
q-SELBERG INTEGRALS AND MACDONALD POLYNOMIALS

S. OLE WARNAAR

Dedicated to Richard Askey on the occasion of his 70th birthday

Abstract. Using the theory of Macdonald polynomials, a number of q-integrals

of Selberg type are proved.

1. Introduction and summary

In [3], Richard Askey conjectured several q-integrals extending the famous Sel-
berg integral. The third of his now ex-conjectures reads

(1.1)

∫
[0,∞)n

n∏
i=1

xα−1i

(−cxiqα+β+2(n−1)k; q)∞
(−cxi; q)∞

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

=

n∏
i=1

Γq(α+ (i− 1)k)Γq(β + (i− 1)k)Γq(ik + 1)

Γq(α+ β + (n+ i− 2)k)Γq(k + 1)

ϑ(−cqα+2(i−1)k; q)

ϑ(−c; q)
.

with k a positive integer, Re(α) > 0, Re(β) > 0 and 0 < q < 1. Here (a; q)m =∏m−1
j=0 (1− aqj) and (a; q)∞ =

∏∞
j=0(1− aqj) are q-shifted factorials,

(1.2) Γq(z) = (1− q)1−z (q; q)∞
(qz; q)∞

is the q-gamma function,

(1.3) ϑ(z; q) = (z; q)∞(q/z; q)∞

is a theta function, and, for x = (x1, . . . , xn) and measure dqx = dqx1 . . . dqxn,

(1.4)

∫
[0,∞)n

f(x) dqx = (1− q)n
∞∑

k1,...,kn=−∞

f(qk1 , . . . , qkn)qk1+···+kn

is a multiple q-integral.
To see that (1.1) generalizes a special case of the Selberg integral [24]

(1.5)

∫
[0,1]n

n∏
i=1

xα−1i (1− xi)β−1
∏

1≤i<j≤n

|xi − xj |2γ dx

=

n∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ + 1)

Γ(α+ β + (n+ i− 2)γ)Γ(γ + 1)
,
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true for Re(α) > 0, Re(β) > 0 and Re(γ) > −min{1/n,Re(α)/(n− 1),Re(β)/(n−
1)}, assume that c > 0 and let q tend to one in (1.1) using the formal limits

lim
q→1

(a; q)∞/(aq
z; q)∞ = (1− a)z,

limq→1 Γq(z) = Γ(z) and

lim
q→1

∫
[0,∞)n

f(x) dqx =

∫
[0,∞)n

f(x) dx

with dx = dx1 . . . dxn. After rescaling cxi 7→ xi this yields the integral [1, Exercise
8.14; γ = k]

(1.6)

∫
[0,∞)n

n∏
i=1

xα−1i

(1 + xi)α+β+2(n−1)k

∏
1≤i<j≤n

(xi − xj)2k dx

=

n∏
i=1

Γ(α+ (i− 1)k)Γ(β + (i− 1)k)Γ(ik + 1)

Γ(α+ β + (n+ i− 2)k)Γ(k + 1)
,

for Re(α) > 0 and Re(β) > 0. By the variable change xi 7→ xi/(1−xi) this becomes
the Selberg integral (1.5) for γ = k.

Askey’s conjecture (1.1) was proved for k = 1 (and up to a symmetrization
of the integrand) by Milne [22, Theorem 4.18] and by Aomoto [2] for general k.
Subsequently Kaneko [18] found a proof based on a 1Ψ1 summation for Macdonald
polynomials. We will show that Kaneko’s 1Ψ1 sum together with a symmetry
property of the Macdonald polynomials implies an integral evaluation more general
than (1.1).

