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We obtain connection coefficients betweaghinomial andg-trinomial coefficients.

Using these, one can transfogrbinomial identities intay-trinomial identities and

back again. To demonstrate the usefulness of this procedure we rederive some
known trinomial identities related to partition theory and prove many of the con-
jectures of Berkovich, McCoy and Pearce, which have recently arisen in their study
of the ¢, 1 and ¢, 5 perturbations of minimal conformal field theory. €099
American Institute of Physic§S0022-24889)01105-9

I. INTRODUCTION

The g-binomial coefficients can be defined by tty@analog of Newton’s binomial expansion,

n

(1+x)(1+gx)---(1+q9" x)= 2 Xaqa(a—l)/z
a=0

n
. (1)

a

An explicit expression for thg-binomial coefficients is given by

(Dn
=1 (@a(Wn-a
q 0, otherwise,

for Osas=n,

where

(Q)nzjﬂl(l—qj), n=1 and(q)o=1.

g-Binomials play an essential role in combinatorics, partition theory, and statistical mechan-
ics; see, e.g., Refs. 1-4, and one of MacMahon'’s famous results ig"{j4} is the generating
function of partitions with no more tham parts, no part exceeding Less well understood are the
g-trinomial coefficients, defined aganalogs of the numbers appearing in the generalized Pascal
triangle
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Andrews, Baxter, and Forresténwere the first to encountertrinomial coefficients, and in Ref.
6 Andrews and Baxter defined
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L,g:q 2: L.b sz;() gk H t;: 3)
and
To(L,aiq)=Ty(L,a) =gt 2t ranr2 L’a_a”;q_l. (@
The g-trinomial T,, can be expressed explicitly as
e S L) ®

r=0 (Q)(L—a—r)lz(q)(L+a—r)/2(q)r'

L—a—-r even

Clearly, theg-trinomial coefficients are nonzero fa=—L,—L+1,...L only and satisfy the
symmetries

L.b;q

— na(a—b)
a q

2

and T(L,a)=T,(L,—a).
2

L,b—2a
—a

To see that3) indeed defineg-analogs of the trinomial coefficients, gt 1 and twice apply the
binomial formula to find that

L

> X

a=-L

L,b;1

_ —1\L
a =(1+x+x" )",

2

in accordance with{2). The only further properties af-trinomials needed in this paper are the
limiting formulag

(_ ql/2)x+ (ql/Z)OO

lim Ty(L,a)= , 6
Lo O( ) 2(q)OC ( )
L—a even
. (_qllz)oo_(qllz)oo
lim Ty(L,a)= , 7
N TCTN "
L—a odd
and
i L,a 1 ®
im = .
L—oo 2 (q)OC
Finally, we introduce the abbreviation
L,a _ L
a 2_ al,’

Since their discovery about a decade agtrinomials have found numerous applications in,
again, combinatorics, partition theory, and statistical mechanfésAmong the most striking
results is ag-trinomial proof of Schur’s partition theorem and Capparelitisen conjecture’, a
g-trinomial proof of the Gbnitz—Gordon partition theoremand their Andrews—Bressoud
generalization$®>!the proof of anEg Rogers—Ramanujan-type identifyand a trinomial analog
of Bailey’s lemmat®
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Most of the above-cited papers contajtrinomial identities. Upon close inspection of many
of these identities, one is struck by their similarity with well-knogpuiinomial identities. This
strongly suggests that mang-trinomial identities can be simply viewed as corollaries of
g-binomial identities. In an earlier pagémwe made a first, only partially successful, attempt to
relateg-trinomial identities tog-binomial identities, showing that each Bailey paithich implies
a g-binomial identity implies a trinomial Bailey paifwhich implies ag-trinomial identity). The
problem with the idea of Ref. 23 is that it appliesgdrinomial identities in which the parameter
ain (3) and(4) takes even values only. Thereforetrinomial identities in whiche takes arbitrary
integer values remained irreducible debinomial identities.

In this paper we intend to deal with this problem, and in the next section connection coeffi-
cients betweem-binomial andg-trinomial coefficients are obtained. Using these coefficients and
the idea of Ref. 23, mang-trinomial identities are derived from knowgtbinomial identities. In
Sect. lll, several-trinomial identities related to partitions are obtained and in Sec. IV general
classes ofj-trinomial identities are proved, including many of the recent conjectures of Berkovich,
McCoy, and Pearc#. To make contact with the recently discovered trinomial analog of Bailey’s
lemma, our results are finally formulated in the language of Bailey pairs in Sec. V. In the Appen-
dix some necessary formulas fgibinomial coefficients are collected.

