let T tend to 0 and finally extract coefficients of un we obtain
a q, t-analogue of (4.1)∑

λ`n

qn(λ
′)tn(λ)

cλ(q, t)c′λ(q, t)
= [un](−u; q, t)∞ = en

([
1

(1− q)(1− t)

])
,
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where en(x) is the n-th elementary symmetric function and 1/(1 − q)(1 − t) is
plethystic notation for the cartesian product of the alphabets {1, q, q2, . . . } and
{1, t, t2, . . . }. As an identity this is not actually new — it for example follows by
specialising x = tρ, y = qρ, T = u in the dual Cauchy identity (3.4) and using the
large large-n limit of (2.7), see also [11] — but the point is that it is contained in
(1.4).

Another interesting special case corresponds to u = q−p for p a positive integer.
Then the summand of (1.4) contains the factor∏

s∈λ

(
1− qa(s)−p+1tl(s)

)
,

which vanishes unless λ is a partition such that λi−λi+1 6 p−1 for all 1 6 i 6 l(λ).
In other words, consecutive parts should differ by at most p−1 and also the smallest
part has size at most p− 1. If we denote this set of partitions by Dp (for example,
D1 = {0}, D2 = {λ : λ′ is strict}, and the number of partitions in Dp of length l is
pl − pl−1), then

(4.2)
∑
λ∈Dp

T |λ|
∏
s∈λ

(1− qa(s)−p+1tl(s))(1− qa(s)+ptl(s)+1)

(1− qa(s)+1tl(s))(1− qa(s)tl(s)+1)
=

p−1∏
i=1

(qi−pT ; t, T )∞
(qitT ; t, T )∞

.

A much stronger restriction results if we take q = t in (4.2). Then partitions with
hook-lengths equal to p vanish. Partitions with no such hook-lengths are known
as p-cores and play an important role in the modular representation theory of the
symmetric group, see e.g., [40, 46]. Thus, with Cp denoting the set of p-cores,

(4.3)
∑
λ∈Cp

T |λ|
∏

h∈H (λ)

(1− th−p)(1− th+p)
(1− th)2

= (T ;T )p−1∞
∏

16i<j6p

(tj−iT, ti−jT ;T )∞.

The set of 2-cores is given by C2 = {δn : n > 1}, and for p = 2 we thus recover the
Jacobi triple product identity [14]∑

n>1

(−1)nT (n
2) t

n − t1−n

1− t
= (T, tT, t−1T ;T )∞.

More generally, (4.3) is the Macdonald identity for the affine root system A
(1)
p−1 [36]

specialised as

e−α0 7→ Tt1−p, e−α1 , . . . , e−αp−1 7→ t,

where α0, . . . , αp−1 are the simple roots. This can be seen using a well-known
parametrisation of p-cores due to Klyachko [27] and “Bijection 2” from the work of
Garvan, Kim and Stanton [13]. For more details we also refer to [9,18,19]. Identity
(4.2) should thus be regarded as a generalisation of the Jacobi triple product identity
and the specialised Macdonald identity of type A.

After completion of an earlier version of this paper, Amer Iqbal informed us of
his joint work with Kozçaz and Shabbir [24] on the refined topological vertex. This
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is defined as the rational function

Cλµν(t, q) := qn(µ
′)+n(ν′)+ 1

2 (|λ|+|µ|+|ν|)t−n(µ)cν(q, t)−1

×
∑
η

t−|η|sλ′/η
(
tρq−ν

)
sµ/η

(
qρt−ν

′)
,

(where sλ/µ is a skew Schur function) and reduces to the ordinary topological
vertex [1, 44] for t = q. In their paper Iqbal et al. use geometric considerations
as a heuristic to generate identities for the refined topological vertex. This in turn
leads to numerous q, t-hook-length formulas, see [24, Section 6]. As remarked in
their paper, these identities are not rigorously proved, but checked up to some
fixed order in the parameters using a computer. Their Example 3, arising from a
5-dimensional U(1) gauge theory is, up to a renaming of the variables, precisely our
(1.4).4

Macdonald polynomials can also be applied to deal with the other identities from
[24], and below we discuss in detail [24, Example 4] arising from a 5-dimensional
supersymmetric U(1) gauge theory with two hypermultiplets.

