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Abstract. We prove polynomial boson-fermion identities for the generating function of the number

of partitions of n of the form n =
PL−1

j=1 jfj , with f1 ≤ i − 1, fL−1 ≤ i′ − 1 and fj + fj+1 ≤ k.

The bosonic side of the identities involves q-deformations of the coefficients of xa in the expansion of
(1+x+ · · ·+xk)L. A combinatorial interpretation for these q-multinomial coefficients is given using
Durfee dissection partitions. The fermionic side of the polynomial identities arises as the partition
function of a one-dimensional lattice-gas of fermionic particles.

In the limit L → ∞, our identities reproduce the analytic form of Gordon’s generalization of
the Rogers–Ramanujan identities, as found by Andrews. Using the q → 1/q duality, identities are

obtained for branching functions corresponding to cosets of type (A
(1)
1 )k × (A

(1)
1 )ℓ/(A

(1)
1 )k+ℓ of

fractional level ℓ.

1. Introduction

The Rogers–Ramanujan identities can be stated as the following q-series identities.

Theorem 1 (Rogers–Ramanujan). For a = 0, 1 and |q| < 1,

(1.1)
∞
∑

n=0

qn(n+a)

(1 − q)(1 − q2) . . . (1 − qn)
=

∞
∏

j=0

(1 − q5j+1+a)−1(1 − q5j+4−a)−1.

Since their independent discovery by Rogers [37–39], Ramanujan [35] and also Schur [43], many
beautiful generalizations have been found, mostly arising from partition-theoretic or Lie-algebraic
considerations, see [6, 33] and references therein.

Most surprising, in 1981 Baxter rediscovered the Rogers–Ramanujan identities (1.1) in his calcu-
lation of the order parameters of the hard-hexagon model [13], a lattice gas of hard-core particles of
interest in statistical mechanics. It took however another ten years to fully realize the power of the
(solvable) lattice model approach to finding q-series identities. In particular, based on a numerical
study of the eigenspectrum of the critical three-state Potts model [20, 31] (yet another lattice model
in statistical mechanics), the Stony Brook group found an amazing variety of new q-series identities
of Rogers–Ramanujan type [29, 30]. Almost none of these identities had been encountered previously
in the context of either partition theory or the theory of infinite dimensional Lie algebras.

More specific, in the work of [29,30] expressions for Virasoro characters were given through systems
of fermionic quasi-particles. Equating these fermionic character forms with the well-known Rocha-
Caridi type bosonic expressions [36], led to many q-series identities for Virasoro characters, generalizing
the Rogers–Ramanujan identities (which are associated to the M(2, 5) minimal model).

The proof of the Rogers–Ramanujan identities by means of an extension to polynomial identities
whose degree is determined by a fixed integer L, was initiated by Schur [43]. Before we elaborate on
this approach, we need the combinatorial version of the Rogers–Ramanujan identities stating that
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Theorem 2 (Rogers–Ramanujan). For a = 0, 1, the partitions of n into parts congruent to 1 + a or
4−a (mod 5) are equinumerous with the partitions of n in which the difference between any two parts
is at least 2 and 1 occurs at most 1 − a times.

Denoting the number of occurences of the part j in a partition by fj , the second type of partitions
in the above theorem are those partitions of n =

∑

j≥1 jfj which satisfy the following frequency
conditions :

fj + fj+1 ≤ 1 ∀j and f1 ≤ 1 − a.

Schur notes that imposing the additional condition fj = 0 for j ≥ L + 1, the generating function of
the “frequency partitions” satisfies the recurrence

(1.2) gL = gL−1 + qLgL−2.

Together with the appropriate initial conditions, Schur was able to solve these recurrences, to obtain
an alternating-sign type solution, now called a bosonic expression. Taking L → ∞ in these bosonic
polynomials yields (after use of Jacobi’s triple product identity) the right-hand side of (1.1). Since
this indeed corresponds to the generating function of the “ (mod 5)” partitions, this proves Theo-
rem 2. Much later, Andrews [3] obtained a solution to the recurrence relation as a finite q-series with
manifestly positive integer coefficients, now called a fermionic expression. Taking L → ∞ in these
fermionic polynomials yields the left-hand side of (1.1).

Recently much progress has been made in proving the boson-fermion identities of [29,30] (and gen-
eralizations thereof), by following the Andrews–Schur approach. That is, for many of the Virasoro-
character identities, finitizations to polynomial boson-fermion identities have been found, which could
then be proven either fully recursively (à la Andrews) or one side combinatorially and one side recur-
sively (à la Schur), see [14–17,19, 22–24,26, 32, 34, 41, 42,44–46].

In this paper we consider polynomial identities which imply the Andrews–Gordon generalization
of the Rogers–Ramanujan identities. First, Gordon’s theorem [27], which provides a combinatorial
generalization of the Rogers–Ramanujan identities, reads

Theorem 3 (Gordon). For all k ≥ 1, 1 ≤ i ≤ k + 1, let Ak,i(n) be the number of partitions of n into
parts not congruent to 0 or ±i (mod 2k + 3) and let Bk,i(n) be the number of partitions of n of the
form n =

∑

j≥1 jfj, with f1 ≤ i − 1 and fj + fj+1 ≤ k (for all j). Then Ak,i(n) = Bk,i(n).

Subsequently the following analytic counterpart of this result was obtained by Andrews [5], gener-
alizing the analytic form (1.1) of the Rogers–Ramanujan identities.

Theorem 4 (Andrews). For all k ≥ 1, 1 ≤ i ≤ k + 1 and |q| < 1,

(1.3)
∑

n1,n2,...,nk≥0

qN2
1+···+N2

k+Ni+···+Nk

(q)n1
(q)n2

· · · (q)nk

=
∞
∏

j=1
j 6≡0,±i (mod 2k+3)

(1 − qj)−1

with

(1.4) Nj = nj + · · · + nk

and (q)a =
∏a

k=1(1 − qk) for a > 0 and (q)0 = 1.

Application of Jacobi’s triple product identity admits for a rewriting of the right-hand side of (1.3)
to

(1.5)
1

(q)∞

∞
∑

j=−∞

(−)jqj
(

(2k+3)(j+1)−2i
)

/2.
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Equating (1.5) and the left-hand side of (1.3), gives an example of a boson-fermion identity. Here
we consider, in the spirit of Schur, a “natural” finitization of Gordon’s frequency condition such that
this boson-fermion identity is a limiting case of polynomial identities. In particular, we are interested
in the quantity Bk,i,i′ ;L(n), counting the number of partitions of n of the form

n =

L−1
∑

j=1

jfj

with frequency conditions

f1 ≤ i − 1, fL−1 ≤ i′ − 1 and fj + fj+1 ≤ k for j = 1, . . . , L − 2.

If we denote the generating function of partitions counted by Bk,i,i′ ;L(n) by Gk,i,i′ ;L(q), then clearly
limL→∞ Gk,i,i′;L(q) = Gk,i(q), with Gk,i the generating function associated with Bk,i(n) of Theorem 3.
Also note that Gk,i,1;L = Gk,i,k+1;L−1. Our main results can be formulated as the following two
theorems for Gk,i,i′ ;L.

Let
[

L
a

]

be the Gaussian polynomial or q-binomial coefficient defined by

(1.6)

[

L

a

]

=

[

L

a

]

q

=











(q)L

(q)a(q)L−a
0 ≤ a ≤ L

0 otherwise.

Further, let Ik be the incidence matrix of the Dynkin diagram of Ak with an additional tadpole at
the k-th node:

(1.7) (Ik)j,ℓ = δj,ℓ−1 + δj,ℓ+1 + δj,ℓδj,k j, ℓ = 1, . . . , k,

and let Ck be the corresponding Cartan-type matrix, (Ck)j,ℓ = 2δj,ℓ − (Ik)j,ℓ. Finally let ~n, ~m and ~ej

be k-dimensional (column)-vectors with entries ~nj = nj, ~mj = mj and (~ej)ℓ = δj,ℓ. Then

Theorem 5. For all k ≥ 1, 1 ≤ i, i′ ≤ k + 1 and kL ≥ 2k − i − i′ + 2,

(1.8) Gk,i,i′ ;L(q) =
∑

n1,n2,...,nk≥0

q ~nT C−1
k (~n +~ek −~ei−1)

k
∏

j=1

[

nj + mj

nj

]

,

with (m, n)-system [14] given by

(1.9) ~m + ~n =
1

2

(

Ik ~m + (L−2)~ek +~ei−1 +~ei′−1

)

.

We note that (C−1
k )j,ℓ = min(j, ℓ) and hence that, using the variables Nj of (1.4), we can rewrite

the quadratic exponent of q in (1.8) as N2
1 + · · · + N2

k + Ni + · · · + Nk. For k ≥ 2, the “finitization”
(1.8)–(1.9) of the left-hand side of (1.3) is new. For k = 1 it is the already mentioned fermionic
solution to the recurrence (1.2) as found by Andrews [3]. Another finitization, which does not seem to
be related to a finitization of Gordon’s frequency conditions, has recently been proposed in [22,24,32]
(see also [15]). A more general expression, which includes (1.8)–(1.9) and that of [22,24,32] as special
cases, will be discused in Section 6.