II. CONNECTION COEFFICIENTS

To relateg-binomials andg-trinomials, we consider the simple problem of finding the coef-
ficientsC, , andCy ,, such that

L

2k
To(L,a)= 2, CL (@), _ )
k=0 a
and
L
[ =2 ClLu@To(ka). (10
Of course, the two equations imply that
L
2 CL@)Cim(@)=dL - (KD

The answer to the above connection coefficient problem is given by the following lemma.
Lemma Il.1: For G  and ¢ , as above

- L
Cu(@)=(~ gt | 12

L
Cl (@) =q<k2-az>’2{ k}. (13

Proof: Substitution of the expression f@y , into the right-hand side afL0) and using Eq(5) for
To gives

L L k—|al q(kz—a2+r2)/2(q)L

2 L (@) To(k.a)= E Zo (DL —k(D) k=a—ry2 D (kra—ry2 D)y

k—a—r even

To proceed, we introduce new summation variabl¢defined byk=i+j+a andr=i—j, and
apply theg-Chu—Vandermonde sum, i.e.,
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il

J

L L—i

jt+a

by (A1) - L

i(i+a)
qul a :

=0

L
i+a

L Lo
kzo Cﬁ,k(a)To(k,a)Zz E (ita)+j(i+a)
= —

by (A1) [ oL

L—al’

This settleq13), and to provg12) we show that11) holds. Taking the left-hand side @¢f1) and
substituting the claim of the lemma, we find

L
E CL«(a) CkM(a)—Z( )L—kq<L{k)+(M2—L2)/2[tHl\ljl

kK| L—M
2 1>kq<z>[ K }=5L,M,

qMZ L2) /2[

where in the last step we have ugddgl with x=—1. O
We note that a proof of12) that does not rely ofiL3) is implied by Eqs(2.12) and(2.35 of
Ref. 6.

The analogous result involving, instead ofTy can be stated as follows. Defir®_, and
D{ « by

L

2k
Tuba)=2 D@y,
and
2L ] -
L =k§0 D{ (@) Ty(ka). (14
Lemma I.2: For O  and D , as above

1+
Dy (@)= (~1)- g2+ <z—p+2 H (15

/ - ita[L
D[ (a)=qg'?""2 1+q8 K (16)

Proof: Following the proof of Lemma II.1 witfT g replaced byT,, one finds after application
of the g-Chu—Vandermonde suii®1), that the right-hand side dfl4) is equal to

]

Before (Al) can again be applied, the recurrerié®) is needed to rewrite this as

1+q:[iZLO qi(i+al)[|—} ]

1+q
Usmg (A1) and combining terms glve@L .]. To prove (15 it again suffices to consider
EkaD,_,k(a)Dk’M(a) After substituting the results fdd andD’ and replacingk—L —k, one
finds that this become§,_ \, after using(1) with x=—1. O

L

L
1+q- .
i(i+a—1)
2 g i+al

1+qa|—0

L—1
i+a—1

LijL—-1

i+a

_|_an q|(|+a)
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To conclude this section, we note that the representati@hsind (5) for the g-trinomial
coefficients can also be written as a relation betwgémnnomials andg-binomials. That is,

L[ 2k
_ (L—2k)(L—2k-n)/2
To(L.22)= 2, d okl k—a 17
and
L,b L 2k
! — (k—a)(k—a+b)
2a| =2 2k||k-a (18

These results, which, unlike the previous transformations are not invertible, will be needed later.

lll. SIMPLE EXAMPLES FROM PARTITION THEORY

Before proving general series gftrinomial identities using the results of the previous section,
we treat some simple examples related to partition identities first.

The first example concerns the following result of André\see also Ref. 21 It is well
knowr?* that the (first) Rogers—Ramanujan identity can be obtained as a limiting case of the
polynomial identity,

L

L—n
n (L—=5j)/2

= D (—1)igiGi+br

j=—=

n2
2

. (19

Here the polynomials appearing on either side are known to be the generating function of parti-

tions with the difference between parts of at least two and the largest part not exceedlrftf®

In Ref. 7, Andrews remarks that it is “most surprising and intriguing” that the following also

holds:

L—n
n

n2
2

J

S o TL
= E i(10j+1)

} _ q(2j +1)(5]+2)
2

L
5j+2U' (20

We now show tha{20) is a corollary of(19), or for those who prefer to decrease instead of
increase complexity, thdfl9) is a corollary of(20). Replacingg— 1/q in (9) and(12), using(4)
and (A7), we find that[see also Ref. 6, Eq$2.12) and(2.35]

L
a

L
L|l 2k

_ L=k (L—K)(L+k+1)/2

|<§=:0( L™ k”k—a

2

If we thus take(19) with L replaced by R, multiply by (— 1) *q(- "R +k+D/2[-] and sum over
k, we arrive at

