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We obtain connection coefficients betweenq-binomial andq-trinomial coefficients.
Using these, one can transformq-binomial identities intoq-trinomial identities and
back again. To demonstrate the usefulness of this procedure we rederive some
known trinomial identities related to partition theory and prove many of the con-
jectures of Berkovich, McCoy and Pearce, which have recently arisen in their study
of the f2,1 and f1,5 perturbations of minimal conformal field theory. ©1999
American Institute of Physics.@S0022-2488~99!01105-6#

I. INTRODUCTION

The q-binomial coefficients can be defined by theq-analog of Newton’s binomial expansion,

~11x!~11qx!¯~11qn21x!5 (
a50

n

xaqa~a21!/2FnaG . ~1!

An explicit expression for theq-binomial coefficients is given by

FnaG
q

5FnaG5H ~q!n

~q!a~q!n2a
for 0<a<n,

0, otherwise,

where

~q!n5)
j 51

n

~12qj !, n>1 and ~q!051.

q-Binomials play an essential role in combinatorics, partition theory, and statistical mechan-
ics; see, e.g., Refs. 1–4, and one of MacMahon’s famous results is that@ m

n1m# is the generating
function of partitions with no more thanm parts, no part exceedingn. Less well understood are the
q-trinomial coefficients, defined asq-analogs of the numbers appearing in the generalized Pascal
triangle

1

1 1 1

1 2 3 2 1

1 3 6 7 6 3 1

• • • • • • • • •

. ~2!

Andrews, Baxter, and Forrester5,6 were the first to encounterq-trinomial coefficients, and in Ref.
6 Andrews and Baxter defined
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FL,b;q
a G

2
5FL,b

a G
2
5 (

k>0
qk~k1b!FLk GFL2k

k1aG ~3!

and

Tn~L,a;q!5Tn~L,a!5q~L2a!~L1a2n!/2FL,a2n;q21

a G
2
. ~4!

The q-trinomial Tn can be expressed explicitly as

Tn~L,a!5 (
r 50

L2a2r even

L2uau
qr ~r 2n!/2~q!L

~q!~L2a2r !/2~q!~L1a2r !/2~q!r
. ~5!

Clearly, theq-trinomial coefficients are nonzero fora52L,2L11,...,L only and satisfy the
symmetries

FL,b;q
a G

2
5qa~a2b!FL,b22a

2a G
2

and Tn~L,a!5Tn~L,2a!.

To see that~3! indeed definesq-analogs of the trinomial coefficients, setq51 and twice apply the
binomial formula to find that

(
a52L

L

xaFL,b;1
a G

2
5~11x1x21!L,

in accordance with~2!. The only further properties ofq-trinomials needed in this paper are the
limiting formulas6

lim
L→`

L2a even

T0~L,a!5
~2q1/2!`1~q1/2!`

2~q!`
, ~6!

lim
L→`

L2a odd

T0~L,a!5
~2q1/2!`2~q1/2!`

2~q!`
, ~7!

and

lim
L→`

FL,a
a G

2
5

1

~q!`
. ~8!

Finally, we introduce the abbreviation

FL,a
a G

2
5FLaG

2
.

Since their discovery about a decade ago,q-trinomials have found numerous applications in,
again, combinatorics, partition theory, and statistical mechanics.5–23 Among the most striking
results is aq-trinomial proof of Schur’s partition theorem and Capparelli’s~then! conjecture,9 a
q-trinomial proof of the Go¨llnitz–Gordon partition theorem7 and their Andrews–Bressoud
generalizations,13,16 the proof of anE8 Rogers–Ramanujan-type identity,10 and a trinomial analog
of Bailey’s lemma.19
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Most of the above-cited papers containq-trinomial identities. Upon close inspection of many
of these identities, one is struck by their similarity with well-knownq-binomial identities. This
strongly suggests that manyq-trinomial identities can be simply viewed as corollaries of
q-binomial identities. In an earlier paper23 we made a first, only partially successful, attempt to
relateq-trinomial identities toq-binomial identities, showing that each Bailey pair~which implies
a q-binomial identity! implies a trinomial Bailey pair~which implies aq-trinomial identity!. The
problem with the idea of Ref. 23 is that it applies toq-trinomial identities in which the parameter
a in ~3! and~4! takes even values only. Therefore,q-trinomial identities in whicha takes arbitrary
integer values remained irreducible toq-binomial identities.

In this paper we intend to deal with this problem, and in the next section connection coeffi-
cients betweenq-binomial andq-trinomial coefficients are obtained. Using these coefficients and
the idea of Ref. 23, manyq-trinomial identities are derived from knownq-binomial identities. In
Sect. III, severalq-trinomial identities related to partitions are obtained and in Sec. IV general
classes ofq-trinomial identities are proved, including many of the recent conjectures of Berkovich,
McCoy, and Pearce.21 To make contact with the recently discovered trinomial analog of Bailey’s
lemma, our results are finally formulated in the language of Bailey pairs in Sec. V. In the Appen-
dix some necessary formulas forq-binomial coefficients are collected.