Theorem 1.1. Let λ = (λ1, . . . , λn) be a partition and k a positive integer. Then∫
[0,∞)n

Pλ(x; q, qk)

n∏
i=1

xα−1i

(−cxiqα+β+2(n−1)k; q)∞
(−cxi; q)∞

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

= Pλ(qkδ; q, qk)

n∏
i=1

q−k(2n−3i+1)λi
ϑ(−cqα+2(i−1)k+λi ; q)

ϑ(−c; q)

× Γq(α+ (n− i)k + λi)Γq(β + (i− 1)k − λi)Γq(ik + 1)

Γq(α+ β + (n+ i− 2)k)Γq(k + 1)

= qαk(
n
2)+2k2(n3)Pλ(qkδ; q, qk)

n∏
i=1

ϑ(−cqα+(2n−i−1)k+λi ; q)

ϑ(−cq(n−i)k; q)∞

× Γq(α+ (n− i)k + λi)Γq(β + (i− 1)k − λi)Γq(ik + 1)

Γq(α+ β + (n+ i− 2)k)Γq(k + 1)

for Re(α) > −λn, Re(β) > λ1 and 0 < q < 1.

Here Pλ(x; q, t) is a Macdonald polynomial (see Section 2) and Pλ(qkδ; q, qk)
denotes the specialized Macdonald polynomial Pλ(1, qk, . . . , q(n−1)k; q, qk) which
can be expressed in closed form as

(1.7) Pλ(qkδ; q, qk) = qkn(λ)
∏

1≤i<j≤n

(q(j−i)k+λi−λj ; q)k
(q(j−i)k; q)k
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with n(λ) =
∑n
i=1(i− 1)λi.

The equality of the two expressions on the right of the theorem simply follows
from the (multiplicative) quasi-periodicity of the theta functions:

ϑ(aqj ; q) = (−a)−jq−(j2)ϑ(a; q).

Denoting the empty partition by 0, we have P0(x; q, t) = 1. Hence the λ = 0
case of the theorem reduces to (1.1). Also, since

(1.8) Pλ(x; q, t) = (x1 . . . xn)λnP(λ1−λn,λ2−λn,...,0)(x; q, t)

it is easily seen by making the variable changes α 7→ α− λn and β 7→ β + λn that
the λn > 0 case of the theorem reduces to the λn = 0 case. We also mention that
Theorem 1.1 remains correct for k = 0. However, here and elsewhere in the paper,
we exclude k = 0 for being trivial but requiring special attention. For example,
for k = 0 we have Pλ(x; q, 1) = mλ(x) with mλ the monomial symmetric function,
given by mλ(x) =

∑
xν11 . . . xνnn where the sum is over all distinct permutations ν

of λ. Hence (1.7) for k = 0 is incorrect unless λ = (a, . . . , a) = (an). However,
with the correct interpretation of Pλ(1, . . . , 1; q, 0) = mλ(1, . . . , 1) the integral of
Theorem 1.1 with k = 0 trivializes to a sum over the one-dimensional integral (with
α 7→ α+ µi and β 7→ β − µi)∫ ∞

0

xα−1
(−cxqα+β ; q)∞

(−cx; q)∞
dqx =

Γq(α)Γq(β)

Γq(α+ β)

ϑ(−cqα; q)

ϑ(−c; q)
.

This result, which is equivalent to Ramanujan’s 1ψ1 summation [3, 5], corresponds
to (1.1) with n = 1.

A more interesting special case of the theorem is obtained in the q → 1 limit for
c > 0. By rescaling x to eliminate c this yields the following generalization of the
integration formula (1.6).

Corollary 1.2. With the same conditions as in Theorem 1.1 there holds∫
[0,∞)n

P
(1/k)
λ (x)

n∏
i=1

xα−1i

(1 + xi)α+β+2(n−1)k

∏
1≤i<j≤n

(xi − xj)2k dx

= P
(1/k)
λ (1, . . . , 1)

n∏
i=1

Γ(α+ (n− i)k + λi)Γ(β + (i− 1)k − λi)Γ(ik + 1)

Γ(α+ β + (n+ i− 2)k)Γ(k + 1)
.