L

k

} — q(ZJ +1)(5j+1)
2

2k—n
n

> (_1)L—kq(L—k)(L+k+1)/2+n2
k=0 n=0

[’

. L
= j(10j+1)
> (q 5

e |

L
5j+2),

J

To simplify the left-hand side, we s&t=L —m+n followed by n—m—n to get

=> q™

m=0

L
n

2L—m—n

m—n m

n L—m
2 qm220 (_1)nq(2)+n(L—2m+1) }

m=0 n=
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where the sum oven has been performed using thhegChu—Vandermonde summatidA3). As
remarked before, one can equally well take the reverse route and starting2®prasing Lemma
1.1, one readily obtaing19). We leave this to the reader.

Our second example concerns the following identity of Sfitedated to thefirst) Gallnitz—
Gordon partition identity-'2

%990 1 1
.q2)n =]._.[ (1_q81+l)(1_q81+4)(1_q8]+7)' (21)

A polynomial identity that implies this equation is given'fy®

(m2+n?)/2 L—m

E (—DIgA  I2To(L4) +To(L 4+ 1)} (22

m,n=0
It was observed in Ref. 7 that for fixddthe polynomial appearing on the right-hand side vgjth
replaced byg? is the generating function of partitions=(\q,\5,...) With \j—\;, =2 for \,

odd, A;—A\;; (=3 for \; even, and with the largest part not exceeding-2.. To see that22)
mdeed implies21), IetL tend to infinity using(6), (7), and(A6). Hence,

n
ml=

(m2+n?)/2 1/2
q ( (g) )= Z (—1)igai% i,
] Jf—DO

mn=0  (Qn

Using Jacobi’s triple product identifiEq. (2.2.10 of Ref. 1] and Eq.(1) with x=qg'? gives

q”z’z(—q”z)n (—9"9.(a¥%9%..(a*% 0% (g% 9%
n=0 (q)n (Q)w .

Letting g— g2 and cleaning up the right-hand side finally yiel@q).
The companiorg-binomial identity of(22) is given by the following identity of Refs. 29 and
30:

2, 2

q(m1+m2)/4
mq,my=0

m;+m, even

L+ 3(m;—my) || 3(my+my)
my my

L . .
(4] +1)(5]+1)/2
L—4j } *q

N 2L
— _ i j(20j+1)/2
2, ”[q L—4j—1H'
To prove this we replack by k, multiply by q*az’ZCL,k(a) as given by(12), and sum ovek using
(9). The resulting equation is

o

2 (DI )+ To(L 4+ 1)

L
- > gmim- 2L2)/4[2(m1+mz)}2 1)kq(;)[tHL—k+%(ml—m2)}
“h my

my,my=0

m;+m, even

by (A2
y;) > q((m1L)2+(m2L)z),4[%(m1+m2)H%(m1_m2)}

my,my=0 my m;—L

m;+m, even

Making the variable change;—L+n—m andm,—L—n—m, we find Eq.(22).
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IV. g-TRINOMIAL IDENTITIES

After the previous examples, we now derive general classggr@riomial identities, as stated
in Propositions 1V.1-IV.5 below. The setup will be as follows. First we describe a family of
g-binomial identities for bounded analogs of Virasoro characters, based on continued fraction
expansions. We then transform these identities gqatdnomial identities, by either usin¢p) or
(18). Many of theg-trinomial identities available in the literature are contained in Propositions
IV.1-1V.5 or can be derived in a completely analogous fashion.

A. g-binomial identities for bounded Virasoro characters

Using the inclusion—exclusion construction of Feigin and Fiitiise (normalized characters
of the Virasoro algebra of central charge1—6(p’ —p)?/pp’, with p,p’ integers such that 1
<p<p’ and gcdp,p’)=1, are given by>>3

E {qj(pp'jer'F*pS)_q(pj+r)(p’j+s)}.
(q)ocj:—w

X ()=

Herer=1,..p—1 ands=1,...p' —1 label the highest weight representations.

For simplicity we only deal with the “vacuum” character, determined|pyr —ps|=1. The
following polynomial analogs of the vacuum Virasoro characters have arisen in the context of
statistical mechaniéé>®and partition theory?®

]

BL(p.p";q)= > {q“pp”“)
J o0

2L
L-p'j—s

_q(PJ+f)(p'j+S)

L—p'j ] (23
The polynomialsB, (p,p’) are known to be related to the minimal conformal field theory
M(p,p’) perturbed by the operatab; 5.