Proposition 4.1. We have∑
µ,ν

(−u)|µ|(−v)|ν|qn(µ
′)+n(ν′)tn(µ)+n(ν)

cµ(q, t)c′µ(q, t)cν(q, t)c′ν(q, t)

∏
i,j>1

(
1− wqi−νj tj−µ

′
i
)

(4.4a)

=
∑
λ

(−wqt)|λ|qn(λ′)tn(λ)

cλ(q, t)c′λ(q, t)

∏
i,j>1

(
1− uqi−1tj−λ

′
i−1
)(

1− vqi−λj−1tj−1
)

(4.4b)

=
(u, v, wqt, uvw; q, t)∞

(uwq, vwt; q, t)∞
.(4.4c)

By applying the ‘flop transition’ to this theory, see [24, p. 450], Iqbal et al. also
obtained the following companion identity.

Proposition 4.2. We have

(4.5)
∑
λ

w|λ|t2n(λ)

cλ(q, t)c′λ(q, t)

∏
i,j>1

(
1− uqi−1tj−λ

′
i
)(

1− vqi−1tj−λ
′
i
)

=
(ut, vt, uw, vw; q, t)∞

(w, uvw; q, t)∞
.

For reasons that will become clear later, we first prove the second proposition.

Proof of Proposition 4.2. By (2.1) the claim may also be stated as

(4.6)
∑
λ

w|λ|t2n(λ)(u, v; q, t)λ
cλ(q, t)c′λ(q, t)

=
∏
i,j>1

(uw, vw; q, t)∞
(w, uvw; q, t)∞

,

where (a1, . . . , ak; q, t)λ := (a1; q, t)λ · · · (ak; q, t)λ. The shortest proof of this is
to start with the Cauchy identity (2.6) and carry out the plethystic substitutions
x 7→ (w − uw)/(1− t) and y 7→ (1− v)/(1− t). By [37, p. 338]

Pλ

([a− b
1− t

]
; q, t

)
= a|λ|

tn(λ)(b/a; q, t)λ
cλ(q, t)

,

4In the subsequent paper [25] Iqbal et al. prove this for t = q using the cyclic symmetry of the
ordinary topological vertex.
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and the simple relation Qλ = bλPλ (see (2.5)) the identity (4.6) immediately follows.
It is in fact not hard to show that (4.6) and hence also (4.5) admit a bounded

analogue in which λ is summed over partitions of length at most n. To this end
we recall the symmetric rational function Rλ(x; b; q, t) defined by the branching
formula [32],

Rλ(x1, . . . , xn; b; q, t) =
∑
µ⊂λ

(bxn/t; q, t)µ
(bxn; q, t)λ

Pλ/µ(xn; q, t)Rµ(x1, . . . , xn−1; b; q, t)

and initial condition Rλ(– ; b; q, t) = δλ,0. Note that Rλ(x; 0; q, t) = Pλ(x; q, t)
and R(k)(x1; b; q, t) = xk/(bx; q)k. According to [32, Corollary 5.4], the function
Rλ(x; b; q, t) admits the following sln analogue of the classical q-Gauss sum:∑

λ

tn(λ)
( c
ab

)|λ| (a, b; q, t)λ
c′λ(q, t)

Rλ(x; c, q, t) =

n∏
i=1

(cxi/a, cxi/b; q)∞
(cxi, cxi/ab; q)∞

.

Specialising x = tδn , using [32, Proposition 4.4]

Rλ(tδn ; b; q, t) =
tn(λ)(tn; q, t)λ

(btn−1; q, t)λcλ(q, t)
,

and finally replacing (a, b, c) 7→ (u, v, uvw), yields∑
λ

w|λ|t2n(λ)(tn, u, v; q, t)λ
(uvwtn−1; q, t)λ cλ(q, t)c′λ(q, t)

=

n∏
i=1

(uwti−1, vwti−1; q)∞
(wti−1, uvwti−1; q)∞

,

where we note that (tn; q, t)λ = 0 unless l(λ) 6 n. In the large-n limit this gives
(4.6). �

Proof of Proposition 4.1. In the following we denote the double sum in (4.4a) by
LHS. Replacing µ 7→ µ′ and using (2.2) as well as

(4.7) Pλ(tρ; q, t) =
tn(λ)

cλ(q, t)

(this is the large-n limit of (2.7)), we get

LHS =
∑
µ,ν

(−u)|µ|(−v)|ν|qn(ν
′)tn(µ

′)Pµ(qρ; t, q)Pν(tρ; q, t)

c′µ(t, q)c′ν(q, t)

∏
i,j>1

(
1− wqi−νj tj−µi

)
.