Our second result, which is maybe of more interest mathematically since it involves new generaliza-

tions of the Gaussian polynomials, can be stated as follows. Let
[

L
a

](p)

k
be the q-multinomial coefficient

defined in equation (2.4) of the subsequent section. Also, define

(1.10) r = k − i′ + 1
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and

(1.11) s =







i for i = 1, 3, . . . , 2⌊k
2⌋ + 1

2k + 3 − i for i = 2, 4, . . . , 2⌊k+1
2 ⌋,

so that r = 0, 1, . . . , k and s = 1, 3, . . . , 2k + 1. Then

Theorem 6. For all k > 0, 1 ≤ i, i′ ≤ k + 1 and kL ≥ 2k − i − i′ + 2,

(1.12) Gk,i,i′;L(q) =

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (kL + k − s − r + 1) + (2k + 3)j

](r)

k

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (kL + k + s − r + 1) + (2k + 3)j

](r)

k

}

for r ≡ k(L + 1) (mod 2) and

(1.13) Gk,i,i′;L(q) =

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (kL − k + s − r − 2) − (2k + 3)j

](r)

k

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (kL − k − s − r − 2) − (2k + 3)j

](r)

k

}

for r 6≡ k(L + 1) (mod 2).

For k ≥ 3, the finitizations (1.12) and (1.13) of the right-hand side of (1.3) are new. For k = 1

(1.12) and (1.13) are Schur’s bosonic polynomials. For k = 2,
[

L
a

](p)

2
being a q-trinomial coefficient,

(1.12) and (1.13) were (in a slightly different representation) first obtained in [10]. An altogether
different alternating-sign expression for Gk,i,i′ ;L in terms of q-binomials has been found in [21]. A
different finitization of the right-hand side of (1.3) involving q-binomials has been given in [3, 11].
A more general expression, which includes (1.12), (1.13) and that of [3, 11] as special cases, will be
discused in Section 6.

Equating (1.8) and (1.12)–(1.13) leads to non-trivial polynomial identities, which in the limit L →
∞ reduce to Andrews’ analytic form of Gordon’s identity. For k = 1 these are the polynomial identities
featuring in the Andrews–Schur proof of the Rogers–Ramanujan identities (1.1) [3].

The remainder of the paper is organized as follows. In the next section we introduce the q-
multinomial coefficients and list some q-multinomial identities needed for the proof of Theorem 6.
Then, in Section 3, a combinatorial interpretation of the q-multinomials is given using Andrews’ Dur-
fee dissection partitions. In Section 4 we give a recursive proof of Theorem 6 and in Section 5 we
prove Theorem 5 combinatorially, interpreting the restricted frequency partitions as configurations
of a one-dimensional lattice-gas of fermionic particles. We conclude this paper with a discussion of
our results, a conjecture generalizing Theorems 5 and 6, and some new identities for the branching

functions of cosets of type (A
(1)
1 )k × (A

(1)
1 )ℓ/(A

(1)
1 )k+ℓ with fractional level ℓ. Finally, proofs of some

of the q-multinomial identities are given in the appendix.
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2. q-multinomial coefficients

Before introducing the q-multinomial coefficients, we first recall some facts about ordinary multi-
nomials. Following [10], we define

(

L
a

)

k
for a = 0, . . . , kL as

(1 + x + · · · + xk)L =

kL
∑

a=0

(

L

a

)

k

xa.

Multiple use of the binomial theorem yields

(2.1)

(

L

a

)

k

=
∑

j1+···+jk=a

(

L

j1

)(

j1
j2

)

· · ·

(

jk−1

jk

)

,

where
(

L
a

)

=
(

L
a

)

1
is the usual binomial coefficient.

Some readily established properties of
(

L
a

)

k
are the symmetry relation

(2.2)

(

L

a

)

k

=

(

L

kL − a

)

k

and the recurrence

(2.3)

(

L

a

)

k

=

k
∑

m=0

(

L − 1

a − m

)

k

.

For our subsequent working it will be convenient to define k + 1 different q-deformations of the
multinomial coefficient (2.1).

Definition 1. For p = 0, . . . , k we set

(2.4)

[

L

a

](p)

k

=
∑

j1+···+jk=a

q

k−1
∑

ℓ=1

(L − jℓ)jℓ+1 −

k−1
∑

ℓ=k−p

jℓ+1[

L

j1

][

j1
j2

]

· · ·

[

jk−1

jk

]

,

with
[

L
a

]

the standard q-binomial coefficients of (1.6).

Note that
[

L
a

](p)

k
is unequal to zero for a = 0, . . . , kL only. Also note the initial condition

(2.5)

[

0

a

](p)

k

= δa,0.

In the following we state a number of q-deformations to (2.2) and (2.3). Although our list is certainly
not exhaustive, we have restricted ourselves to those identities which in our view are simplest, and to
those needed for proving Theorem 6. Most of these identities are generalizations of known q-binomial
and q-trinomial identities which, for example, can be found in [9, 10, 16, 17].

First we put some simple symmetry properties generalizing (2.2), in a lemma.

Lemma 1. For p = 0, . . . , k the following symmetries hold:

(2.6)

[

L

a

](p)

k

= q(k−p)L−a

[

L

kL − a

](k−p)

k

and

[

L

a

](0)

k

=

[

L

kL − a

](0)

k

.

The proof of this lemma is given in the appendix.
To our mind the simplest way of q-deforming (2.3) (which was communicated to us by A. Schilling)

is
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Proposition 1 (Fundamental recurrences; Schilling). For p = 0, . . . , k, the q-multinomials satisfy

(2.7)

[

L

a

](p)

k

=

k−p
∑

m=0

qm(L−1)

[

L − 1

a − m

](m)

k

+
k

∑

m=k−p+1

qL(k−p)−m

[

L − 1

a − m

](m)

k

.

In the next section we give a combinatorial proof of this important result for the p = 0 case. An
analytic proof for general p has been given by Schilling in [42].

We now give some equations, proven in the appendix, which all reduce to the tautology 1 = 1 in
the q → 1 limit.

Proposition 2. For all p = −1, . . . , k − 1, we have

(2.8)

[

L

a

](p)

k

+ qL

[

L

kL − a − p − 1

](p+1)

k

=

[

L

kL − a − p − 1

](p)

k

+ qL

[

L

a

](p+1)

k

,

with
[

L
a

](−1)

k
= 0.

The power of these (q-deformed) tautologies is that they allow for an endless number of different
rewritings of the fundamental recurrences. In particular, as shown in the appendix, they allow for the
non-trivial transformation of (2.7) into

Proposition 3. For all p = 0, . . . , k, we have

[

L

a

](p)

k

=

k−p
∑

m=0
m≡p+k (mod 2)

qm(L−1)

[

L − 1

a − 1
2 (m − p + k)

](m)

k

(2.9)

+

k−p−1
∑

m=0
m 6≡p+k (mod 2)

qm(L−1)

[

L − 1

kL − a − 1
2 (m + p + k + 1)

](m)

k

+
k

∑

m=k−p+2
m≡p+k (mod 2)

q
1
2

(

(2L−1)(k−p)−m
)

[

L − 1

a − 1
2 (m − p + k)

](m)

k

+

k
∑

m=k−p+1
m 6≡p+k (mod 2)

qkL+ 1
2

(

(2L+1)(k−p)−m+1
)

−2a

[

L − 1

kL − a − 1
2 (m + p − k − 1)

](m)

k

.

It is thanks to these rather unappealing recurrences that we can prove Theorem 6.
Before concluding this section on the q-multinomial coefficients let us make some further remarks.

First, for k = 1 and k = 2 we reproduce the well-known q-binomial and q-trinomial coefficients. In
particular,

(2.10)

[

L

a

](0)

1

=

[

L

a

]

and

(2.11)

[

L

a

](p)

2

=

(

L; L − a − p; q

L − a

)

2

for p = 0, 1,

where on the right-hand side of (2.11) we have used the q-trinomial notation introduced by Andrews
and Baxter [10].
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Second, in [10], several recurrences involving q-trinomials with just a single superscript (p) are
given. We note that such recurrences follow from (2.7) by taking the difference between various values
of p. In particular we have for all r = 0, . . . , p

[

L

a

](p)

k

=

[

L

a

](p−r)

k

+ qL(k−p)−a

p−r−1
∑

m=0

(

1 − qrL
)

qm(L−1)

[

L − 1

kL − a − m

](m)

k

(2.12)

+ qL(k−p)−a

p−1
∑

m=p−r

(

1 − q(p−m)L
)

qm(L−1)

[

L − 1

kL − a − m

](m)

k

.

This can be used to eliminate all multinomials
[

..

..

](m)

k
for m = 0, . . . , p − 1, p + 1, . . . , k in favour of

[

..

..