Recently, very different, so-called fermionic representations for the above polynomials have
been obtained by Berkovich, McCoy and Schilling using continued fracfibifsAssumep
<p’'<2p, gcdp,p’)=1 and define non-negative integemsand vy,...,v, by the continued
fraction expansion

p 1
o= =yt 1 =[vg,---Vn_1,Vpt2].
+
Vq 1
V2+" + n+2
Usingn andv;, set
m—1 n
th= 2, »;, l<m=n andd=2, v;. (24)
=0 j=0

Thet,, andd are used to define a fractional incidence mafrand a fractional Cartan-type matrix
2B=2I—Z (with | thed by d unit matrix as follows:

Sij+1T dij-1 for 1<i<d, i#t,,,
Z.i,j: 5i,j+l+ 5i,j_5i,j—ll for i:tm, 1$m$n_5,/n’0, (25)
i j+11 6, 00i, for i=d.

Whenp’ =p-+ 1, the incidence matri¥ has component j= & ;1 (i,j=1,...p—2), so that B
corresponds to the Cartan matrix of the Lie algeBfa ;. Whenp=2k—1 andp’=2k+1 the
matrix Z has components; j= éji_j| 1+ & ;6 k-1 (i,j=1,...k—1), so that B corresponds to the
Cartan-type matrix of the tadpole graphlof 1 nodes.

i,



RIGHTS

J. Math. Phys., Vol. 40, No. 5, May 1999 S. O. Warnaar 2521

Using the above definition, the fermionic representation for the bounded Virasoro characters
with p<p’<2p can be given as

FL(p.p'sa)= 2 q’“B”’ZH{ m.(Im)i} (26)
|

me 279

Here we use the notationsMw=%; ,v;M; Wy, (Mv)j=2M; v, and @M);=Z 0, My .
These conventions are important since, generdly~=7,B) is not a symmetric matrix. The
general form(26) for F| (p,p’) can be found in Refs. 29 and 36ee also Ref. 37 The important
special casesp,p’)=(p,p+1) and (X—1,%+ 1) were proven prior to this is in Refs. 38, 39
and Ref. 40, respectively.

The expression foF (p,p’;q) with p’>2p follows from the duality transformation

FL(p.p’; 1) =q " "FL(p’—p.p’;0). (27)

To obtain fermionic character formulas f)p?f’s*p')(q) with |p’r —ps|=1, one simply letd. tend to
infinity in (26).
Before we proceed to use the identity,

FL(p,p";a)=BL(p,p";q), (28)

to derive trinomial identities, let us comment on the convention of writiBgf@ a Cartan-type
matrix in the above formulas. This has its origin in the work of Ref. 41, where, in more general
situations, the matriB has a(nontrivial) tensor product structur@=b,®b,. In the identities of

this section the matrik, is simply the inverse of thd,; Cartan matrix, §;)=(3). In Sec. IVD,
however, we indeed encounter a different situatimnbeing the(still trivial) Cartan-type matrix
of the tadpole graph with just a single node, so that (1).

B. g-trinomial identities |

We start with theg-binomial identity(28) for p<p’<2p, assuming thatl=2. Applying Eq.
(9), with C__  given by(12), we find

©

1:2_00 {q(p’(Zp—p’)J +2)i/2-|-0(L, p'i)— q((Zp—p’)j+2r—S)(p’J +s)/2To(L,p’j +s)}

L

=3 (-1t “2{ }Fk(p,p’;q)
d
_ S qmemd z(Im)D o { HL—kJr%(Im)l}
mézd (H { kE: (=17 k my

by (A2 d
yLA )qL2/2 2 quMZ—L(Bm)l{%(Im)l}l:[ [%(Im)j

ml_

me 274 mJ
:qLZILl/z S gmBm2tL(mB-Bm)/2 H { T 1+ 2(Im), }

m+Le; e 270 = m;
with g; (j=1,...d) the standard unit vectors iff. We now have to distinguish two cases accord-
ing to whethervg=1 (so that $/2<p’<2p) or vy>1 (so thatp<p’=<3p/2). In the latter case
T,j=1;1= 61;-1, and we obtain the following polynomial identities.
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Proposition IV.1: For integers p,pwith p<p’<3p/2 and gcdp,p’)=1, let integersl<r
<p andlss<p’ be fixed byp'r—ps/|=1 and letZ and B be defined by (24) and (25). Then the
following polynomial identity holds for &Z:

d
qumzl‘[ FL 5J,2+ %(Zm)]}
m+Le; e 278 i=1 m;
E {q(p’(2p—p’)1 +2)j/2T0(L,p'j )— q((2P—P’)J +2r—s)(p’j +S)/2TO(L1 p'j+s)}.

j=—

The admissible pairsp(p’)=(3,4) and ,p’')=(2,3) have been neglected in our derivation
due to the assumption thdt=2. These two cases can be treated in a similar fashion, and when
(p,p')=(3,4) the left-hand side is 1 fdr even and 0 fot. odd. When p,p’)=(2,3), in which
caseF | (2,3;q) =1, the left-hand side becomés ;. All of the identities of Proposition IV.1 have
been derived before, and for =p-+1 they were first found by Schillint/:1* The more general
case can be found in Ref. 22.