Here P
(α)
λ (x) is a Jack polynomial and

P
(1/k)
λ (1, . . . , 1) =

∏
1≤i<j≤n

((j − i)k + λi − λj)k
((j − i)k)k

,

with (a)n =
∏n−1
j=0 (a+ j).

By replacing qβ 7→ −q1−α−2(n−1)k/c and then letting c 7→ −qβ in Theorem 1.1,
and by noting that (xiq; q)∞ = 0 for xi = qki with ki a negative integer, we obtain
as second corollary another generalized q-Selberg integral. This integral was first
conjectured by Kadell [11, Conjecture 8], and proved for k = 1 by Kadell [11] and
for general k by Kaneko [16, Proposition 5.2] and Macdonald [20, Example VI.9.3].
See also Kadell [14, Theorem 1] for the q → 1 limit. (To obtain the formulae of [11]
and [20] one has to first carry out a symmetrization of the integrand.)
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Corollary 1.3. Let λ be a partition and k a positive integer. Then∫
[0,1]n

Pλ(x; q, qk)

n∏
i=1

xα−1i

(xiq; q)∞
(xiqβ ; q)∞

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

= qαk(
n
2)+2k2(n3)Pλ(qkδ; q, qk)

×
n∏
i=1

Γq(α+ (n− i)k + λi)Γq(β + (i− 1)k)Γq(ik + 1)

Γq(α+ β + (2n− i− 1)k + λi)Γq(k + 1)

for Re(α) > −λn, Re(β) > 0 and 0 < q < 1.

For λ = 0 this is the well-known Askey–Habsieger–Kadell integral, conjectured
by Askey [3, Conjecture 1] and proved independently by Habsieger [9] and Kadell
[12, Theorem 2; l = m = 0]. In the above∫

[0,1]n

f(x) dqx = (1− q)n
∞∑

k1,...,kn=0

f(qk1 , . . . , qkn)qk1+···+kn .

The second main result of this paper entails a generalization of the β = k case
of Corollary 1.3.

Theorem 1.4. For λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) partitions and k a
positive integer there holds

(1.9)∫
[0,1]n

Pλ(x; q, qk)Pµ(x; q, qk)

n∏
i=1

xα−1i (xiq; q)k−1
∏

1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

= qαk(
n
2)+2k2(n3)(1− q)kn

2

Pλ(qkδ; q, qk)Pµ(qkδ; q, qk)

×
n∏
i=1

Γq(ik)Γq(ik + 1)

Γq(k + 1)

n∏
i,j=1

1

(qα+(2n−i−j)k+λi+µj ; q)k
,

for Re(α) > −λn − µn and 0 < q < 1.

In the limit when q tends to 1 this reproduces the Hua–Kadell integration formula
for Jack polynomials [10, Theorem 5.2.1], [13, Theorem 2].

Corollary 1.5. With the same conditions as in Theorem 1.4 there holds∫
[0,1]n

P
(1/k)
λ (x)P (1/k)

µ (x)

n∏
i=1

xα−1i (1− xi)k−1
∏

1≤i<j≤n

(xi − xj)2k dx

= n!(Γ(k))nfkλf
k
µ

n∏
i,j=1

1

(α+ (2n− i− j)k + λi + µj)k
,

where
fkλ =

∏
1≤i<j≤n

((j − i)k + λi − λj)k.

As another corollary of Theorem 1.4 we will prove the following integral repre-
sentation of a terminating n+1Φn multivariable basic hypergeometric series based
on Macdonald polynomials (see definition (2.16)).



q-SELBERG INTEGRALS AND MACDONALD POLYNOMIALS 5

Corollary 1.6. Let y = (y1, . . . , ym). For λ = (λ1, . . . , λn) a partition and k a
positive integer there holds

(1.10)

∫
[0,1]n

Pλ(x; q, qk)
∏

1≤i≤n
1≤j≤m

(1− xiyj)

×
n∏
i=1

xα−1i (xiq; q)k−1
∏

1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

= qαk(
n
2)+2k2(n3)Pλ(qkδ; q, qk)

n∏
i=1

Γq(α+ (n− i)k + λi)Γq(ik)Γq(ik + 1)

Γq(α+ (2n− i)k + λi)Γq(k + 1)

× n+1Φn

[
q−nk, q−α−2(n−1)k−λ1 , . . . , q−α−(n−1)k−λn

q−α−(2n−1)k−λ1 , . . . , q−α−nk−λn
; qk, q, y

]
.

for Re(α) > −λn and 0 < q < 1.