](p)

k
. The price to be paid for this is that the resulting expressions tend to get very complicated if

k gets large.
A further remark we wish to make is that to our knowledge the general q-deformed multinomials

as presented in (2.4) are new. The multinomial
[

L
a

](0)

k
however was already suggested as a “good”

q-multinomial by Andrews in [9], where the following generating function for q-multinomials was
proposed for all k > 1:

(2.13) pk,L(x) =
L

∑

a=0

xaq(
a
2)

[

L

a

]

pk−1,a(xqL),

with p0,L(x) = 1. Clearly,

(2.14) pk,L =

kL
∑

a=0

xaq(
a
2)

[

L

a

](0)

k

.

Also in the work of Date et al. the
[

L
a

](0)

k
makes a brief appearance, see [21, Equation (3.29)].

The more general q-multinomials of equation (2.4) have been introduced independently by Schilling
[42]. (The notation used in [42] and that of the present paper is almost identical apart from the fact

that
[

L
a

](p)

k
is replaced by

[

L
kL/2−a

](p)

k
.)

3. Combinatorics of q-multinomial coefficients

In this section a combinatorial interpretation of the q-multinomials coefficients is given using An-
drews’ Durfee dissections [7]. We then show how the fundamental recurrences (2.7) with p = 0 follow
as an immediate consequence of this interpretation.

As a first step it is convenient to change variables from q to 1/q. Using the elementary transfor-
mation property of the Gaussian polynomials

(3.1)

[

L

a

]

1/q

= q−a(L−a)

[

L

a

]

q

,

we set
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Definition 2. For p = 0, . . . , k
{

L

a

}(p)

k

:= q−aL

[

L

a

](p)

k

∣

∣

∣

∣

∣

q→1/q

(3.2)

=
∑

N1+···+Nk=a

qN2
1+···+N2

k+Nk−p+1+···+Nk

[

L

N1

][

N1

N2

]

· · ·

[

Nk−1

Nk

]

=
∑

~nT C−1

k
~ek=a

q ~nT C−1
k (~n +~ek −~ek−p) (q)L

(q)L−~nT C−1

k
~e1

(q)n1
(q)n2

. . . (q)nk

.

3.1. Successive Durfee squares and Durfee dissections. As a short intermezzo, we review some
of the ideas introduced by Andrews in [7], needed for our interpretation of (3.2). Those already familiar
with such concepts as “(k, a)-Durfee dissection of a partition” and “(k, a)-admissible partitions” may
wish to skip the following and resume in Section 3.2. Throughout the following a partition and its
corresponding Ferrers graph are identified.

Definition 3. The Durfee square of a partition is the maximal square of nodes (including the upper-
leftmost node).

The size of the Durfee square is the number of rows for which rℓ ≥ ℓ, labelling the rows (=parts)
of a partition by r1 ≥ r2 ≥ . . .. Copying the example from [7], the Ferrers graph and Durfee square
of the partition πex = 9 + 7 + 5 + 4 + 4 + 3 + 1 + 1 is shown in Figure 1(a).

The portion of a partition of n below its Durfee square defines a partition of m < n. For this
“smaller” partition one can again draw the Durfee square. Continuing this process of drawing squares,
we end up with the successive Durfee squares of a partition. For the partition πex this is shown in
Figure 1(b). If a partition π has k successive Durfee squares, with Nℓ the size of the ℓ-th square, then
π has exactly N1 + · · · + Nk parts with N1 + · · · + Nℓ parts ≥ Nℓ for all ℓ = 1, . . . , k.

Following Andrews we now slightly generalize the previous notions.

Definition 4 (Durfee rectangle). The Durfee rectangle of a partition is the maximal rectangle of nodes
whose height exceeds its width by precisely one row.

The Durfee rectangle of the partition πex is shown in Figure 1(c). The size of the Durfee rectangle
is its width.

One can now combine the Durfee squares and rectangles to define

Definition 5 (Durfee dissection). The (k, i)-Durfee dissection of a partition is obtained by drawing
i − 1 successive Durfee squares followed by k − i + 1 successive Durfee rectangles.

In the following it will be convenient to adopt a slightly unconventional labelling. In particular, we
label the Durfee squares from 1 to i − 1 and the rectangles from i to k. Correspondingly, Nℓ is the
size of the Durfee square or rectangle labelled by ℓ. We note that in the (k, i)-dissection of a partition
corresponding to Durfee squares and rectangles of respective sizes N1 ≥ N2 ≥ . . . ≥ Nk, all the Nℓ

beyond some fixed ℓ′ may actually be zero.
Finally we come to the most important definition of this section.

Definition 6 ((k, i)-admissible). Let N1 ≥ N2 ≥ . . . ≥ Nk be the respective sizes of the Durfee squares
and rectangles in the (k, i)-Durfee dissection of a partition π. Then π is (k, i)-admissible if

• π has no parts below its last successive Durfee rectangle (or square if i = k + 1.)
• For ℓ = i, . . . , k, the last row of the Durfee rectangle labelled by ℓ has Nℓ nodes.

The first condition is equivalent to stating that the number of parts of π equals N1 + · · · + Nk +
max(ℓ′− i+1, 0), where ℓ′ labels the number of Durfee squares and rectangles of non-zero size; Nℓ > 0
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(a) (b) (c)

Figure 1. (a) Durfee square of the partition πex = 9 + 7 + 5 + 4 + 4 + 3 + 1 + 1. (b)
The four successive Durfee squares of πex. (c) The Durfee rectangle of πex.

for ℓ ≤ ℓ′ and Nℓ = 0 for ℓ > ℓ′. The second condition is equivalent to stating that the last row of
each Durfee rectangle is actually a part of π.

3.2. (k, i; L, a)-admissible partitions and q-multinomial coefficients. Using the previous defi-
nitions we are now prepared for the combinatorial interpretation of (3.2).

Definition 7 ((k, i; L, a)-admissible). Let N1 ≥ N2 ≥ . . . ≥ Nk be the respective sizes of the Durfee
squares and rectangles of a (k, i)-admissible partition π. Then π is said to be (k, i; L, a)-admissible if
the largest part of π is less or equal to L and N1 + · · · + Nk = a.

For a (k, i; L, a)-admissible partition π, the portion πℓ of π to the right of the Durfee square or
rectangle labelled by ℓ (and below the Durfee square or rectangle labelled Nℓ−1), is a partition with
largest part ≤ Nℓ−1 − Nℓ (where N0 = L) and number of parts ≤ Nℓ. Recalling that the Gaussian
polynomial (1.6) is the generating function of partitions with largest part ≤ L − a and number of
parts ≤ a [6], we thus find that the generating function of (k, i; L, a)-admissible partitions is given by

(3.3)
∑

N1+···+Nk=a

qN2
1

[

L

N1

]

· · · qN2
i−1

[

Ni−2

Ni−1

]

qNi(Ni+1)

[

Ni−1

Ni

]

· · · qNk(Nk+1)

[

Nk−1

Nk

]

=

{

L

a

}(k−i+1)

k

.

Denoting an arbitrary partition of n with largest part ≤ L and number of parts ≤ a by a rectangle
of width L and height a, the (k, i; L, a)-admissible partitions can be represented graphically as shown
in Figure 2 for the case k = 2.

Equipped with the above interpretation we return to the recurrence relation (2.7) for p = 0. Using

Definition 2 to rewrite this in terms of
{

L
a

}(p)

k
, gives

(3.4)

{

L

a

}(0)

k

= qa
k

∑

m=0

{

L − 1

a − m

}(m)

k

.

This is obviously true if the following combinatorial statements hold.

Lemma 2.

• Adding a column of a nodes to the left of a (k, k − m + 1; L − 1, a − m)-admissible partition
with m ∈ {0, 1, . . . , k}, yields a (k, k + 1; L, a)-admissible partition.

• Removing the first column (of a nodes) from a (k, k + 1; L, a)-admissible partition yields a
(k, k − m + 1; L − 1, a − m)-admissible partition for some m ∈ {0, 1, . . . , k}.

To show the first statement, we note that a partition is (k, k +1; L, a)-admissible if it has exactly a
parts, has largest part ≤ L and has at most k successive Durfee squares. A (k, k−m+1; L−1, a−m)-
admissible partition has at most a parts and has largest part ≤ L − 1. Hence adding a column of
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N1

N2

N1

N2

L

a

N1

N2

N1

N2+1

L

a+1

N1

N2

N1+1

N2+1

L

a+2

i =3
i =2

i =1

Figure 2. Graphical representation of the (2, i; L, a)-admissible partitions, generated

by
{

L
a

}(3−i)

2
. The respective values of N1 and N2 are free to vary, only their sum taken

the fixed value a. Note that the number of parts in the second and third figure are
actually not fixed, but vary between a and a − i + 3, depending on the number of
Durfee rectangles of non-zero size.

a nodes to the left of such a partition, yields a partition π which has a parts and largest part ≤ L.
Remains to show that π has at most k successive Durfee squares. To see this first assume that the
(k, k −m + 1; L− 1, a− m)-admissible partition only consists of Durfee squares and rectangles. That
is, we have a partition of N2

1 + · · ·+ N2
k + Nk−m+1 + · · ·+ Nk, with N1 + · · ·+ Nk = a−m. Adding a

column of a dots trivially yields a partition π with k successive Durfee squares with respective sizes

(3.5) N1 ≥ N2 ≥ ... ≥ Nk−m ≥ Nk−m+1 + 1 ≥ . . . ≥ Nk + 1 > 0,

with π having a column of Nℓ nodes to the right of the ℓ-th successive Durfee square for each ℓ ≤ k−m.
Now note that we in fact have treated the “worst” possible cases. All other (k, k−m+1; L−1, a−m)-
admissible partitions can be obtained from the “bare” ones just treated by adding partitions with
largest part ≤ Nℓ−1 − Nℓ (where N0 = L) and number of parts ≤ Nℓ to the right of the Durfee
square or rectangle labelled by ℓ for all ℓ. Let π be such a “dressed” partition, obtained from a bare
(k, k − m + 1; L − 1, a − m)-admissible partition πb, and let the images of π and πb after adding a
column of a dots be π′ and π′

b. Further, let Nℓ and Mℓ be the size of the ℓ-th successive Durfee square
of π′

b and π′, respectively. Since π is obtained from πb by adding additional nodes to its rows, we have
M1 + · · ·Mℓ ≥ N1 + · · ·+ Nℓ for all ℓ. From the fact that π′

b has at most k successive Durfee squares
it thus follows that this is also true for π′.