Next we treat the case,=1. When this occurg, ;= §; 1— 611 andZ; ;= 6; 1+ 611, and
we obtain the following polynomial identities.

Proposition 1V.2: For integers p’ with 3p/2<p’<2p and gcdp,p’)=1 let integersl
<r<p andlss<p’ be fixed byp'r—ps/|=1 and letZ and B defined by (24) and (25). Then the
following polynomial identity holds for &Z:

1 1
z qL(L—2m2)/4+mBrr12H 2L (611 6) 2 + 3(Zm);
m+Le; e 278 j=1 m;

= E {q(p'(2p—p’)1 +2)j/2T0(L,p'j )— q((2P—P’)J +2r-s)(p’j +S)/2TO(L1 p'j+s).

j=—o

The case (§,p’)=(3,5) has again escaped a proper derivation, but has, in fact, been treated
previously, corresponding to identit20) with g replaced by I. Apart from this special case due
to Andrews’ the identities of Proposition V.2 have been proved by Berkovich, McCoy, and
Orrick!®® for (p,p’)=(2v+1,4v) and were conjectured for genenaland p’ by Berkovich,
McCoy, and PearcEEq. (8.8) of Ref. 21].

C. g-trinomial identities Il

Our starting point for derivingl-trinomial identities is again Eq28), but this time we rely on
(18). This implies that{28) with L replaced by, multiplied bquz[sz], and summed ovekyields

[}

L

2p'j+2s,

(29)

To transform this into explicit polynomial identities we need to distinguish betweep’<2p
andp’>2p.

First, assume thgi<p’<2p. After substituting expressiof26) for F, , the left side 0f(29)

> g€

k=0

L j(p’ i L r I
Zk}Fk(p,pl;q):jE {qJ(D (p+pH)j+1) 2p’jL_q(p i+s)((p+p )J+r+s)[

is

k2+mBm4

q

k=0 me27d

2|_ hf[ [kaj,ﬁ %(Zm),l_

ki< m

j
By the g-Chu—Vandermonde summati¢Al), with L—L—k+m;/2, a—k—m;/2, andb— —k
—m,/2, this can be rewritten as

i,
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d
L_k+ %ml
i i

=1

qi(i —k—my/2)+k>+mBm4

i,k=0 mEZZd

{k&,—ﬁ L(Zm) Jl

{ 2k—i m;

Replacingm;—m;,, j=1,...d, followed by k— (m;+m,)/2 andi—m; yields

2, 2 d
z rq(3m1+m272m1m3)/4+2j'k:1mj+szykmk+2/4

1
2(My+my—mg)
mo

% L—3(m;+m;—my)
m

d
11 3(My+my) 8 1+ E 17, kmk+2
= m; +2

where the primed sum denotes a sum awer 79*2 such thatm; +m, andmg,...,my, , are all
even.

Now define a new incidence matriX and Cartan-type matrixB =2l —7" of dimension
d’'=d+1 by replacing the continued fraction expansjon,...v,+2] by [1,vg,...,v,+2], SO
thatZ’ becomes the incidence matrix corresponding to the continued fraction expangiotpof
Also defineZ” and B”=21—-7" of dimensiond”"=d+2 as

T.=

ij

— 5i,15j,1+ 5i,2+ 5i,3_ 5],2+ 51"3, fori=1 or ] = 1,
(30

i’—l,j—l’ fOI‘ |,J:2,d+2

Then the above sequence of transformations implies the following proposition.

Proposition 1V.3: For integers p,pwith p<p’ <2 and gcd(p,p) =1 let integers ¥r<p and
1<s<p’ be fixed byp'r—pg=1 and letZ” and B' be defined by (30). Then the following poly-
nomial identity holds for kZ:

' mB’'m/4 1+ Z(T m)
S gy [0

L
2p’j+2s

= 2 [qj(p’(p+p’)j+1)

j=—o

L } _q(pJ+S)((p+p )j+r+s)
2p’]

)

The identities of Proposition V.3 are time=0 case of the conjectured equati@211) [which
contains then=0 instances 0f6.19 and(8.3)] of Ref. 21, and are related to tlgg ; perturbation
of the minimal conformal field theorivl (p’,p+p’).