II. CONNECTION COEFFICIENTS

To relateq-binomials andq-trinomials, we consider the simple problem of finding the coef-
ficientsCL,k andCL,k8 , such that

T0~L,a!5 (
k50

L

CL,k~a!F 2k
k2aG ~9!

and

F 2L
L2aG5 (

k50

L

CL,k8 ~a!T0~k,a!. ~10!

Of course, the two equations imply that

(
k5M

L

CL,k~a!Ck,M8 ~a!5dL,M . ~11!

The answer to the above connection coefficient problem is given by the following lemma.
Lemma II.1: For CL,k and CL,k8 as above,

CL,k~a!5~21!L2kq~ 2
L2k

!1~a22L2!/2FLk G , ~12!

CL,k8 ~a!5q~k22a2!/2FLk G . ~13!

Proof: Substitution of the expression forCL,k8 into the right-hand side of~10! and using Eq.~5! for
T0 gives

(
k50

L

CL,k8 ~a!T0~k,a!5 (
k50

L

(
r 50

k2a2r even

k2uau
q~k22a21r 2!/2~q!L

~q!L2k~q!~k2a2r !/2~q!~k1a2r !/2~q!r
.

To proceed, we introduce new summation variablesi , j defined byk5 i 1 j 1a and r 5 i 2 j , and
apply theq-Chu–Vandermonde sum, i.e.,
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(
k50

L

CL,k8 ~a!T0~k,a!5(
i 50

L

(
j 50

i

qi ~ i 1a!1 j ~ j 1a!FLi GF i
j GFL2 i

j 1aG 5
by ~A1)

(
i 50

L

qi ~ i 1a!FLi GF L
i 1aG

5
by ~A1) F 2L

L2aG .
This settles~13!, and to prove~12! we show that~11! holds. Taking the left-hand side of~11! and
substituting the claim of the lemma, we find

(
k5M

L

CL,k~a!Ck,M8 ~a!5 (
k5M

L

~21!L2kq~ 2
L2k

!1~M22L2!/2FLk GF k
M G

5q~M22L2!/2F L
M G (

k50

L2M

~21!kq~2
k
!FL2M

k G5dL,M ,

where in the last step we have used~1! with x521. h

We note that a proof of~12! that does not rely on~13! is implied by Eqs.~2.12! and~2.35! of
Ref. 6.

The analogous result involvingT1 instead ofT0 can be stated as follows. DefineDL,k and
DL,k8 by

T1~L,a!5 (
k50

L

DL,k~a!F 2k
k2aG

and

F 2L
L2aG5 (

k50

L

DL,k8 ~a!T1~k,a!. ~14!

Lemma II.2: For DL,k and DL,k8 as above,

DL,k~a!5~21!L2kq~ 2
L2k

!1~2
a
!2~2

L
!
11qa

11qk FLk G , ~15!

DL,k8 ~a!5q~2
k
!2~2

a
!
11qL

11qa FLk G . ~16!

Proof: Following the proof of Lemma II.1 withT0 replaced byT1 , one finds after application
of the q-Chu–Vandermonde sum~A1!, that the right-hand side of~14! is equal to

11qL

11qa (
i 50

L

qi ~ i 1a21!FLi GF L
i 1aG .

Before ~A1! can again be applied, the recurrence~A5! is needed to rewrite this as

11qL

11qa H (
i 50

L

qi ~ i 1a21!FLi GF L21
i 1a21G1qa(

i 50

L

qi ~ i 1a!FLi GFL21
i 1a G J .

Using ~A1! and combining terms gives@L2a
2L #. To prove ~15! it again suffices to consider

(k5M
L DL,k(a)Dk,M8 (a). After substituting the results forD andD8 and replacingk→L2k, one

finds that this becomesdL,M after using~1! with x521. h
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To conclude this section, we note that the representations~3! and ~5! for the q-trinomial
coefficients can also be written as a relation betweenq-trinomials andq-binomials. That is,

Tn~L,2a!5 (
k>0

q~L22k!~L22k2n!/2F L
2kGF 2k

k2aG ~17!

and

FL,b
2a G

2
5 (

k>0
q~k2a!~k2a1b!F L

2kGF 2k
k2aG . ~18!

These results, which, unlike the previous transformations are not invertible, will be needed later.

III. SIMPLE EXAMPLES FROM PARTITION THEORY

Before proving general series ofq-trinomial identities using the results of the previous section,
we treat some simple examples related to partition identities first.

The first example concerns the following result of Andrews7 ~see also Ref. 21!. It is well
known24 that the ~first! Rogers–Ramanujan identity can be obtained as a limiting case of the
polynomial identity,

(
n>0

qn2FL2n
n G5 (

j 52`

`

~21! jqj ~5 j 11!/2F L
~L25 j !/2G . ~19!

Here the polynomials appearing on either side are known to be the generating function of parti-
tions with the difference between parts of at least two and the largest part not exceedingL21.4,25

In Ref. 7, Andrews remarks that it is ‘‘most surprising and intriguing’’ that the following also
holds:

(
n>0

qn2FL2n
n G5 (

j 52`

` H qj ~10j 11!F L
5 j G

2
2q~2 j 11!~5 j 12!F L

5 j 12G
2
J . ~20!