To show the second statement of the lemma, note that from (2.3) we see that the map implied
by the first statement is in fact a map onto the set of (k, k + 1, L, a)-admissible partitions. Since
for m 6= m′, the set of (k, k − m + 1; L − 1, a − m)-admissible partitions is distinct from the set of
(k, k − m′ + 1; L − 1, a− m′)-admissible partitions, the second statement immediately follows.

To prove (2.7) is true for general p, we need to establish

(3.6)

{

L

a

}(p)

k

= qa

k−p
∑

m=0

{

L − 1

a − m

}(m)

k

+ qa
k

∑

m=k−p+1

qL(p−k+m)

{

L − 1

a − m

}(m)

k

.

Unfortunately, a generalization of Lemma 2 which would imply this more general result has so far
eluded us.
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Before concluding our discussion of q-multinomial coefficients we note that if the restriction on L
is dropped in the (k, i; L, a)-admissible partitions, their generating function reduces to

lim
L→∞

{

L

a

}(k−i+1)

k

=
∑

N1+···+Nk=a

n1,...,nk≥0

qN2
1 +···+N2

k+Ni+···+Nk

(q)n1
(q)n2

. . . (q)nk

,

which, up to a factor (q)a, is the representation of the Alder polynomials [2] as found in [5].

4. Proof of Theorem 6

With the results of the previous two sections, proving Theorem 6 is elementary. First we define

Sk,i,i′ ;L as the set of partitions of n of the form n =
∑L−1

j=1 jfj satisfying the frequency conditions

f1 ≤ i− 1, fL−1 ≤ i′ − 1 and fj + fj+1 ≤ k for j = 1, . . . , L− 2. Let π be a partition in Sk,i,i′;L, with
ℓ rows of length L − 1. Using the frequency condition this implies fL−2 ≤ k − ℓ. Hence, by removing
the first ℓ rows, π maps onto a partition in Sk,i,k−ℓ+1;L−1. Conversely, by adding ℓ rows at the top
to a partition in Sk,i,k−ℓ+1;L−1, we obtain a partition in Sk,i,i′ ;L. Since in the above ℓ can take the
values ℓ = 0, . . . , i′ − 1, the following recurrences hold:

(4.1) Gk,i,i′ ;L(q) =
i′−1
∑

ℓ=0

qℓ(L−1)Gk,i,k−ℓ+1;L−1(q) for i′ = 1, . . . , k + 1.

In addition to this we have the initial condition

(4.2) Gk,i,i′ ;2(q) =

min(i′−1,i−1)
∑

ℓ=0

qℓ.

Using the recurrence relations, it is in fact an easy matter to verify that this is consistent with the
condition

(4.3) Gk,i,i′ ;0(q) = δi,i′ .

Remains to verify that (1.12) and (1.13) satisfy the recurrence (4.1) and initial condition (4.3).
Since in these two equations we have used the variables r and s instead of i′ and i, let us first rewrite
(4.1) and (4.3). Suppressing the k, s and q dependence, setting Gk,i,i′;L(q) = GL(r), we get

(4.4) GL(r) =

k−r
∑

ℓ=0

qℓ(L−1)GL−1(ℓ) for r = 0, . . . , k

and

(4.5) G0(r) =

{

δs+r,k+1 for s = 1, 3, . . . , 2⌊k
2 ⌋ + 1

δs−r,k+2 for s = 2⌊k
2 ⌋ + 3, . . . , 2k + 1.

To verify that (1.12) and (1.13) satisfy the initial condition (4.5), we set L = 0 and use the fact
that r = 0, 1, . . . , k and s = 1, 3, . . . , 2k + 1. From this and equation (2.5) one immediately sees

that the only non-vanishing term in (1.12) is given by
[

0
(k−s−r+1)/2

](r)

k
= δs+r,k+1. Similarly the only

non-vanishing term in (1.13) is
[

0
(−k+s−r−2)/2

](r)

k
= δs−r,k+2. Now recall that (1.12) with L = 0 is

G0(r) for r ≡ k. From the allowed range of r this implies s = 1, 3, . . . , 2⌊k
2⌋ + 1, in accordance with

the top-line of (4.5). Also, since (1.13) with L = 0 is G0(r) for r 6≡ k, and because of the range of r,
we get s = 2⌊k

2 ⌋ + 3, . . . , 2k + 1, in accordance with the second line in (4.5).
Checking that (1.12) and (1.13) solve the recurrence relation (4.4) splits into several cases due to

the parity dependence of GL(r) and of the q-multinomial recurrences (2.9). All of these cases are
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completely analogous and we restrict our attention to k and r being even, so that GL(r) is given by
equation (1.12). Substituting recurrences (2.9), the first and second sum in (2.9) immediately give
the right-hand side of (4.4). Consequently, the other two terms in (2.9) give rise to unwanted terms
that have to cancel in order for (4.4) to be true. Dividing out the common factor q(2L−1)(k−r)/2 and
making the change of variables m → m − 1 in the last sum of (2.9), the unwanted terms read

k
∑

m=k−r+2
m even

q−
1
2
m

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L − 1
1
2 (kL − s − m + 1) + (2k + 3)j

](m)

k

− q

(

2j+1
)(

(2k+3)j+s
)

[

L − 1
1
2 (kL + s − m + 1) + (2k + 3)j

](m)

k

+ q

(

2j−1
)(

(2k+3)j−s
)

[

L − 1
1
2 (kL + s − m + 1) − (2k + 3)j

](m−1)

k

− qj
(

(2j−1)(2k+3)+2s
)

[

L − 1
1
2 (kL − s − m + 1) − (2k + 3)j

](m−1)

k

}

.

After changing the summation variable j → −j in the second and fourth term, this becomes

k
∑

m=k−r+2
m even

q−
1
2
m

∞
∑

j=−∞

qj
(

(2j+1)(2k+3)−2s
)

×

{

[

L − 1
1
2 (kL − s − m + 1) + (2k + 3)j

](m)

k

− qs−2(2k+3)j

[

L − 1
1
2 (kL + s − m + 1) − (2k + 3)j

](m)

k

+qs−2(2k+3)j

[

L − 1
1
2 (kL + s − m + 1) − (2k + 3)j

](m−1)

k

−

[

L − 1
1
2 (kL − s − m + 1) + (2k + 3)j

](m−1)

k

}

.

We now show that the term within the curly braces vanishes for all m and j. To establish this, we
apply the symmetry (2.6) to all four q-multinomials within the braces and divide by

q(k−m)(L−1)− 1
2
(kL−s−m+1)−(2k+3)j .

After replacing L by L + 1 and m by k − p, this gives

[

L
1
2 (kL + s − p − 1) − (2k + 3)j

](p)

k

−

[

L
1
2 (kL − s − p − 1) + (2k + 3)j

](p)

k

+ qL

[

L
1
2 (kL − s − p − 1) + (2k + 3)j

](p+1)

k

− qL

[

L
1
2 (kL + s − p − 1) − (2k + 3)j

](p+1)

k

.

Recalling the tautology (2.8) with a = 1
2 (kL + s − p − 1) − (2k + 3)j this indeed gives zero.

5. Proof of Theorem 5

5.1. From partitions to paths. To prove expression (1.8) of Theorem 5, we reformulate the problem
of calculating the generating function Gk,i,i′;L(q) into a lattice path problem. Hereto we represent each
partition π in Sk,i,i′;L as a restricted lattice path p(π), similar in spirit to the lattice path formulation
of the left-hand side of (1.3) by Bressoud [18].1

1Finitizing Bressoud’s lattice paths by fixing the length of his paths to L, results in the left-hand side of (6.1) of the
next section. Hence the lattice paths introduced here are intrinsically different from those of [18] and in fact correspond
to a finitization of the paths of [40].
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0
1
2

k≤

1 2 L
x

y

Figure 3. A lattice path of the partition (f1, . . . , fL−1) = (2, 4, 3, 3, 5, 3, 2, 4, 1, 0,
1, 3, 0, 0, 7, 0, 1, 1, 2, 4, 3, 3, 0, 1, 2, 1, 1, 3, 4, 4, 2, 2, 0, 0). The shaded regions correspond
to the two particles with largest charge (=8), as described below.