In order to decouple the sums over µ and ν we apply the dual Cauchy identity (3.4)
with (x, y, T ) 7→ (q−νtρ, qρt−µ,−wqt). Then

LHS =
∑
λ,µ,ν

(−wqt)|λ|(−u)|µ|(−v)|ν|qn(ν
′)tn(µ

′)

× Pµ(qρ; t, q)Pλ′(q
ρt−µ; t, q)Pν(tρ; q, t)Pλ(q−νtρ; q, t)

c′µ(t, q)c′ν(q, t)
.

By a double application of the Macdonald–Koornwinder duality (2.8) (with ρn 7→ ρ)
this can be transformed into

LHS =
∑
λ,µ,ν

(−wqt)|λ|(−u)|µ|(−v)|ν|qn(ν
′)tn(µ

′)

× Pλ′(q
ρ; t, q)Pµ(qρt−λ

′
; t, q)Pλ(tρ; q, t)Pν(q−λtρ; q, t)

c′µ(t, q)c′ν(q, t)
.
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Specialising T = −1 and y = qρ in (3.4) and using (4.7), we obtain the following
q, t-analogue of Euler’s q-exponential sum (see also [33, p. 294]):∑

λ

(−1)λqn(λ
′)Pλ(x; q, t)

c′λ(q, t)
=
∏
i>1

(xi; q)∞.

This can be used to carry out the sums over µ and ν, resulting in

LHS =
∑
λ

(−wqt)|λ|Pλ(tρ; q, t)Pλ′(q
ρ; t, q)

∏
i>1

(uqi−1t−λ
′
i ; t)∞(vq−λiti−1; q)∞

=
∑
λ

(−wqt)|λ|qn(λ′)tn(λ)

cλ(q, t)c′λ(q, t)

∏
i,j>1

(
1− uqi−1tj−λ

′
i−1
)(

1− vqi−λj−1tj−1
)
,

where in the second step we have once again used (4.7) followed by (2.2). This
proves the equality between (4.4a) and (4.4b). In fact, the entire proof is now done
since the equality of (4.4b) and (4.4c) is equivalent to the identity (4.5) arising from
the flop transition. Indeed, by (2.1) the second half of Proposition 4.1 can also be
stated as∑

λ

(−wqt)|λ|qn(λ′)tn(λ)(u/t; q, t)λ(v/q; t, q)λ′

cλ(q, t)c′λ(q, t)
=

(wqt, uvw; q, t)∞
(uwq, vwt; q, t)∞

.

Since

(z; t, q)λ′ = (−z)|λ|q−n(λ
′)tn(λ)(z−1; q, t)λ

this is (4.6) in which (u, v, w) has been replaced by (u/t, q/v, vwt). �

Appendix A.

Jim Bryan suggested an alternative derivation of (1.4) based on the equivariant
DMVV formula for the Hilbert scheme of n points in the plane, (C2)[n]. This
formula was first conjectured by Li, Liu and Zhou in [34] and subsequently proved
by Waelder [51] as a consequence of the equivariant MacKay correspondence.

Let (u1, u2) be the equivariant parameters of the natural torus action on (C2)[n],
and set t1 := e2πiu1 and t2 := e2πiu2 . Let Ell

(
(C2)[n];u, p, t1, t2

)
be the equivariant

elliptic genus of (C2)[n], where p := exp(2πiτ) and u := exp(2πiz) for τ ∈ H
and z ∈ C. Treating u, p, t1 and t2 as formal variables, the equivariant DMVV
formula [51, Theorem 12] expresses the generating function for the elliptic genera
as a product:

(A.1)
∑
n>0

Tn Ell
(
(C2)[n];u, p, t1, t2

)
=
∏
m>0

∏
k>1

∏
`,n1,n2∈Z

1

(1− pmT ku`tn1
1 tn2

2 )c(km,`,n1,n2)
.

The integers c(m, `, n1, n2) on the right are determined by the equivariant elliptic
genus of C2, given by a simple ratio of Jacobi theta functions:

Ell(C2, u, p, t1, t2) =
θ(ut−11 , u−1t2; p)

θ(t−11 , t2; p)
(A.2)

=
∑
m>0

∑
`,n1,n2∈Z

c(m, `, n1, n2)pmu`tn1
1 tn2

2 ,
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where

θ(u; p) :=
∑
k∈Z

(−u)kp(
k
2) = (u, p/u, p; p)∞

and

θ(u1, . . . , uk; p) := θ(u1; p) · · · θ(uk; p).