We now show that~20! is a corollary of~19!, or for those who prefer to decrease instead of
increase complexity, that~19! is a corollary of~20!. Replacingq→1/q in ~9! and ~12!, using~4!
and ~A7!, we find that@see also Ref. 6, Eqs.~2.12! and ~2.35!#

FLaG
2
5 (

k50

L

~21!L2kq~L2k!~L1k11!/2FLk GF 2k
k2aG .

If we thus take~19! with L replaced by 2k, multiply by (21)L2kq(L2k)(L1k11)/2@k
L# and sum over

k, we arrive at

(
k>0

(
n>0

~21!L2kq~L2k!~L1k11!/21n2FLk GF2k2n
n G

5 (
j 52`

` H qj ~10j 11!F L
5 j G

2
2q~2 j 11!~5 j 11!F L

5 j 12G
2
J .

To simplify the left-hand side, we setk5L2m1n followed by n→m2n to get

(
m>0

qm2

(
n>0

~21!nq~2
n
!1n~L22m11!FLnGF2L2m2n

m2n G5 (
m>0

qm2FL2m
m G ,
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where the sum overn has been performed using theq-Chu–Vandermonde summation~A3!. As
remarked before, one can equally well take the reverse route and starting from~20!, using Lemma
II.1, one readily obtains~19!. We leave this to the reader.

Our second example concerns the following identity of Slater26 related to the~first! Göllnitz–
Gordon partition identity:27,28

(
n50

`
qn2

~2q;q2!n

~q2;q2!n
5 )

n50

`
1

~12q8 j 11!~12q8 j 14!~12q8 j 17!
. ~21!

A polynomial identity that implies this equation is given by13,16

(
m,n>0

q~m21n2!/2FL2m
n GF n

mG5 (
j 52`

`

~21! jq2 j 21 j /2$T0~L,4j !1T0~L,4j 11!%. ~22!

It was observed in Ref. 7 that for fixedL the polynomial appearing on the right-hand side withq
replaced byq2 is the generating function of partitionsl5(l1 ,l2 ,...) with l i2l i 11>2 for l i

odd, l i2l i 11>3 for l i even, and with the largest part not exceeding 2L21. To see that~22!
indeed implies~21!, let L tend to infinity using~6!, ~7!, and~A6!. Hence,

(
m,n>0

q~m21n2!/2

~q!n
F n
mG5 ~2q1/2!`

~q!`
(

j 52`

`

~21! jq2 j 21 j /2.

Using Jacobi’s triple product identity@Eq. ~2.2.10! of Ref. 1# and Eq.~1! with x5q1/2 gives

(
n>0

qn2/2~2q1/2!n

~q!n
5

~2q1/2!`~q3/2;q4!`~q5/2;q4!`~q4;q4!`

~q!`
.

Letting q→q2 and cleaning up the right-hand side finally yields~21!.
The companionq-binomial identity of~22! is given by the following identity of Refs. 29 and

30:

(
m1 ,m2>0

m11m2 even

q~m1
2
1m2

2
!/4FL1 1

2~m12m2!

m1
GF 1

2~m11m2!

m2
G

5 (
j 52`

`

~21! j Hqj ~20j 11!/2F 2L
L24 j G1q~4 j 11!~5 j 11!/2F 2L

L24 j 21G J .

To prove this we replaceL by k, multiply by q2a2/2CL,k(a) as given by~12!, and sum overk using
~9!. The resulting equation is

(
j 52`

`

~21! jq2 j 21 j /2$T0~L,4j !1T0~L,4j 11!%

5 (
m1 ,m2>0

m11m2 even

q~m1
2
1m2

2
22L2!/4F 1

2~m11m2!

m2
G (

k50

L

~21!kq~2
k
!FLk GFL2k1 1

2~m12m2!

m1
G

5
by ~A2)

(
m1 ,m2>0

m11m2 even

q„~m12L !21~m22L !2
…/4F 1

2~m11m2!

m2
GF 1

2~m12m2!

m12L
G .

Making the variable changem1→L1n2m andm2→L2n2m, we find Eq.~22!.
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IV. q-TRINOMIAL IDENTITIES

After the previous examples, we now derive general classes ofq-trinomial identities, as stated
in Propositions IV.1–IV.5 below. The setup will be as follows. First we describe a family of
q-binomial identities for bounded analogs of Virasoro characters, based on continued fraction
expansions. We then transform these identities intoq-trinomial identities, by either using~9! or
~18!. Many of theq-trinomial identities available in the literature are contained in Propositions
IV.1–IV.5 or can be derived in a completely analogous fashion.

A. q-binomial identities for bounded Virasoro characters

Using the inclusion–exclusion construction of Feigin and Fuchs,31 the~normalized! characters
of the Virasoro algebra of central chargec5126(p82p)2/pp8, with p,p8 integers such that 1
,p,p8 and gcd(p,p8)51, are given by32,33

x r ,s
~p,p8!~q!5

1

~q!`
(

j 52`

`

$qj ~pp8 j 1p8r 2ps!2q~p j1r !~p8 j 1s!%.