The generic numerator and denominator parameters in the above n+1Φn are
q−α−(2n−i−1)k−λi and q−α−(2n−i)k−λi . Equation (1.10) extends the β = k case of
the following integral of Kaneko [17, Equation (3.1)]:∫

[0,1]n

∏
1≤i≤n
1≤j≤m

(1− xiyj)
n∏
i=1

xα−1i

(xiq; q)∞
(xiqβ ; q)∞

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

dqx

= qαk(
n
2)+2k2(n3)

n∏
i=1

Γq(α+ (i− 1)k)Γq(β + (i− 1)k)Γq(ik + 1)

Γq(α+ β + (n+ i− 2)k)Γq(k + 1)

× 2Φ1

[
q−nk, q−α−(n−1)k

q−α−β−2(n−1)k
; qk, q, qk−βy

]
true for Re(α) > −λn, Re(β) > 0 and 0 < q < 1. Here qk−βy is shorthand
for (qk−βy1, . . . , q

k−βym). When m = 1 the above two r+1Φr series simplify to
the ordinary one-variable basic hypergeometric series r+1φr. We also note the
remarkable fact that m-dimensional hypergeometric series are expressed in terms
of n-dimensional q-integrals.

There is a well-known connection between constant term identities and q-Selberg
integrals of the type given in Corollary 1.3 and Theorem 1.4. In the case of Corol-
lary 1.3 the corresponding constant term identity was obtained by Kaneko. Cor-
recting his expression for the exponent Dn in [17, Equation (3.5)], Kaneko’s identity
asserts that [17, Theorem 4]

C.T.

[
Pλ(x; q, qk)

n∏
i=1

(xi; q)a

( q
xi

; q
)
b

∏
1≤i<j≤n

(xi
xj
,
qxj
xi

; q
)
k

]

= (−1)|λ|
(qk; qk)n
(1− qk)n

n∏
i=1

q(
λi+1

2 )(q; q)a+b+(i−1)k

(q; q)a+(n−i)k+λi(q; q)b+(i−1)k−λi

×
∏

1≤i<j≤n

(q(j−i)k+λi−λj ; q)k.
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Here a, b ≥ 0, |λ| =
∑n
i=1 λi, (a1, . . . , ar; q)m =

∏r
j=1(aj ; q)m, 1/(q; q)−m = 0

for m a positive integer, and C.T.[f(x)] denotes the constant term of the Laurent
polynomial f(x). Kaneko’s constant term identity has a rich history. For λ = 0
it was conjectured by Morris [23, Conjecture (4.12)] who proved his conjecture for
q = 1 [23, Theorem (4.13)]. q-Proofs for λ = 0 were first obtained by Kadell [12,
Theorem 3; l = m = 0] and Habsieger [9, p. 1487] based upon their Askey–Kadell–
Habsieger integral evaluation. For general λ but q = 1 the above identity was first
established by Kadell [14, Equation (A)] (see also [13, Theorem 4]).

Taking Theorem 1.4 as starting point we will prove the following generalization
of the b = k − a− 1 case of Kaneko’s constant term identity.

Theorem 1.7. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be partitions, and a and
k integers such that a ∈ {0, . . . , k − 1}. Then

C.T.