Whenp’>2p we replacep—p’—p in (29) and use the duality propert27). Hence

W(p.p’sgh)

2k2L
> q*,, |F

k=0

L

| —qPi+e@p —p)+rts) _
"1, 2p'j+2s|,

Y L
= E i(p'(2p" =p)j+1)
. {q 2pj

j=—

’. @1

Observe that the transformation carried out above imgliep’ <2p and|p’(r—s)+ps/=1
Substituting expressio(26) for F| and using(A7), the left side of(31) yields

d 1

j=1 m]

qk(2k7m1)+mBrﬂ4

k=0 meco7d

By the g-Chu—Vandermonde summati¢Al), with L—L—m;/2, a—m,;/2, b—m;/2— 2K, this
can be rewritten as

i,
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E qi(i —2k+m4/2)+k(2k—my)+mBm'4
i,k=0 mezzd

d
3my 11 k& 1+ 3(Zm);
2k—1|j=1 m '

L - %ml}
i

]
Replacingm;—m;,,, j=1,...d, followed byt—m;+m, andi—m,, gives

L—3mg

2, 2 d
2 rq(m1+m2m2m3)/2+2j’k_1mj+ZBjykmk+2/4{
m;

1 igd
2(My+My) 8 1+ 32— 1 T Myt 2

mj 2

where the primed sum again denotes a sum avetZ¢*? such tham; + m, andmg, ...,my, , are
all even.
Now define a new incidence matrixand Cartan-type matrix® = 2| —Z of dimensiond’
=d+1 by replacing the continued fraction expansjeq,...,v,+2] by [vo+1,v4,...,v,+ 2], SO
that 7' becomes the incidence matrix corresponding to the continued fraction expansion of
p'/(p’'—p). Also defineZ” and B"=2I—7" of dimensiond"=d+2 as

- 03— 03, fori=1 or j=1,
MU Ly, forij=2,.d+2

(i

(32

Then the above sequence of transformations implies the following proposition.

Proposition IV.4: For integers p,pwith p<p’<3p/2 and gcqp,p’)=1 let integersl=<r
<p andls<s<p’ be fixed byp’(r—s)r+ps/=1 and letZ and B be defined by (32). Then the
following polynomial identity holds for &Z:

m.

d/l
— L, 1+ X7’ m).
2 qu m/41_[[ I ]
=1 i

o0

H ! ’ H L
= ip’'(2p"-pi+D)
> |q 2

j=—

L

_q(P’J+S)((2p'—p)j+r+s) '
2p’j+2s

2

’:

)

The identities of Proposition IV. 4, which are related to e, perturbation of the conformal
field theoryM(p’,2p’ —p), were conjectured in Ref. 2flas Eq.(6.9)]. For p=p’—1 a proof
using recurrences was recently given in Ref. 20.

D. g-trinomial identities 1lI

There are, of course, many mogetrinomial identities that can be derived using the tech-
niques of the previous sections. Our final application is to show that in some cases a bit more
ingenuity is required to arrive at the desired result. The identities we set out to prove here were
again conjectured by Berkovich, McCoy, and Pedieg. (9.4) of Ref. 21] and are interesting, as
they contain thgpolynomia) Rogers—Ramanujan identit20) as the simplest case. It also pro-
vides an example for which the matr&=b,®b, (in the proposition below denoted &%,) of
Sec. IVA hasb;=(1) and not(3).

Proposition IV.5: For re1, let C,, be the Cartan matrix of A. Then for all LeZ,

n
S gmemz]] ['—51,1+mj_(cnm)j}
me7Z" =1 mJ

©

— 2 [q((n+3)(n+4)j+2)j/2 L

(n+4)j

} _ q((n+3)j+2)((n+4)j +2)/2
2

(33

j:—oo

L
(n+4)j+2 2]'
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Letting L tend to infinity using(8) and (A6), this yields the following Virasoro-character
identities.
Corollary IV.1: For n=1 and|q|<1,

p)

Zn (D 1o (39

qremE {mi—(cnm)i}_{X(l(vgw'z'””)(q), n odd,
j

m X(l(’2+4)/2,n+3)(q), n even.

In Ref. 21, the identitieg33) and (34) were associated with the,, perturbation of the
conformal field theoriesM((n+4)/2n+3) whenn is odd and theg, s perturbation ofM ((n
+3)/2n+4) whenn is even.