Here r 51,...,p21 ands51,...,p821 label the highest weight representations.
For simplicity we only deal with the ‘‘vacuum’’ character, determined byup8r 2psu51. The

following polynomial analogs of the vacuum Virasoro characters have arisen in the context of
statistical mechanics34,35 and partition theory,36

BL~p,p8;q!5 (
j 52`

` Hqj ~pp8 j 11!F 2L
L2p8 j G2q~p j1r !~p8 j 1s!F 2L

L2p8 j 2sG J . ~23!

The polynomialsBL(p,p8) are known to be related to the minimal conformal field theory
M (p,p8) perturbed by the operatorf1,3.

Recently, very different, so-called fermionic representations for the above polynomials have
been obtained by Berkovich, McCoy and Schilling using continued fractions.29,30 Assumep
,p8,2p, gcd(p,p8)51 and define non-negative integersn and n0 ,...,nn by the continued
fraction expansion

p

p82p
5n01

1

n11
1

n21¯1
1

nn12

5@n0 ,...,nn21 ,nn12#.

Using n andn j , set

tm5 (
j 50

m21

n j , 1<m<n and d5(
j 50

n

n j . ~24!

The tm andd are used to define a fractional incidence matrixI and a fractional Cartan-type matrix
2B52I 2I ~with I the d by d unit matrix! as follows:

Ii , j5H d i , j 111d i , j 21 , for 1< i ,d, iÞtm ,

d i , j 111d i , j2d i , j 21 , for i 5tm , 1<m<n2dnn,0 ,

d i , j 111dnn,0d i , j , for i 5d.

~25!

Whenp85p11, the incidence matrixI has componentsIi , j5d u i 2 j u,1 ( i , j 51,...,p22), so that 2B
corresponds to the Cartan matrix of the Lie algebraAp23 . Whenp52k21 andp852k11 the
matrix I has componentsIi , j5d u i 2 j u,11d i , jd i ,k21 ( i , j 51,...,k21), so that 2B corresponds to the
Cartan-type matrix of the tadpole graph ofk21 nodes.
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Using the above definition, the fermionic representation for the bounded Virasoro characters
with p,p8,2p can be given as

FL~p,p8;q!5 (
mP2Zd

qmBm/2)
j 51

d FLd j ,11
1
2~Im! j

mj
G . ~26!

Here we use the notationsvMw5( j ,kv jM j ,kwk , (Mv) j5(kM j ,kvk and (vM ) j5(kvkMk, j .
These conventions are important since, generally,M (5I,B) is not a symmetric matrix. The
general form~26! for FL(p,p8) can be found in Refs. 29 and 30~see also Ref. 37!. The important
special cases (p,p8)5(p,p11) and (2k21,2k11) were proven prior to this is in Refs. 38, 39
and Ref. 40, respectively.

The expression forFL(p,p8;q) with p8.2p follows from the duality transformation

FL~p,p8;1/q!5q2L2
FL~p82p,p8;q!. ~27!

To obtain fermionic character formulas forx r ,s
(p,p8)(q) with up8r 2psu51, one simply letsL tend to

infinity in ~26!.
Before we proceed to use the identity,

FL~p,p8;q!5BL~p,p8;q!, ~28!

to derive trinomial identities, let us comment on the convention of writing 2B for a Cartan-type
matrix in the above formulas. This has its origin in the work of Ref. 41, where, in more general
situations, the matrixB has a~nontrivial! tensor product structure,B5b1^ b2 . In the identities of

this section the matrixb1 is simply the inverse of theA1 Cartan matrix, (b1)5( 1
2). In Sec. IV D,

however, we indeed encounter a different situation,b1 being the~still trivial ! Cartan-type matrix
of the tadpole graph with just a single node, so thatb15(1).

B. q-trinomial identities I

We start with theq-binomial identity~28! for p,p8,2p, assuming thatd>2. Applying Eq.
~9!, with CL,k given by ~12!, we find

(
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%

5 (
k50

L

~21!L2kq~ 2
L2k

!2L2/2FLk GFk~p,p8;q!

5 (
mP2Zd

q~mBm2L2!/2S )
j 52

d F 1
2~Im! j

mj
G D (

k50

L

~21!kq~2
k
!FLk GFL2k1 1

2~Im!1

m1
G

5
by ~A2)

qL2/2 (
mP2Zd

qmBm/22L~Bm!1F 1
2~Im!1

m12L
G)

j 52

d F 1
2~Im! j

mj
G

5qL2I1,1/2 (
m1Le1P2Zd

qmBm/21L~mB2Bm!1/2)
j 51

d F 1
2LIj ,11

1
2~Im! j

mj
G ,

with ej ( j 51,...,d) the standard unit vectors inZd. We now have to distinguish two cases accord-
ing to whethern051 ~so that 3p/2,p8,2p! or n0.1 ~so thatp,p8<3p/2!. In the latter case
I1,j5Ij ,15d1,j 21 , and we obtain the following polynomial identities.
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Proposition IV.1: For integers p,p8 with p,p8<3p/2 and gcd(p,p8)51, let integers1<r
,p and1<s,p8 be fixed byup8r 2psu51 and letI and B be defined by (24) and (25). Then the
following polynomial identity holds for LPZ:

(
m1Le1P2Zd

qmBm/2)
j 51

d F 1
2Ld j ,21

1
2~Im! j

mj
G

5 (
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%.