[
Pλ(x; q, qk)Pµ(x−1; q, qk)

n∏
i=1

(xi; q)a

( q
xi

; q
)
k−a−1

∏
1≤i<j≤n

(xi
xj
,
qxj
xi

; q
)
k

]

= (−1)|λ|+|µ|
(qk; qk)n
(1− qk)n

n∏
i=1

q(
µi−λi

2 )
[

k − 1

a+ λi − µi

]
q

×
∏

1≤i<j≤n

(q(j−i)k+λi−λj ; q)k(q(j−i)k+µi−µj ; q)k
(q1+a−k+(j−i)k+λi−µj ; q)k(q−a+(j−i)k+µi−λj ; q)k

.

Here f(x−1) = f(x−11 , . . . , x−1n ) and[
r

a

]
q

=


(q; q)r

(q; q)a(q; q)r−a
a ∈ {0, . . . , r}

0 otherwise

is a q-binomial coefficient.
The correct interpretation of the statement of the theorem is that the constant

term is zero whenever the q-binomial coefficient on the right vanishes, i.e., whenever
a + λi − µi 6∈ {0, . . . , k − 1} for some i ∈ {1, . . . , n}. This convention makes the
right-hand side well-defined for all partitions λ and µ as we shall now show.

The double product on the right has a zero factor in the denominator if

(1.11) a+ (j − i)k + λi − µj ∈ {0, . . . , k − 1} for i, j ∈ {1, . . . , n}, i 6= j.

Now assume that for given i and j (1.11) holds. By adding and subtracting λj ,
this implies (j − i)k + (λi − λj) + (a + λj − µj) ∈ {0, . . . , k − 1}. For i < j we
have (j − i)k + λi − λj ≥ k so that a+ λj − µj must be negative. If i > j we have
(j − i)k+ λi− λj ≤ −k so that a+ λj − µj must be greater or equal to k. We thus
conclude that zero factors in the denominator cannot occur when the q-binomial
coefficient on the right is non-vanishing. Hence the constant term is either zero or
a well-defined rational function.

We further note that the theorem is invariant under the simultaneous replace-
ments a 7→ k − 1 − a and λ ↔ µ. On the left side this requires the change
ti 7→ q/tn−i+1, and the symmetry and homogeneity of the Macdonald polynomi-
als, see Section 2. In the proof of the theorem we will in fact show the stronger
statement that the non-zero values of a follow from a = 0.

By letting q tend to 1 in Theorem 1.7 we obtain a constant term identity of
Kadell [13, Theorem 5].
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Corollary 1.8. With the same conditions as in Theorem 1.7 there holds

C.T.

[
P

(1/k)
λ (t)P (1/k)

µ (t−1)

n∏
i=1

(1− ti)a
(

1− 1

ti

)k−a−1 ∏
1≤i<j≤n

(
1− ti

tj

)k(
1− tj

ti

)k]

= n!(−1)|λ|+|µ|
n∏
i=1

(
k − 1

a+ λi − µi

)
×

∏
1≤i<j≤n

((j − i)k + λi − λj)k((j − i)k + µi − µj)k
(1 + a− k + (j − i)k + λi − µj)k(−a+ (j − i)k + µi − λj)k

.

In Section 9 of Chapter VI of his book [20], Macdonald defines a scalar product
on Ln, the Q(q, t)-algebra of Laurent polynomials in x. When t = qk this scalar
product reads

(1.12) 〈f, g〉′ =
1

n!
C.T.

[
f(x)g(x−1)

∏
1≤i<j≤n

(xi
xj
,
xj
xi

; q
)
k

]
,

for f, g ∈ Ln. A straightforward symmetrization (see Lemma 3.2) shows that
Theorem 1.7 is equivalent to

(1.13) 〈Pλha,k, Pµ〉′ = (−1)|λ|+|µ|
n∏
i=1

q(
µi−λi

2 )
[

k − 1

a+ λi − µi

]
q

×
∏

1≤i<j≤n

(q(j−i)k+λi−λj ; q)k(q(j−i)k+µi−µj ; q)k
(q1+a−k+(j−i)k+λi−µj ; q)k(q−a+(j−i)k+µi−λj ; q)k

,

for

(1.14) ha,k(x) =

n∏
i=1

(xi; q)a

( q
xi

; q
)
k−a−1

.