To map a partition π of n =
∑L−1

j=1 jfj onto a lattice path p(π), draw a horizontal line-segment

in the (x, y)-plane from (j − 1
2 , fj) to (j + 1

2 , fj) for each j = 1, . . . , L − 1. Also draw vertical line-

segments from (j + 1
2 , fj) to (j + 1

2 , fj+1) for all j = 0, . . . , L − 1, where f0 = fL−1 = 0. As a result

π is represented by a lattice path (or histogram) from (1
2 , 0) to (L − 1

2 , 0). The frequency condition
fj + fj+1 ≤ k translates into the condition that the sum of the heights of a path at x-positions j and
j + 1 does not exceed k. The restrictions f1 ≤ i − 1 and fL−1 ≤ i′ − 1 correspond to the restrictions
that the heights at x = 1 and x = L − 1 are less than i and i′, respectively. An example of a lattice
path for k ≥ 8, i ≥ 3 and i′ ≥ 1, is shown in Figure 3.

The above map clearly is reversible, and any lattice path satisfying the above height conditions
maps onto a partition in Sk,i,i′ ;L. From now on we let Pk,i,i′ ;L denote the set of restricted lattice paths
corresponding to the set of partions Sk,i,i′ ;L.

From the map of partitions onto paths, the problem of calculating the generating function Gk,i,i′ ;L(q)
can be reformulated as

(5.1) Gk,i,i′ ;L(q) =
∑

p∈Pk,i,i′ ;L

W (p)

with Boltzmann weight W (p) =
∏L−1

j=1 qjfj .

Before we actually compute the above sum, we remark that in the following k, i and i′ will always
be fixed. Hence, to simplify notation, we use GL and PL to denote Gk,i,i′ ;L and Pk,i,i′ ;L, respectively.

5.2. Fermi-gas partition function; i = i′ = k + 1. To perform the sum (5.1) over the restricted
lattice path, we follow a procedure similar to the one employed in our proof of Virasoro-character
identities for the unitary minimal models [44, 45]. That is, the sum (5.1) is interpreted as the grand-
canonical partition function of a one-dimensional lattice-gas of fermionic particles.

The idea of this approach is to view each lattice path as a configuration of particles on a one-
dimensional lattice. Since not all lattice paths correspond to the same particle content ~n, this gives
rise to a natural decomposition of (5.1) into

(5.2) GL(q) =
∑

~n

ZL(~n; q),

with ZL the canonical partition function,

ZL(~n; q) =
∑

p∈PL(~n)

W (p).
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0
1
2

k

1 2 L
x

y

  nk times

  n2 times

  n1 times

Figure 4. The minimal path of content ~n = (n1, . . . , nk)T .

Here PL(~n) ⊂ PL is the set of paths corresponding to a particle configuration with content ~n. To avoid
making the following description of the lattice gas unnecessarily complicated, we assume i = i′ = k+1
in the remainder of this section. Subsequently we will briefly indicate how to modify the calculations
to give results for general i and i′.

To describe how to interpret each path in PL = Pk,k+1,k+1;L as a particle configuration, we first
introduce a special kind of paths from which all other paths can be constructed.

Definition 8 (minimal paths). The path shown in Figure 4 is called the minimal path of content ~n.

Definition 9 (charged particle). In a minimal path, each column with non-zero height t corresponds
to a particle of charge t.

Note that in the minimal path the particles are ordered according to their charge and that adjacent
particles are separated by a single empty column. The number of particles of charge t is denoted nt

and ~n = (n1, . . . , nk)T . For later use it will be convenient to give each particle a label, pt,ℓ denoting
the ℓ-th particle of charge t, counted from the right.

Since the length of a path is fixed by L, there are only a finite number of minimal paths. In

particular, we have 2(n1 + · · · + nk) ≤ L, so that there are
(

⌊L/2⌋+k
k

)

different minimal paths.
In the following we show that all non-minimal paths in PL can be constructed out of one (and

only one) minimal path using a set of elementary moves. Hereto we first describe how various local
configurations may be changed by moving a particle.2 To suit the eye, the particle being moved in
each example has been shaded.

To describe the moves we first consider the simplest type of motion, when the two columns imme-
diately to the right of a particle are empty.

Definition 10 (free motion). The following sequence of moves is called free motion:

j

t

j

t−1

1

j

t−2

2

j+1

t

Clearly, a particle of charge t in free motion takes t moves to fully shift position by one unit.
Now assume that in moving a particle of charge t, we at some stage encounter the local configuration

shown in Figure 5(a). We then allow the particle to make t − s more moves following the rules of

2In moving a particle we always mean motion from left to right.
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free motion, to end up with the local configuration shown in (b). If instead of (a) we encounter the
configurations (c) or (d), the particle can make no further moves.

t

s s

t−s

s

t t t

s(a) (b) (c) (d)

Figure 5.

In case of the configuration of Figure 5(b), there are three possibilities. Either we have one of the
configurations shown in Figure 6(a) and (b), in which case the particle cannot move any further, or we
have the configuration shown in Figure 6(c) (with 0 ≤ u < t− s), in which case we can make t− u− s
moves, going from (c) to (e). Ignoring the for our rules irrelevant column immediately to the left of

s s

t−s t−s

s s

t−s

u

s s

u

t−s

s

u

t−s−1
s+1

s

u u
t−u

(a) (b) (c) (d) (e)

Figure 6.

the particle, the configuration of Figure 6(e) is essentially the same as that of Figure 5(b). To further
move the particle we can thus refer to the rules given in Figure 6. That is, if the column immediately
to the right of the white column of height u has height t − u (corresponding to the configuration of
Figure 6(a) with s → u) the particle cannot move any further. Similarly, if the column immediately
to the right of the white column of height u has height v > t − u (corresponding to the configuration
of Figure 6(b) with u → v and s → u) the particle cannot move any further. However, if the height of
the column immediately to the right of the white column of height u is 0 ≤ v < t − u (corresponding
to the configuration of Figure 6(c) with u → v and s → u) we can make another t − u − v moves.

Having introduced all necessary moves we come to the main propositions of this section

Proposition 4 (rules of motion). Each non-minimal configuration can be obtained from one and only
one minimal configuration by letting the particles carry out elementary moves in the following order:

• Particle pt,ℓ moves prior to ps,ℓ′ if t < s.
• Particle pt,ℓ′ moves prior to pt,ℓ if ℓ′ < ℓ.

To prove this let us assume that we have completed the motion of all particles of charge less than
t and all particles pt,ℓ′ with ℓ′ < ℓ, and that we are currently moving the particle pt,ℓ. Therefore, for
x ≤ 2nk + · · · + 2nt+1 + 2(nt − ℓ) := xmin, the lattice path still corresponds to the minimal path.

Now note that in moving the particle pt,ℓ, we never create a local configuration in which the sum
of the height of two consecutive columns is greater than t, see the free motion and the Figures 5(a)(b)
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0
1
2

k≤

1 2 L
x

y

Figure 7. The lattice path obtained from Figure 1 after moving the largest particles
to their minimal position. The shaded regions mark the three next-largest particles.

and 6(c)–(e). Since we have not moved any of the particles of charge greater than t, this means that
to the right of xmin no two consecutive columns have summed heights greater than t.3 Also note that
as soon as pt,ℓ meets two columns immediately to its right whose summed heights equal t, pt,ℓ cannot
move any further, see Figures 5(c) and 6(a). Consequently, pt,ℓ always corresponds to the leftmost
two consecutive columns right of xmin whose summed height equals t. (In fact, it corresponds to the
leftmost two consecutive columns right of xmin with maximal summed heights.)

Now we define reversed moves by reading all the previous figures in a mirror. Using this motion
we can move pt,ℓ all the way back to its minimal position but not any further. To see this we note
that the only situations in which pt,ℓ cannot be moved further back is if it meets two consecutive
columns to its left whose summed heights are greater or equal to t. Since we have just argued that
such a configuration cannot occur between xmin and pt,ℓ we can indeed move pt,ℓ back to its minimal
position using the reversed moves. Once it is back in its minimal position we either have the mirror
image of Figure 5(c) (in case ℓ < nt) or (d) (in case ℓ = nt). Neither of these configurations allows
for further reversed moves.

The above, however, gives a general procedure for reducing each non-minimal path to a minimal
one by simply reversing the rules of motion in the proposition. That is, we first scan the path for
all particles of charge k, by locating all occurrence of two consecutive columns of summed heights
k. From left to right these label the particles pk,nk

to pk,1. Applying the previous reasoning with
t = k, we can first move pk,nk

back using reversed moves, than pk,nk−1, et cetera, until all particles of
charge k have taken their “minimal position”. Repeating this for the particles of charge k − 1, then
the particles of charge k − 2, et cetera, each non-minimal path reduces to a unique minimal path.