In [34] an explicit formula in terms of arm and leg-lengths is obtained for the
generating function (over n) of elliptic genera of the framed moduli spaces M(r, n)
of torsion-free sheaves on P2 of rank r and second Chern class n, see [39]. Since
M(1, n) coincides with (C2)[n] this implies [34, Equation (2.4); µ 7→ λ′]

(A.3)
∑
n>0

Tn Ell
(
(C2)[n];u, p, t1, t2

)
=
∑
λ

T |λ|
∏
s∈λ

θ(ut
−a(s)−1
1 t

l(s)
2 , u−1t

−a(s)
1 t

l(s)+1
2 ; p)

θ(t
−a(s)−1
1 t

l(s)
2 , t

−a(s)
1 t

l(s)+1
2 ; p)

.

Combining (A.1) with (A.3) we can derive an elliptic analogue of the Nekrasov–
Okounkov formula as follows. Define a second set of integers C(m, `, n1, n2) by

(A.4)
(put−11 , pu−1t1, put

−1
2 , pu−1t2; p)∞

(pt−11 , pt1, pt
−1
2 , pt2; p)∞

=
∑
m>0

∑
`,n1,n2∈Z

C(m, `, n1, n2)pmu`tn1
1 tn2

2 .

From the invariance of the left-hand side under the substitutions (u, t1, t2) 7→
(u, t2, t1) and (u, t1, t2) 7→ (u−1, t−11 , t−12 ) it follows that

C(m, `, n1, n2) = C(m, `, n2, n1) = C(m,−`,−n1,−n2).

By (A.2) and θ(u; p) = (1− u)(pu, pu−1; p)∞,

Ell(C2, u, p, t1, t2)

=
(1− ut−11 )(1− u−1t2)

(1− t1)(1− t2)
· (put−11 , pu−1t1, put

−1
2 , pu−1t2; p)∞

(pt−11 , pt1, pt
−1
2 , pt2; p)∞

=
(1− ut−11 )(1− u−1t2)

(1− t−11 )(1− t2)

∑
m>0

∑
`,n1,n2∈Z

C(m, `, n1, n2)pmu`tn1
1 tn2

2

=
∑
m>0

∑
`,n1,n2∈Z

∑
i,j>1

D(m, `, n1 + i, n2 − j)pmu`tn1
1 tn2

2 ,

where

D(m, `, n1, n2) := C(m, `, n1 − 1, n2 + 1) + C(m, `, n1, n2)

− C(m, `− 1, n1, n2 + 1)− C(m, `+ 1, n1 − 1, n2).

Comparison with (A.1) yields

c(m, `, n1, n2) =
∑
i,j>1

D(m, `, n1 + i, n2 − j).
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Hence∏
m>0

∏
k>1

∏
`,n1,n2∈Z

1

(1− pmT ku`tn1
1 tn2

2 )c(km,`,n1,n2)

=
∏
m>0

∏
i,j,k>1

∏
`,n1,n2∈Z

1

(1− pmT ku`tn1
1 tn2

2 )D(km,`,n1+i,n2−j)

=
∏
m>0

∏
i,j,k>1

∏
`,n1,n2∈Z

(
(1− pmT ku`+1tn1−i

1 tn2+j−1
2 )

(1− pmT ku`tn1−i+1
1 tn2+j−1

2 )

× (1− pmT ku`−1tn1−i+1
1 tn2+j

2 )

(1− pmT ku`tn1−i
1 tn2+j

2 )

)C(km,`,n1,n2)

.

Equating the right-hand sides of (A.1) and (A.3), using the above rewriting of the
former, and finally replacing (t1, t2) 7→ (q−1, t) yields∑

λ

T |λ|
∏
s∈λ

θ(uqa(s)+1tl(s), u−1qa(s)tl(s)+1; p)

θ(qa(s)+1tl(s), qa(s)tl(s)+1; p)

=
∏
m>0

∏
i,j,k>1

∏
`,n1,n2∈Z

(
(1− pmT ku`+1qi−n1tj+n2−1)

(1− pmT ku`qi−n1−1tj+n2−1)

× (1− pmT ku`−1qi−n1−1tj+n2)

(1− pmT ku`qi−n1tj+n2)

)C(km,`,n1,n2)

.

Since the left-hand side of (A.4) trivialises to 1 when the elliptic nome p tends to
0,

C(0, `, n1, n2) = δ`,0δn1,0δn2,0.

In the p→ 0 limit the above result thus simplifies to (1.4).
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