Following Kadell’s treatment of the case q = 1 [13], we will show that this can be
viewed as a generalization of Macdonald’s orthogonality relation and norm evalua-
tion for Macdonald polynomials with respect to the scalar product (1.12), which is
given by [20, Example VI.9.1(d)]

(1.15) 〈Pλ, Pµ〉′ = δλµ
∏

1≤i<j≤n

(q(j−i)k+λi−λj ; q)k
(q1−k+(j−i)k+λi−λj ; q)k

.

Still following Kadell [13, Theorem 8], we will then show that Theorem 1.7 implies
the following q-binomial theorem for Macdonald polynomials.

Corollary 1.9. Let µ = (µ1, . . . , µn) be a partition and k a positive integer. Then

(1.16)
∑
λ

ckλµ(q)Pλ(x; q, qk) = Pµ(x; q, qk)

n∏
i=1

(xi; q)k−1,

where

(1.17) ckλµ(q) = (−1)|λ|+|µ|
n∏
i=1

q(
λi−µi

2 )
[
k − 1

λi − µi

]
q

×
∏

1≤i<j≤n

(q(j−i)k+µi−µj ; q)k(q1−k+(j−i)k+λi−λj ; q)k
(q(j−i)k+µi−λj ; q)k(q1−k+(j−i)k+λi−µj ; q)k

.
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Here we follow the same convention as in Theorem 1.7 in that ckλµ(q) = 0 unless

λi−µi ∈ {0, . . . , k−1} for all i ∈ {1, . . . , n}. A slightly more general result is given
in Corollary 3.3.

Finally, using an identity for the structure constants of the Macdonald polyno-
mials, we generalize Corollary 1.9 from t = qk to all t.

Theorem 1.10. If µ = (µ1, . . . , µn) is a partition then∑
λ

(qtn−1)λPλ(x)

c′λ

n∏
i,j=1

(qtj−i−1; q)λi−µj
(qtj−i; q)λi−µj

= t(n−1)|µ|
Pµ(x)

Pµ(tδ)

n∏
i=1

(xiq/t; q)∞
(xi; q)∞

for |q| < 1 and max{|xi|}ni=1 < 1.

Here

(a)λ = (a; q, t)λ = tn(λ)
n∏
i=1

(at1−i; q)λi

is a q-shifted factorial labelled by the partition λ and

c′λ = c′λ(q, t) = t−n(λ)(qtn−1)λ
∏

1≤i<j≤n

(qtj−i−1; q)λi−λj
(qtj−i; q)λi−λj

is a generalized hook polynomial. Since the summand on the left vanishes when
λ 6⊃ µ, i.e., when the partition µ is not contained in the partition λ (λi ≥ µi for
all i), the sum over λ may be replaced by a sum over λ subject to λ ⊃ µ. When
µ = 0 the double product in the summand on the left becomes (q/t)λ/(qt

n−1)λ and
Theorem 1.10 reduces to a special case of the q-binomial theorem for Macdonald
polynomials given by (2.17).

In the next section we present some necessary background material on Macdon-
ald polynomials and in Sections 3.1–3.6 we prove all of the claims made in the
introduction. Finally, in Section 4, we conclude with an (ex)-conjecture of Askey
closely related to the Askey–Habsieger–Kadell integral.

2. Preliminaries on Macdonald polynomials

We review some of the theory of Macdonald polynomials needed for our subse-
quent proofs. For more details we refer to [20, Chapter VI].