As an example to the above, for the path of Figure 3 the shaded regions mark the (two) particles
with largest charge (=8). Moving them back using the reversed motion, the leftmost particle being
moved first, we end up with the path shown in Figure 7, in which now the (three) particles with
next-largest charge have been marked. We leave it to the reader to further reduce the path to obtain
the minimal path of content (n1, n2, . . . , n8) = (2, 1, 2, 1, 3, 1, 3, 2).

The elementary moves and the reversed moves are clearly reversible. If a particle of charge t has
made an elementary move changing a path from p to p′, we can always carry a reversed move going
from p′ back to p. Since each path can be reduced to a unique minimal path using the reversed moves
by carrying out the rules of motion of proposition 4 in reversed order, we have thus established that
using the rules of motion we can generate each non-minimal path uniquely from a minimal path.
Hence the proposition is proven.

3 This also means that in moving a particle of charge t, the configurations of Figure 5(d) and Figure 6(b) in fact
never arise.
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We now have established the decomposition of the sum (5.1) into (5.2), where ZL(~n; q) is the
generating function of the paths generated by the minimal path labelled by ~n, or, in other words,
ZL(~n; q) is the partition function of a lattice gas of fermions with particle content ~n. The fermionic
nature being that, unlike particles of different charge, particles of equal charge cannot exchange
position.

Our next result concerns the actual computation of the partition function.

Proposition 5. The partition function ZL is given by

(5.3) ZL(~n; q) = q ~nT C−1
k ~n

k
∏

t=1

[

nt + mt

nt

]

,

with ~m + ~n = 1
2 (Ik ~m + L~ek).

To prove this we first determine the contribution to ZL of the minimal path of content ~n,

W (pmin)/ ln q =
k

∑

t=1

t

nt
∑

ℓ=1

(

2ℓ − 1 + 2
k

∑

s=t+1

ns

)

=
k

∑

t=1

tnt

(

nt + 2
k

∑

s=t+1

ns

)

(5.4)

=

k
∑

r=1

k
∑

t=r

nt

(

nt + 2

k
∑

s=t+1

ns

)

=

k
∑

r=1

N2
r = ~nT C−1

k ~n.

To obtain the contribution to ZL of the non-minimal configurations, we apply the rules of motion
of Proposition 4. If eℓ denotes the number of elementary moves carried out by pt,ℓ, the generating
function of moving the particles of charge t reads

(5.5)

mt
∑

e1=0

e1
∑

e2=0

. . .

ent−1
∑

ent
=0

qe1+e2+···+ent =

[

mt + nt

nt

]

.

Here we have used the fact that each elementary move generates a factor q and that pt,ℓ cannot carry
out more elementary moves than pt,ℓ−1. (If pt,ℓ has made as many moves as pt,ℓ−1 we obtain either
the local configuration of Figure 5(c) or Figure 6a, prohibiting any further moves.) The number mt

in (5.5) is the maximal number of elementary moves pt,1 can make and remains to be determined. If
the content of the minimal path is ~n, the x-position of pt,1 in pmin is 2(nk + · · ·+ nt)− 1 := x0. To fix
mt, let us assume that after the motion of the particles of charge less than t has been completed, the
nontrivial part of the lattice path is encoded by the sequence of heights (fx0

, . . . , fL−1), with fx0
= t,

fx0+1 = 0 and fj + fj+1 < t for j > x0. The particle pt,1 can now move all the way to x = L − 1
making

mt = (t − fx0+2) + (t − fx0+2 − fx0+3) + (t − fx0+3 − fx0+4)

+ · · · + (t − fL−2 − fL−1) + (t − fL−1)

= t(L − x0 − 1) − 2

L−1
∑

j=x0+2

fj(5.6)

elementary moves. To simplify this, note that the sum on the right-hand side is nothing but twice the

sum of the heights of the columns right of x = x0, which is 2
∑t−1

s=1 sns. Substituting this in (5.6) and
using the definition of x0, results in

(5.7) mt = tL − 2

t−1
∑

s=1

sns − 2t

k
∑

s=t

nt = tL − 2

k
∑

s=1

min(s, t)ns = L(C−1
k )t,k − 2

k
∑

s=1

(C−1
k )t,sns

in accordance with Proposition 5.
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0
1

i−1

k

1 2 L
x

y

  nk times   n i−1 times
  n1 times

Figure 8. The minimal path of content ~n = (n1, . . . , nk)T for general i. The dashed
lines are drawn to mark the different particles.

Putting together the results (5.4), (5.5) and (5.7) completes the proof of Proposition 5. Substituting
the form (5.3) of the partition function into (5.2) proves expression (1.8) of Theorem 5, for i = i′ =
k + 1.

5.3. Fermi-gas partition function; general i and i′. Modifying the proof of Theorem 5 for i =
i′ = k+1 to all i and i′ is straightforward and few details will be given. It is in fact interesting to note
that unlike our proof for the character identities of the unitary minimal models [44, 45], the general
case here does not require the introduction of additional “boundary particles”.

First let us consider the general i′ case, with i = k + 1. This implies that the height fL−1

of the last column of the lattice paths is no longer free to take any of the values 1, . . . , k, but is
bound by fL−1 ≤ i′ − 1. For the particles of charge less or equal to i′ − 1 this does not impose
any new restrictions on the maximal number of moves pt,1 can make. For t > i′ − 1 however, mt

in (5.7) has to be decreased by t − i′ + 1. Thus we find that mt of (5.7) has to be replaced by
mt − max(0, t − i′ + 1) = mt − t + min(t, i′ − 1). Recalling (C−1

k )s,t = min(s, t), this yields

mt = (L − 1)(C−1
k )t,k + (C−1

k )t,i′−1 − 2

k
∑

s=1

(C−1
k )t,sns

and therefore, mt + nt = 1
2 (

∑k
s=1(Ik)t,sms + (L− 1)δt,k + δt,i′−1) which is in accordance with Propo-

sition 5, for i = k + 1.
Second, consider i general, but i′ = k + 1, so that f1 ≤ i − 1, fL−1 ≤ k. Now the modification

is slightly more involved since the actual minimal paths change from those of Figure 4 to those of
Figure 8. This leads to a change in the calculation of W (pmin) to

W (pmin)/ ln q =

k
∑

t=1

nt
∑

ℓ=1

(

2ℓt − min(t, i − 1) + 2t

k
∑

s=t+1

ns

)

=

k
∑

t=1

tnt

(

nt + 2

k
∑

s=t+1

ns

)

+

k
∑

t=i

(t − i + 1)nt

= ~nT C−1
k ~n +

k
∑

t=1

tnt −
k

∑

t=1

min(t, i − 1)nt = ~nT C−1
k (~n + ek − ei−1),

which is indeed the general form of the quadratic exponent of q in (1.8). Also mt again requires
modification, which is in fact similar to the previous case: mt → mt − max(0, t − i + 1). To see this
note that it takes max(0, t− i+1) elementary moves to move pt,1 from its minimal position in Figure 4
to its minimal position in Figure 8.
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Finally, combining the previous two cases, and using the fact that the modifications of mt due to
f1 ≤ i− 1 and fL−1 ≤ i′ − 1 are independent, we immediately arrive at the general form of (1.8) with
(m, n)-system (1.9).

6. Discussion

In this paper we have presented polynomial identities which arise from finitizing Gordon’s frequency
partitions. The bosonic side of the identities involves q-deformations of the coefficient of xa in the
expansion of (1 + x + · · ·+ xk)L. The fermionic side follows from interpreting the generating function
of the frequency partitions, as the grand-canonical partition function of a one-dimensional lattice gas.

Interestingly, in recent publications, Foda and Quano, and Kirillov, have given different polynomial
identities which imply (1.3) [22, 24, 32]. In the notation of Section 1 these identities can be expressed
as

Theorem 7 (Foda–Quano, Kirillov). For all k ≥ 1, 1 ≤ i ≤ k + 1 and L ≥ k − i + 1,

(6.1)
∑

n1,...,nk≥0

qN2
1+···+N2

k+Ni+···+Nk

k
∏

j=1

[

L − Nj − Nj+1 − 2
∑j−1

ℓ=1 Nℓ − αi,j

nj

]

=

∞
∑

j=−∞

(−)jqj
(

(2k+3)(j+1)−2i
)

/2

[

L

⌊L−k+i−1−(2k+3)j
2 ⌋

]

,

with Nk+1 = 0 and αi,j = max(0, j − i + 1).

An explanation for this different finitization of (1.3) can be found in a theorem due to Andrews [4]:

Theorem 8 (Andrews). Let Qk,i(n) be the number of partitions of n whose successive ranks lie in
the interval [2 − i, 2k − i + 1]. Then Qk,i(n) = Ak,i(n).

It turns out that it is the (natural) finitization of these successive rank partitions which gives rise to
the above alternative polynomial finitization. That is, (6.1) is an identity for the generating function
of partitions with largest part ≤ ⌊(L + k − i + 2)/2⌋, number of parts ≤ ⌊(L − k + i − 1)/2⌋, whose
successive ranks lie in the interval [2 − i, 2k − i + 1].