The admissible pairs (p,p8)5(3,4) and (p,p8)5(2,3) have been neglected in our derivation
due to the assumption thatd>2. These two cases can be treated in a similar fashion, and when
(p,p8)5(3,4) the left-hand side is 1 forL even and 0 forL odd. When (p,p8)5(2,3), in which
caseFL(2,3;q)51, the left-hand side becomesdL,0 . All of the identities of Proposition IV.1 have
been derived before, and forp85p11 they were first found by Schilling.42,14 The more general
case can be found in Ref. 22.

Next we treat the casen051. When this occursI1,j5d j ,12d1,j 21 andIj ,15d j ,11d1,j 21 , and
we obtain the following polynomial identities.

Proposition IV.2: For integers p,p8 with 3p/2,p8,2p and gcd(p,p8)51 let integers1
<r ,p and1<s,p8 be fixed byup8r 2psu51 and letI and B defined by (24) and (25). Then the
following polynomial identity holds for LPZ:

(
m1Le1P2Zd

qL~L22m2!/41mBm/2)
j 51

d F 1
2L~d j ,11d j ,2!1 1

2~Im! j

mj
G

5 (
j 52`

`

$q„p8~2p2p8! j 12…j /2T0~L,p8 j !2q„~2p2p8! j 12r 2s…~p8 j 1s!/2T0~L,p8 j 1s!%.

The case (p,p8)5(3,5) has again escaped a proper derivation, but has, in fact, been treated
previously, corresponding to identity~20! with q replaced by 1/q. Apart from this special case due
to Andrews,7 the identities of Proposition IV.2 have been proved by Berkovich, McCoy, and
Orrick13,16 for (p,p8)5(2n11,4n) and were conjectured for generalp and p8 by Berkovich,
McCoy, and Pearce@Eq. ~8.8! of Ref. 21#.

C. q-trinomial identities II

Our starting point for derivingq-trinomial identities is again Eq.~28!, but this time we rely on
~18!. This implies that~28! with L replaced byk, multiplied byqk2

@2k
L #, and summed overk yields

(
k>0

qk2F L
2kGFk~p,p8;q!5 (

j 52`

` H qj ~p8~p1p8! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~p1p8! j 1r 1s!F L

2p8 j 12sG
2
J .

~29!

To transform this into explicit polynomial identities we need to distinguish betweenp,p8,2p
andp8.2p.

First, assume thatp,p8,2p. After substituting expression~26! for FL , the left side of~29!
is

(
k>0

(
mP2Zd

qk21mBm/4F L
2kG)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

By the q-Chu–Vandermonde summation~A1!, with L→L2k1m1/2, a→k2m1/2, andb→2k
2m1/2, this can be rewritten as
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(
i ,k>0

(
mP2Zd

qi „i 2k2m1/2…1k21mBm/4FL2k1 1
2m1

i
GFk2 1

2m1

2k2 i
G)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

Replacingmj→mj 12 , j 51,...,d, followed byk→(m11m2)/2 andi→m1 yields

( 8q~3m1
2
1m2

2
22m1m3!/41( j ,k51

d mj 12Bj ,kmk12/4

3FL2 1
2~m11m22m3!

m1
GF 1

2~m11m22m3!

m2
G)

j 51

d F 1
2~m11m2!d j ,11

1
2(k51

d Ij ,kmk12

mj12 G ,

where the primed sum denotes a sum overmPZd12 such thatm11m2 andm3 ,...,md12 are all
even.

Now define a new incidence matrixI8 and Cartan-type matrix 2B852I 2I8 of dimension
d85d11 by replacing the continued fraction expansion@n0 ,...nn12# by @1,n0 ,...,nn12#, so
thatI8 becomes the incidence matrix corresponding to the continued fraction expansion ofp8/p.
Also defineI9 and 2B952I 2I9 of dimensiond95d12 as

Ii , j9 5H 2d i ,1d j ,11d i ,21d i ,32d j ,21d j ,3 , for i 51 or j 51,

Ii 21,j 218 , for i , j 52,...,d12.
~30!

Then the above sequence of transformations implies the following proposition.
Proposition IV.3: For integers p,p8 with p,p8,2 and gcd(p,p8)51 let integers 1<r,p and

1<s,p8 be fixed byup8r2psu51 and letI9 and B9 be defined by (30). Then the following poly-
nomial identity holds for LPZ:

( 8qmB9m/4)
j 51

d9 FLd j ,11
1
2~I9m! j

mj
G

5 (
j 52`

` H qj ~p8~p1p8! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~p1p8! j 1r 1s!F L

2p8 j 12sG
2
J .

The identities of Proposition IV.3 are then50 case of the conjectured equation~8.11! @which
contains then50 instances of~6.19! and~8.3!# of Ref. 21, and are related to thef2,1 perturbation
of the minimal conformal field theoryM (p8,p1p8).

Whenp8.2p we replacep→p82p in ~29! and use the duality property~27!. Hence

(
k>0

q2k2F L
2kGFk~p,p8;q21!