Proof: The corollary betrays a hidden parity dependencg8f, which also plays a role in the
proof. Treatingn being odd first, we sat=2k—1. The left-hand side of33) then reads as

2k—17,
sLoj 1+ mi_;—m;+m;
> qmczklm/ZHl[Z R R R Al (35)
J:

me 72k—1 mj

with the convention thamy=L/2 andmy=0. We eliminate the variables,;_;, j=1,...k in
favor of new variabledM ,...,M, defined as

_ 1
My 1 =My o= 3(Mj—Mj; 1),

where M, =0. If after this replacement we relabedi,; to m; for j=1,..k (so thatm,=0),
expression35) becomes

2 q(L(L—2M1)+M§+2ik'j:2Mi(Ck,l)i'ij)/4
M+Leg e 27K
k-1
X 2 qu:l(MHlfmj)(mj,lfmj7(Mijj+2)/2)
my, ...\ M1

Mo+ My +3(M;—M,)
Mo—3(M1— M)

mj+1+%(Mj+1_Mj+2)
Mj—=32(Mjs1—Mj.o)

k—1
{mj_l—an—MHz)}
=1 m] '

(36)

This allows for successive summation oveg_;,...,m; by the g-Saalschtz sum(A4). When
summing overm;, we take(A4) with L—m;_;—(M;—M;,,)/2, a—(M;;1—M;,)/2, b—
—(Mj 1+ Mj2)/2, c—(Mj—Mj,4)/2 (for j=2), andc—my+(M;—M,)/2 (for j=1). As a
result, (36) collapses into

k
D gL 2Myya+ mBM2] | 3L(8 1+ 82+ 3(IM); 37
M+Le; e 27X =1 M
with matricesZ and 2B= 21 -7 defined in Eqs(24) and (25) corresponding to the continued
fraction expansion of+2)/(k+1)=[1k—1], i.e.,
I 5i,15j,1+ 5i,2_ 5]"2, fori=1 or j:].,
M1t S for i,j=2,..k.
The last part of the proof consists of the observation that the identity obtained by eqg&ting
with the right-hand side of33) (with n=2k— 1) is nothing but the identity of Proposition V.2

with (p,p’) = (k+ 2,2+ 3) after lettingg— 1/g. This is readily seen using@) and (A7).
Next, we deal withn being even, setting=2k. The left-hand side 0f33) then is

i,
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TS+ m_—m+m
2 qmczkm/ZH i1 i-1 ] J+1' (38)
j=1

me 72K mJ

where my=m,,,1=0. We eliminate the variables,;, j=1,...k, introducing new variables
mo,...,Mk_l by

_ 1
My =Myj—1—3(Mj_1—M)),

whereM = 0. After this replacement we shift,; _,—m; for j=1,...,k so that expressio(88)
becomes

S qMEEEAMIC i M)A
Mg,...My—1
Mj even

% Z qml(ml—(Mo+Ml)/2)+z}<:2(|v|j,1—mj>(mj,l—mj—(Mj,z—Mj)/z)

Mj i1+ 2(Mj-1—M))

% mi_1—3(Mj_,— M)
' m;—3(Mj_1—M))

m

k
I1
j=1

k
11
j=2

L—3(Mo—M))
my

J

We now sum ovem,,...,m; by successive application of thgSaalschtz sum (A4). When
summing overm; we take (A4) with L—m;_;—(M;_,—M))/2, a—(M;_1—Mj)/2, b—
—(Mj_1+Mj)/2, andc—(M;_,—M;_1)/2. The final sum ovem; follows from (A1) with L
—L—=(My—M,)/2,a—(My—M)/2, andb— — (My+ M)/2. SettingM ;— 2i, the resulting ex-
pression is

2 L
izoq 2i '

k=17,
S gMc M ] [I5J,1+Mj_ 3(Cy—1M);
j=1 M;

M e27k"1 j

Equating this with the right-hand side @83) for n=2k, we recognize identity(29) with
(p,p’)=(k+1k+2). O

V. THE TRINOMIAL BAILEY LEMMA

In this final section of our paper we formulate some of our results in the language of Bailey
pairs. As we will see, the connection coefficients obtained in Sec. Il provide a very elementary
proof of the trinomial analog of Bailey’s lemma recently obtained by Andrews and Berk&Vich.

First, some definitions are needed. In subsequent formtlék,a)/(q), will be abbreviated
to Q,(L,a).