Let us now reexpress (6.1) into a form similar to equations (1.8), (1.12) and (1.13). Hereto we
eliminate i in the right-hand side of (6.1) in favour of the variable s of equation (1.11) and split the
result into two cases. This gives

RHS(6.1) =

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (L + k − s + 1) + (2k + 3)j

](0)

1

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (L + k + s + 1) + (2k + 3)j

](0)

1

}

for L + k even, and

RHS(6.1) =
∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (L − k + s − 2) − (2k + 3)j

](0)

1

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (L − k − s − 2) − (2k + 3)j

](0)

1

}

for L + k odd. This we recognize to be exactly (1.12) and (1.13) with r = 0, kL replaced by L and
[

...

...

](0)

k
replaced by

[

...

...

](0)

1
.
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Similarly, if we express the left-hand side of (6.1) through an (n, m)-system, we find precisely (1.8)
but with

(6.2) ~m + ~n =
1

2

(

Ik ~m + L~e1 +~ei−1 −~ek

)

.

This is just (1.9) with r = 0 and L ek replaced by L e1.
From the above observations it does not require much insight to propose more general polynomial

identities which have (6.1) and those implied by the Theorems 5 and 6 as special cases. In particular,
we have confirmed the following conjecture by extensive series expansions.

Conjecture 1. For all k ≥ 1, 1 ≤ ℓ ≤ k, 1 ≤ i ≤ k + 1, 1 ≤ i′ ≤ ℓ + 1 and ℓL ≥ k + ℓ − i − i′ + 2

∑

n1,n2,...,nk≥0

q ~nT C−1
k (~n +~ek −~ei−1)

k
∏

j=1

[

nj + mj

nj

]

with (m, n)-system given by

(6.3) ~m + ~n =
1

2

(

Ik ~m + (L− 1)~eℓ +~ei−1 +~ei′−1 −~ek

)

equals

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (ℓL + k − s − r + 1) + (2k + 3)j

](r)

ℓ

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (ℓL + k + s − r + 1) + (2k + 3)j

](r)

ℓ

}

for r ≡ ℓL + k (mod 2) and

∞
∑

j=−∞

{

qj
(

(2j+1)(2k+3)−2s
)

[

L
1
2 (ℓL − k + s − r − 2) − (2k + 3)j

](r)

ℓ

−q

(

2j+1
)(

(2k+3)j+s
)

[

L
1
2 (ℓL − k − s − r − 2) − (2k + 3)j

](r)

ℓ

}

for r 6≡ ℓL + k (mod 2). Here s is defined as in (1.11) and

r = ℓ − i′ + 1

so that r = 0, . . . , ℓ.

For later reference, let us denote these more general polynomials as G
(ℓ)
k,i,i′ ;L(q). Then ℓ = k

corresponds to the polynomials considered in this paper and ℓ = 1 to those of Foda, Quano and
Kirillov.

The above conjecture leads one to wonder whether there are in fact (at least) k different partition
theoretical interpretations of (1.3), each of which has a natural finitization corresponding to the

polynomials G
(ℓ)
k,i,i′ ;L(q) with ℓ = 1, . . . , k.

Intimately related to the conjecture and perhaps even more surprising is the following observation,
originating from the work of Andrews and Baxter [10]. For k ≥ 0 and 1 ≤ i ≤ k+1, define a k-variable
generating function

f(x1, . . . , xk) =
∑

n1,n2,...,nk≥0

qN2
1+···+N2

k+Ni+···+Nk x2N1

1 x
2(N1+N2)
2 · · ·x

2(N1+···+Nk)
k

(x1)n1+1(x2)n2+1 · · · (xk)nk+1
,
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where (x)n =
∏n−1

k=0 (1 − xqk). Obviously, (1 − x1) · · · (1 − xk)f(1, . . . , 1) corresponds to the left-

hand side of (1.3). Now define the polynomials P (ℓ1, . . . , ℓk) := P (~ℓ) as the coefficients in the series
expansion of f ,

f(x1, . . . , xk) =
∑

ℓ1,...,ℓk

P (~ℓ)xℓ1
1 · · ·xℓk

k .

From the readily derived functional equations for f and the recurrences (4.1) with (4.3) one can deduce
that

P (~m + 2C−1
k ~n) = Gk,i,i′ ;L(q)

with ~m and ~n given by (1.9). Similarly the polynomials of Foda, Quano and Kirillov arise again as
P (~m+2C−1

k ~n) where ~m and ~n now satisfy (6.2). Again we found numerically that also the polynomials
featuring the conjecture appear naturally. That is,

P (~m + 2C−1
k ~n) = G

(ℓ)
k,i,i′ ;L(q),

where now the generalized (m, n)-system (6.3) should hold (so that ~m + 2C−1
k ~n = C−1

k ((L− 1)~eℓ +
~ei−1 +~ei′−1 −~ek)).

Although all the polynomial identities implied by Conjecture 1 reduce to Andrews’ identity (1.3)
in the L to infinity limit, they still provide a powerful tool for generating new q-series results. That
is, if we first replace q → 1/q and then take L → ∞, new identities arise. To state these, we need
some more notation. The inverse Cartan matrix of the Lie algebra Aℓ−1 is denoted by Bℓ−1, and ~µ
and ~εj are (ℓ− 1)-dimensional (column) vectors with entries ~µj = µj and (~ǫj)m = δj,m. Furthermore,
we need the k-dimensional vector

~Qi,i′,ℓ = ~ei +~ei+2 + · · · +~ei′ +~ei′+2 + · · · +~eℓ+1 +~eℓ+3 + · · · ,

with ~ej = ~0 for j ≥ k + 1. Using this notation, we are led to the following conjecture.

Conjecture 2. For all k ≥ 1, 1 ≤ ℓ ≤ k, 1 ≤ i ≤ k + 1, 1 ≤ i′ ≤ ℓ + 1 and |q| < 1, the q-series

(6.4) q(i′+i−2)/4
∑

m1,m2,...,mk≥0

mj≡(~Qi,i′,ℓ)j (mod 2)

q

1

4
~mT Ck(~m + 2~ek − 2~ei−1)

(q)mℓ

k
∏

j=1
j 6=ℓ

[ 1
2

(

Ik ~m +~ei−1 +~ei′−1 −~ek

)

mj

]

equals

(6.5) q(k+r−s+1)(k−r−s+1)/(4ℓ) 1

(q)∞

ℓ−1
∑

n=0

∑

µ1,...,µℓ−1≥0

n+ℓ(Bℓ−1~µ)1≡0 (mod ℓ)

q ~µT Bℓ−1(~µ − ~ǫr)

(q)µ1
· · · (q)µℓ−1

×

{ ∞
∑

j=−∞

n+(k−s−r+1)/2+(2k+3)j≡0 (mod ℓ)

qj
(

(2k−2ℓ+3)(2k+3)j+(2k+3)(k−ℓ+1)−(2k−2ℓ+3)s
)

/ℓ

−

∞
∑

j=−∞

n+(k+s−r+1)/2+(2k+3)j≡0 (mod ℓ)

q

(

(2k−2ℓ+3)j+(k−ℓ+1)
)(

(2k+3)j+s
)

/ℓ

}
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for r ≡ k (mod 2), and equals

(6.6) q(k+r−s+2)(k−r−s+2)/(4ℓ) 1

(q)∞

ℓ−1
∑

n=0

∑

µ1,...,µℓ−1≥0

n+ℓ(Bℓ−1~µ)1≡0 (mod ℓ)

q ~µT Bℓ−1(~µ − ~ǫr)

(q)µ1
· · · (q)µℓ−1

×

{ ∞
∑

j=−∞

n−(k−s+r+2)/2−(2k+3)j≡0 (mod ℓ)

qj
(

(2k−2ℓ+3)(2k+3)j+(2k+3)(k−ℓ+2)−(2k−2ℓ+3)s
)

/ℓ

−

∞
∑

j=−∞
n−(k+s+r+2)/2−(2k+3)j≡0 (mod ℓ)

q

(

(2k−2ℓ+3)j+(k−ℓ+2)
)(

(2k+3)j+s
)

/ℓ

}

for r 6≡ k (mod 2).

Since Conjecture 1 is proven for ℓ = 1 and k, we can for these particular values claim the above
as theorem. In fact, for ℓ = 1, the above was first conjectured in [30] and proven in [25]. In [12, 28]

expressions for the branching functions of the (A
(1)
1 )M × (A

(1)
1 )N/(A

(1)
1 )M+N coset conformal field

theories were given similar to (6.5) and (6.6). This similarity suggests that (6.4), (6.5) and (6.6)

correspond to the branching functions of the coset (A
(1)
1 )ℓ × (A

(1)
1 )k−ℓ−1/2/(A

(1)
1 )k−1/2 of fractional

level.
A very last comment we wish to make is that there exist other polynomial identities than those dis-

cussed in this paper which imply the Andrews–Gordon identity 1.3 and which involve the q-multinomial
coefficients.

Theorem 9. For all k ≤ 1 and 1 ≤ i ≤ k + 1,

(6.7)

L
∑

a=0

{

L

a

}(k−i+1)

k

=

L
∑

j=−L

(−)jqj
(

(2k+3)(j+1)−2i
)

/2 (q)L

(q)L−j(q)L+j
.