5 (
j 52`

` H qj ~p8~2p82p! j 11!F L
2p8 j G

2
2q~p8 j 1s!~~2p82p! j 1r 1s!F L

2p8 j 12sG
2
J . ~31!

Observe that the transformation carried out above impliesp,p8,2p and up8(r 2s)1psu51.
Substituting expression~26! for FL and using~A7!, the left side of~31! yields

(
k>0

(
mP2Zd

qk~2k2m1!1mBm/4F L
2kG)

j 51

d Fkd j ,11
1
2~Im! j

mj
G .

By the q-Chu–Vandermonde summation~A1!, with L→L2m1/2, a→m1/2, b→m1/222k, this
can be rewritten as
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(
i ,k>0

(
mP2Zd

qi „i 22k1m1/2…1k~2k2m1!1mBm/4FL2 1
2m1

i
GF 1

2m1

2k21G)
j 51

d Fkd j ,11
1
2~Im! j

mj
G .

Replacingmj→mj 12 , j 51,...,d, followed by t→m11m2 and i→m1 , gives

( 8q~m1
2
1m2

2
2m2m3!/21( j ,k51

d mj 12Bj ,kmk12/4FL2 1
2m3

m1
G

3F 1
2m3

m2
G)

j 51

d F 1
2~m11m2!d j ,11

1
2(k51

d Ij ,kmk12

mj 12
G ,

where the primed sum again denotes a sum overmPZd12 such thatm11m2 andm3 ,...,md12 are
all even.

Now define a new incidence matrixI and Cartan-type matrix 2B852I 2I of dimensiond8
5d11 by replacing the continued fraction expansion@n0 ,...,nn12# by @n011,n1 ,...,nn12#, so
that I8 becomes the incidence matrix corresponding to the continued fraction expansion of
p8/(p82p). Also defineI9 and 2B952I 2I9 of dimensiond95d12 as

Ii , j9 5H d i ,32d j ,3 , for i 51 or j 51,

Ii 21,j 218 , for i , j 52,...,d12.
. ~32!

Then the above sequence of transformations implies the following proposition.
Proposition IV.4: For integers p,p8 with p,p8,3p/2 and gcd(p,p8)51 let integers1<r

,p and1<s,p8 be fixed byup8(r 2s)r 1psu51 and letI and B be defined by (32). Then the
following polynomial identity holds for LPZ:

( 8qmB9m/4)
j 51

d9 FLd j ,11
1
2~I9m! j

mj
G

5 (
j 52`

` H qj „p8~2p82p! j 11…F L
2p8 j G

2
2q~p8 j 1s!„~2p82p! j 1r 1s…F L

2p8 j 12sG
2
J .

The identities of Proposition IV. 4, which are related to thef2,1 perturbation of the conformal
field theory M (p8,2p82p), were conjectured in Ref. 21@as Eq.~6.9!#. For p5p821 a proof
using recurrences was recently given in Ref. 20.

D. q-trinomial identities III

There are, of course, many moreq-trinomial identities that can be derived using the tech-
niques of the previous sections. Our final application is to show that in some cases a bit more
ingenuity is required to arrive at the desired result. The identities we set out to prove here were
again conjectured by Berkovich, McCoy, and Pearce@Eq. ~9.4! of Ref. 21# and are interesting, as
they contain the~polynomial! Rogers–Ramanujan identity~20! as the simplest case. It also pro-
vides an example for which the matrixB5b1^ b2 ~in the proposition below denoted asCn! of
Sec. IV A hasb15(1) and not~ 1

2!.
Proposition IV.5: For n>1, let Cn be the Cartan matrix of An . Then for all LPZ,

(
mPZn

qmCnm/2)
j 51

n FLd j ,11mj2~Cnm! j

mj
G

5 (
j 52`

` H q„~n13!~n14! j 12…j /2F L
~n14! j

G
2
2q„~n13! j 12…„~n14! j 12…/2F L

~n14! j 12G
2
J . ~33!
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Letting L tend to infinity using~8! and ~A6!, this yields the following Virasoro-character
identities.

Corollary IV.1: For n>1 and uqu,1,

(
mPZn

qmCnm/2

~q!m1

)
j 52

n Fmj2~Cnm! j

mj
G5H x1,2

~~n13!/2,n14!~q!, n odd,

x1,2
~~n14!/2,n13!~q!, n even.

~34!

In Ref. 21, the identities~33! and ~34! were associated with thef2,1 perturbation of the
conformal field theoriesM „(n14)/2,n13… when n is odd and thef1,5 perturbation ofM „(n
13)/2,n14… whenn is even.

Proof: The corollary betrays a hidden parity dependence of~33!, which also plays a role in the
proof. Treatingn being odd first, we setn52k21. The left-hand side of~33! then reads as

(
mPZ2k21

qmC2k21m/2 )
j 51

2k21 F 1
2Ld j ,11mj 212mj1mj 11

mj
G , ~35!

with the convention thatm05L/2 andm2k50. We eliminate the variablesm2 j 21 , j 51,...,k in
favor of new variablesM1 ,...,Mk , defined as

m2 j 215m2 j 222 1
2~M j2M j 11!,

where Mk1150. If after this replacement we relabelm2 j to mj for j 51,...,k ~so thatmk50!,
expression~35! becomes

(
M1Le1P2Zk

q„L~L22M1!1M1
2
1( i , j 52

k Mi ~Ck21! i , j M j …/4

3 (
m1 , . . . ,mk21

q( j 51
k21

~M j 112mj !„mj 212mj 2~M j 2M j 12!/2…

3Fm01m11 1
2~M12M2!

m02 1
2~M12M2!