Definition V.1: A pair of sequences={a, } = and 8={B,} =, that satisfies

- o
ﬁLZE :

r=0 (q)L—r(aQ)L+r ,

forms a (binomial) Bailey pair relative to.a
Definition V.2: A pair of sequencesXA, } -, and B={B,} -, that satisfies

L
BL=§O Qn(L,DA,,

forms a trinomial Bailey pair relative to.n
The Bailey lemm# and trinomial Bailey lemm& can now be stated as the following sum-
mation formulas.
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Lemma V.1. Letd,8) be a Bailey pair relative to a. Then

% (p1)L(p2)L(adlp1p2)-ar % (p1)L(p2)L(adlp1p2)-(ad/p1pa)m—1BL
=0 (ad/p1)(ad/pa) (ADm-L(@Dm+L =0 (ad/pr)wm(ad/p2)m(Am-L

Lemma V.2. Let (A,B) form a trinomial Bailey pair relative to 0. Then

M M
Qi(M,L)
2 (~1)00-2BL=(~ w1 X qH2AT (39
=0 L=0 q
If (A,B) is a trinomial Bailey pair relative to 1, then
M M Q(M-1L+1) QyM-1L-1)
_n1 L —(_ B 1 ’ _ 1 ’
2 (g B= (-2 AL[Q1<M,L> Trg Tl Trg T ]

Before we translate the results of Sec. Il in the language of Bailey pairs, let us point out that
the connection coefficients betwegrbinomials andg trinomials can be applied to yield a very
simple proof of the trinomial Bailey lemma. At the heart of the proof of Lemma V.2 is the
following identity derived in Ref. 19 by a considerable amount of work,

—Tl(L—l,a)]. (40

To see, for example, that this impli€39), we multiply (40) by g~*(—1),/(q), and sum ovet.
from a to M. On the right-hand side all but one term cancels, so that

a/2
2 @2~ 1), Qo(L.)= T (~ Lw-1Qu(M ),

which obviously implies(39).
By EQs.(9)—(13), Eq.(40) is proved if we can show its validity when multiplied 164, (a)
and summed ovekr. Doing this and using10), one finds(replacingL —k andM —L)

1+gk 1—g¥
[ kZ qe" z>[ } Trg k)~ aaTk=12)
L k
a1+ AL
- &-@3
kgoqz 2 1+qa q 1+q k_'_]l Tl(k!a)
1+
=E qh-G f” Tk

But the extremes of this string of equations is nothing but(E4), with D| ,(a) given by Eq.(16)
of Lemma 1.2, establishing40).

We now give a series of lemmas that are all straightforward consequences of the results of
Sec. Il

Lemma V.3: Let4,B) be a Bailey pair relative to 1. Then

(— 1)L_kq(L£k)_L2/2(Q)2k
(DA -k

L
12
AL=q ""a, BL:I(ZO Bx

is a trinomial Bailey pair relative to 0 and

i,
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-5 Lo 1yL—kg5 -5
q 2 (—D-"%q' 2 2(q) 2«
BLZE

A=t & L@@ Px

is a trinomial Bailey pair relative to 1
The converse statement is as follows.
Lemma V.4: LefA(n),B(n)) be a trinomial Bailey pair relative to n. Then

2 (@ < g7
a=aAO B=ig 2 T o4O
and
1 (Q). L@
a =q2(1+g"AL(1), ﬁLzm(lquL)gomBk(l),

are Bailey pairs relative to 1
Lemma V.3 is to be compared with the following result of Ref. 23.
Lemma V.5: Let | be a non-negative integer angj3) a Bailey pair relative to a=q'. Then

a(L,”,Z, fOI’ L:|,|+2,,
L™ 10, otherwise:

[(L=1)/2] q(L—I—2k)(L—I—2k—n)/2

for L=I;
B = kZO (i(a@)L-1-2 P 10T

0, otherwise,

forms a trinomial Bailey pair relative to.n
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APPENDIX: SOME g-BINOMIAL FORMULAS

In this appendix we list some standagebinomial identities that are repeatedly used in the
main text.
The following three formulas all hold for integees b, L such thata, L=0,

kio g t ob|” Eiﬂ (A1)
. LijL+a—k a
kzo (_1)kq(§)[kH —q-(L+a-b) oLl (A2)
. K Li|[L+a—k a
kzo (—1)kg®+kb-L+D) k” 0 1=looLl (A3)
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The first two equations are specializations of gf€hu—Vandermonde sufil.7) of Ref. 3 and the
last equation is a specialization of theChu—Vandermonde sufhl.6) of Ref. 3. Identity(A2) is
also given in Ref. 1 as E¢3.3.10. A useful specialization of thg-Saalschtz sum[(11.12) of Ref.
3] is given by

L

L
k+c
(a—b—k)(L—k)
3, e

a+L

c—b
a—b

a
k+b

c
b+L

: (Ad)

true for integersa, b, ¢, L such that, ¢, L=0. This is Eq.(3.3.1]) of Ref. 1. Finally, we list the
elementary results:

oS i@ forLaso, L 0 A
al=la_1|t9 4 |0 forL,a=0, L+a#0, (A5)
li L ! (AB)
im =—
Lol a (Da
and
L
_nn—alL-a)
al =d al - (A7)
1/q q
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