Note that for i = k + 1 the left-hand side is the generating function of partitions with at most k
successive Durfee squares and with largest part ≤ L.

The proof of Theorem 9 follows readily using the Bailey lattice of [1]. For k = 1 (6.7) was first
obtained by Rogers [37]. For other k it is implicit in [1, 8].
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Appendix A. Proof of q-multinomial relations

In this section we prove the various claims concerning the q-multinomial coefficients made in Sec-
tion 2.
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Let us start proving the symmetry properties (2.6) of Lemma 1. First we take the definition (2.4)
and make the change variables jℓ → L − jk−ℓ+1 for all ℓ = 1, . . . , k. This changes the restriction on
the sum to j1 + · · · + jk = kL − a, changes the exponent of q to

(A.1)
k−1
∑

ℓ=1

(L − jk−ℓ)jk−ℓ+1 −
k−1
∑

ℓ=k−p

(L − jk−ℓ),

but leaves the product over the q-binomials invariant. We now perform a simple rewriting of (A.1) as
follows

(A.1) =

k−1
∑

ℓ=1

(L − jℓ)jℓ+1 +

p
∑

ℓ=1

jℓ − pL (by ℓ → k − ℓ)

=

k−1
∑

ℓ=1

(L − jℓ)jℓ+1 −

k−1
∑

ℓ=p

jℓ+1 + (k − p)L − a (by j1 + · · · + jk = kL − a),

which proves the first claim of the lemma. The second statement in the lemma follows for example,

by noting that
[

L
a

](k)

k
= q−a

[

L
a

](0)

k
.

The proof of the tautologies (2.8) of Proposition 2 is somewhat more involved and we proceed
inductively. For L = 0 (2.8) is obviously correct, thanks to

[

0

a

](p)

k

= δa,0.

Now assume (2.8) holds true for all L′ = 0, . . . , L. To show that this implies (2.8) for L′ = L + 1,
we substitute the fundamental recurrence (2.7) into (2.8) with L replaced by L + 1. After some
cancellation of terms and division by (1 − qL+1), this simplifies to

(A.2)

M
∑

m=0

qmL

[

L

a − m

](m)

k

=

M
∑

m=0

qmL

[

L

kL − a − m + M

](m)

k

,

where we have replaced k − p − 1 by M . Since in (2.8) we have p = −1, . . . , k − 1, (A.2) should
hold for M = 0, . . . , k. A set of equations equivalent to this is obtained by taking (A.2)M=0 and
(A.2)M − (A.2)M−1 for M = 1, . . . , k. In formula this new set of equations reads

M−1
∑

m=0

qmL

{

[

L

kL − a − m + M − 1

](m)

k

− qL

[

L

kL − a − m + M − 1

](m+1)

k

}

=

[

L

kL − a + M

](0)

k

− qML

[

L

a − M

](M)

k

,

for M = 0, . . . , k. Now we use the induction assumption on the term within the curly braces, and the
second symmetry relation of (2.6) on the first term of the right-hand side. This yields

M−1
∑

m=0

qmL

{

[

L

a − M

](m)

k

− qL

[

L

a − M

](m+1)

k

}

=

[

L

a − M

](0)

k

− qML

[

L

a − M

](M)

k

.

Expanding the sum, all but two terms on the left-hand side cancel, yielding the right-hand side.
Finally we have to show Equation (2.9) of Proposition 3 to be true. We approach this problem

indirectly and will in fact show that the right-hand side of (2.9) can be transformed into the right-hand
side of (2.7) by multiple application of the tautologies (2.8) and the symmetries (2.6). For the sake
of convenience, we restrict our attention to the case k and p even, and replace L in (2.7) and (2.9) by
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L + 1. The other choices for the parity of k and p follow in analogous manner, and the details will be
omitted.

Rewriting the right-hand side of (2.9) by replacing L by L + 1, using the even parity of k and p,
and replacing p by k − M , gives

(A.3)

M
∑

m=0
m even

qmL

[

L

a − 1
2 (m + M)

](m)

k

+

M−1
∑

m=1
m odd

qmL

[

L

kL − a − 1
2 (m − M + 1)

](m)

k

+

k
∑

m=M+2
m even

q
1
2

(

(2L+1)M−m
)

[

L

a − 1
2 (m + M)

](m)

k

+

k−1
∑

m=M+1

m odd

qk(L+1)+ 1
2

(

(2L+3)M−m+1
)

−2a

[

L

k(L + 1) − a − 1
2 (m − M − 1)

](m)

k

.

The proof that this equals the right-hand side of (2.7) (with L replaced by L + 1 and p by k −M)
breaks up into two independent steps, both of which will be given as a lemma. First, we have

Lemma 3. The top-line of equation (A.3) equals

(A.4)
M
∑

m=0

qmL

[

L

a − m

](m)

k

.

Second,

Lemma 4. The bottom-two lines of equation (A.3) equal

(A.5)

k
∑

m=M+1

q(L+1)M−m

[

L

a − m

](m)

k

.

Clearly, application of these two lemmas immediately establishes the wanted result.
At the core of the proof of both lemmas is yet another result, which can be stated as

Lemma 5. For M even and ℓ = 0, . . . , 1
2M , the following function is independent of ℓ:

Fℓ(M, a) =

M
∑

m=M−ℓ

qmL

[

L

a − m

](m)

k

+

ℓ−1
∑

m=0

qmL

[

L

kL − a − m + 1
2M − 1

](m)

k

+

M−ℓ−2
∑

m=ℓ

m≡ℓ (mod 2)

qmL

{

[

L

a − 1
2 (m + M − ℓ)

](m)

k

+ qL

[

L

kL − a − 1
2 (m − M + ℓ) − 1

](m+1)

k

}

.

The proof of this is simple. First we apply the tautology (2.8) to the term within the curly braces,
yielding

Fℓ(M, a) =
M
∑

m=M−ℓ

qmL

[

L

a − m

](m)

k

+
ℓ−1
∑

m=0

qmL

[

L

kL − a − m + 1
2M − 1

](m)

k

+

M−ℓ−2
∑

m=ℓ

m≡ℓ (mod 2)

qmL

{

[

L

kL − a − 1
2 (m − M + ℓ) − 1

](m)

k

+ qL

[

L

a − 1
2 (m + M − ℓ)

](m+1)

k

}

.
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After separating the m = ℓ term in the first and the m = M − ℓ − 2 term in the second term within
the curly braces, we change the summation variable m → m − 2 in the sum over the second term
within the braces. This results in

Fℓ(M, a) =
M
∑

m=M−ℓ−1

qmL

[

L

a − m

](m)

k

+
ℓ

∑

m=0

qmL

[

L

kL − a − m + 1
2M − 1

](m)

k

+

M−ℓ−3
∑

m=ℓ+1

m≡ℓ+1 (mod 2)

qmL

{

[

L

a − 1
2 (m + M − ℓ − 1)

](m)

k

+ qL

[

L

kL − a − 1
2 (m − M + ℓ + 1) − 1

](m+1)

k

}

= Fℓ+1(M, a).

The proof of the Lemmas 3 and 4 readily follows from Lemma 5. To prove Lemma 3, note that the
top-line of (A.3) is nothing but F0(M). Since this is equal to F 1

2
M (M), we get

(A.6) top-line of (A.3) =

M
∑

m= 1
2
M

qmL

[

L

a − m

](m)

k

+

1
2
M−1
∑

m=0

qmL

[

L

kL − a − m + 1
2M − 1

](m)

k

.

Applying equation (A.2) with M replaced by 1
2M − 1, to the the second sum, we simplify to equation

(A.4) thus proving our lemma.
To prove Lemma 4, we apply the first symmetry relation of (2.6) to all q-multinomials in the

bottom-two lines of (A.3). After changing m → k − m in the second line and m → k − m − 1 in the
third line, the last two lines of (A.3) combine to

(A.7) fa

k−M−2
∑

m=0
m even

qmL

{

[

L

kL − a − 1
2 (m − M − k)

](m)

k

+ qL

[

L

a − 1
2 (m + M + k) − 1

](m+1)

k

}

,

with fa = q(L+1)M−a. This we recognize as

fa

{

F0(k − M, kL + k − a) − q(k−M)L

[

L

kL − a + M

](k−M)

k

}

.

Replacing the first term by F 1
2
(k−M)(k − M, kL + k − a), gives

fa

1
2
(k−M)−1

∑

m=0

qmL

[

L

a − 1
2 (M + k) − m − 1

](m)

k

+ fa

k−M−1
∑

m= 1
2
(k−M)

qmL

[

L

kL − a − m + k

](m)

k

.

Applying equation (A.2) with M replaced by 1
2 (k − M) − 1 and a by a − 1

2 (M + k) − 1, to the first
sum, this simplifies to

fa

k−M−1
∑

m=0

qmL

[

L

kL − a − m + k

](m)

k

.

Finally using the symmetry (2.6), recalling the definition of fa and changing m → k − m, we get
equation (A.5).
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