G)
j 51

k21 Fmj 212 1
2~M j2M j 12!

mj
GFmj 111 1

2~M j 112M j 12!

M j2
1
2~M j 112M j 12!

G .

~36!

This allows for successive summation overmk21 ,...,m1 by the q-Saalschu¨tz sum ~A4!. When
summing overmj , we take ~A4! with L→mj 212(M j2M j 12)/2, a→(M j 112M j 12)/2, b→
2(M j 111M j 12)/2, c→(M j2M j 11)/2 ~for j >2!, and c→m01(M12M2)/2 ~for j 51!. As a
result,~36! collapses into

(
M1Le1P2Zk

qL~L22M1!/41MBM/2)
j 51

k F 1
2L~d j ,11d j ,2!1 1

2~IM ! j

M j
G , ~37!

with matricesI and 2B52I 2I defined in Eqs.~24! and ~25! corresponding to the continued
fraction expansion of (k12)/(k11)5@1,k21#, i.e.,

Ii , j5H d i ,1d j ,11d i ,22d j ,2 , for i 51 or j 51,

d i , j 211d i , j 11 , for i , j 52,...,k.

The last part of the proof consists of the observation that the identity obtained by equating~37!
with the right-hand side of~33! ~with n52k21! is nothing but the identity of Proposition IV.2
with (p,p8)5(k12,2k13) after lettingq→1/q. This is readily seen using~4! and ~A7!.

Next, we deal withn being even, settingn52k. The left-hand side of~33! then is
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(
mPZ2k

qmC2km/2)
j 51

2k FLd j ,11mj 212mj1mj 11

mj
G , ~38!

where m05m2k1150. We eliminate the variablesm2 j , j 51,...,k, introducing new variables
m0 ,...,Mk21 by

m2 j5m2 j 212 1
2~M j 212M j !,

whereMk50. After this replacement we shiftm2 j 21→mj for j 51,..., k so that expression~38!
becomes

(
M0 ,...,Mk21

M j even

q„M0
2
1( i , j 51

k21 Mi ~Ck21! i , j M j …/4

3 (
m1 ,...,mk

qm1„m12~M01M1!/2…1( j 52
k

~M j 212mj !„mj 212mj 2~M j 222M j !/2…

3FL2 1
2~M02M1!

m1
G S )

j 52

k Fmj 212 1
2~M j 222M j !

mj
G D )

j 51

k Fmj 111 1
2~M j 212M j !

mj2
1
2~M j 212M j !

G .

We now sum overmk ,...,m3 by successive application of theq-Saalschu¨tz sum ~A4!. When
summing overmj we take ~A4! with L→mj 212(M j 222M j )/2, a→(M j 212M j )/2, b→
2(M j 211M j )/2, andc→(M j 222M j 21)/2. The final sum overm1 follows from ~A1! with L
→L2(M02M1)/2, a→(M02M1)/2, andb→2(M01M1)/2. SettingM0→2i , the resulting ex-
pression is

(
i>0

qi 2F L
2i G (

MP2Zk21
qMCk21M /4)

j 51

k21 F id j ,11M j2
1
2~Ck21M ! j

M j
G .

Equating this with the right-hand side of~33! for n52k, we recognize identity~29! with
(p,p8)5(k11,k12). h

V. THE TRINOMIAL BAILEY LEMMA

In this final section of our paper we formulate some of our results in the language of Bailey
pairs. As we will see, the connection coefficients obtained in Sec. II provide a very elementary
proof of the trinomial analog of Bailey’s lemma recently obtained by Andrews and Berkovich.19

First, some definitions are needed. In subsequent formulas,Tn(L,a)/(q)L will be abbreviated
to Qn(L,a).

Definition V.1: A pair of sequencesa5$aL%L>0 and b5$bL%L>0 that satisfies

bL5(
r 50

L
a r

~q!L2r~aq!L1r
,

forms a (binomial) Bailey pair relative to a.
Definition V.2: A pair of sequences A5$AL%L>0 and B5$BL%L>0 that satisfies

BL5(
r 50

L

Qn~L,r !Ar ,

forms a trinomial Bailey pair relative to n.
The Bailey lemma43 and trinomial Bailey lemma19 can now be stated as the following sum-

mation formulas.
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Lemma V.1. Let (a,b) be a Bailey pair relative to a. Then

(
L50

M
~r1!L~r2!L~aq/r1r2!LaL

~aq/r1!L~aq/r2!L~q!M2L~aq!M1L
5 (

L50

M
~r1!L~r2!L~aq/r1r2!L~aq/r1r2!M2LbL

~aq/r1!M~aq/r2!M~q!M2L
.

Lemma V.2. Let (A,B) form a trinomial Bailey pair relative to 0. Then

(
L50

M

~21!LqL/2BL5~21!M11(
L50

M

qL/2AL

Q1~M ,L !

11qL . ~39!

If (A,B) is a trinomial Bailey pair relative to 1, then

(
L50

M

~2q21!LqLBL5~21!M (
L50

M

ALH Q1~M ,L !2
Q1~M21,L11!

11q2L21 2
Q1~M21,L21!

11qL21 J .

Before we translate the results of Sec. II in the language of Bailey pairs, let us point out that
the connection coefficients betweenq binomials andq trinomials can be applied to yield a very
simple proof of the trinomial Bailey lemma. At the heart of the proof of Lemma V.2 is the
following identity derived in Ref. 19 by a considerable amount of work,

T0~L,a!5q~a2L !/2H 11qL

11qa T1~L,a!2
12qL

11qa T1~L21,a!J . ~40!

To see, for example, that this implies~39!, we multiply ~40! by qL/2(21)L /(q)L and sum overL
from a to M. On the right-hand side all but one term cancels, so that

(
L5a

M

qL/2~21!LQ0~L,a!5
qa/2

11qa ~21!M11Q1~M ,a!,

which obviously implies~39!.
By Eqs.~9!–~13!, Eq. ~40! is proved if we can show its validity when multiplied byCM ,L(a)

and summed overL. Doing this and using~10!, one finds~replacingL→k andM→L!

F 2L
L2aG5 (

k50

L

q~2
k
!2~2

a
!FLk G H 11qk

11qa T1~k,a!2
12qk

11qa T1~k21,a!J
5 (

k50

L

q~2
k
!2~2

a
!H 11qk

11qa FLk G2qk
12qk11

11qa F L
k11G J T1~k,a!

5 (
k50

L

q~2
k
!2~2

a
!
11qL

11qa FLk GT1~k,a!.

But the extremes of this string of equations is nothing but Eq.~14!, with DL,k8 (a) given by Eq.~16!
of Lemma II.2, establishing~40!.

We now give a series of lemmas that are all straightforward consequences of the results of
Sec. II.

Lemma V.3: Let (a,b) be a Bailey pair relative to 1. Then

AL5q2L2/2aL , BL5 (
k50

L
~21!L2kq~ 2

L2k
!2L2/2~q!2k

~q!k~q!L2k
bk

is a trinomial Bailey pair relative to 0 and
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AL5
q2~2

L
!

11qL aL , BL5 (
k50

L
~21!L2kq~ 2

L2k
!2~2

L
!~q!2k

~11qk!~q!k~q!L2k
bk

is a trinomial Bailey pair relative to 1.
The converse statement is as follows.
Lemma V.4: Let„A(n),B(n)… be a trinomial Bailey pair relative to n. Then,

aL5qL2/2AL~0!, bL5
~q!L

~q!2L
(
k50

L
qk2/2

~q!L2k
Bk~0!

and

aL5q~2
L

!~11qL!AL~1!, bL5
~q!L

~q!2L
~11qL!(

k50

L
q~2

k
!

~q!L2k
Bk~1!,

are Bailey pairs relative to 1.
Lemma V.3 is to be compared with the following result of Ref. 23.
Lemma V.5: Let l be a non-negative integer and (a,b) a Bailey pair relative to a5ql . Then

AL5H a~L2 l !/2 , for L5 l ,l 12,...,

0, otherwise;

BL5H (
k50

@~L2 l !/2#
q~L2 l 22k!~L2 l 22k2n!/2

~q! l~q!L2 l 22k
bk , f or L> l ;

0, otherwise,

forms a trinomial Bailey pair relative to n.
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APPENDIX: SOME q-BINOMIAL FORMULAS

In this appendix we list some standardq-binomial identities that are repeatedly used in the
main text.

The following three formulas all hold for integersa, b, L such thata, L>0,

(
k50

L

qk~k1b!FLk GF a
k1bG5Fa1L

b1L G , ~A1!

(
k50

L

~21!kq~2
k
!FLk GFL1a2k

b G5qL~L1a2b!F a
b2L G , ~A2!

(
k50

L

~21!kq~2
k
!1k~b2L11!FLk GFL1a2k

b G5F a
b2L G . ~A3!
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The first two equations are specializations of theq-Chu–Vandermonde sum~II.7! of Ref. 3 and the
last equation is a specialization of theq-Chu–Vandermonde sum~II.6! of Ref. 3. Identity~A2! is
also given in Ref. 1 as Eq.~3.3.10!. A useful specialization of theq-Saalschu¨tz sum@~II.12! of Ref.
3# is given by

(
k50

L

q~a2b2k!~L2k!FLk GF a
k1bGF k1c

a1L G5F c
b1L GFc2b

a2bG , ~A4!

true for integersa, b, c, L such thata, c, L>0. This is Eq.~3.3.11! of Ref. 1. Finally, we list the
elementary results:

FLaG5FL21
a21G1qaFL21

a G , for L,a>0, L1aÞ0, ~A5!

lim
L→`FLaG5 1

~q!a
~A6!

and

FLaG
1/q

5q2a~L2a!FLaG
q

. ~A7!
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