Let λ = (λ1, λ2, . . . ) be a partition, i.e., λ1 ≥ λ2 ≥ . . . with finitely many
λi unequal to zero. The length and weight of λ, denoted by `(λ) and |λ|, are the
number and sum of the non-zero λi, respectively. We shall not employ the frequency
or multiplicity notation for partitions except for partitions of rectangular shape, in
which case we abbreviate (N, . . . , N) with n repeated Ns as (Nn). For λ a partition
and a an integer we write

(2.1) λ± a = (λ1 ± a, λ2 ± a, . . . ).
For two partitions λ and µ we define the usual addition as λ+ µ = (λ1 + µ1, λ2 +
µ2, . . . ), and for x = (x1, x2, . . . ) a sequence (possibly a partition) and z a scalar,
we set zx = (zx1, zx2, . . . ).

The dominance partial order on the set of partitions is defined as follows: λ ≥ µ
if and only if |λ| = |µ| and λ1 + · · ·+ λi ≥ µ1 + · · ·+ µi for all i ≥ 1.

As usual we identify a partition with its diagram or Ferrers graph, defined by
the set of points in (i, j) ∈ Z2 such that 1 ≤ j ≤ λi. The conjugate λ′ of λ is the



q-SELBERG INTEGRALS AND MACDONALD POLYNOMIALS 9

partition obtained by reflecting the diagram of λ in the main diagonal. If λ and
µ are partitions then λ ⊃ µ means that (the diagram of) µ is contained in (the
diagram of) λ, i.e., λi ≥ µi for all i ≥ 1. Let s = (i, j) be a square in the diagram
of λ. Then a(s), a′(s), l(s) and l′(s) are the arm-length, arm-colength, leg-length
and leg-colength of s, defined by

a(s) = λi − j, a′(s) = j − 1(2.2a)

l(s) = λ′j − i, l′(s) = i− 1.(2.2b)

An often used statistic on partitions is

n(λ) =
∑
i≥1

(i− 1)λi =
∑
i≥1

(
λ′i
2

)
.

In the following we will almost exclusively work with partitions λ = (λ1, . . . , λn)
with `(λ) ≤ n. For such a partition the monomial symmetric function mλ(x) in the
variables x = (x1, . . . , xn) is defined as

(2.3) mλ(x) =
∑

xα,

where the sum is over all distinct permutations α of λ, and xα = xα1
1 · · ·xαnn .

The monomial symmetric functions form a Z-basis of Λn, the ring of symmetric
polynomials in x1, . . . , xn with integer coefficients.

The r-th power sum pr is given by pr(x) = m(r)(x) =
∑n
i=1 x

n
i , and, more gen-

erally, the power-sum products are defined as pλ(x) = pλ1(x) . . . pλn(x). Following
Macdonald we now introduce the scalar product 〈·, ·〉 on Λn by

〈pλ, pµ〉 = δλµzλ

n∏
i=1

1− qλi
1− tλi

,

with zλ =
∏
i≥1mi! i

mi , mi being the number of parts of λ equal to i.

Denote the ring of symmetric functions in n variables over the field F = Q(q, t)
of rational functions in q and t by Λn,F . Then the Macdonald polynomial Pλ(x; q, t)
is the unique symmetric polynomial in Λn,F such that [20, Equation (VI.4.7)]:

(2.4) Pλ =
∑
µ≤λ

uλµmµ,

where uλµ ∈ F , uλλ = 1, and

〈Pλ, Pµ〉 = 0 if λ 6= µ.

The Macdonald polynomials form an F -basis of Λn,F . For t = 1 and t = q they
reduce to the monomial symmetric functions and Schur functions; Pλ(x; q, 1) =
mλ(x) and Pλ(x; q, q) = sλ(x). More generally,

lim
t→1

Pλ(x; tα, t) = P
(α)
λ (x)

with P
(α)
λ Jack’s symmetric function.

Below we have listed several known results for Macdonald polynomials that will
be needed subsequently. Pλ is homogeneous of degree |λ|, i.e., for z a scalar,

(2.5) Pλ(zx) = z|λ|Pλ(x).

This is of course immediate from (2.3) and (2.4). Also, [20, Equation (VI.4.17)]

(2.6) Pλ+a(x) = (x1 . . . xn)aPλ(x),
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provided (for the time being) that λn+a is a nonnegative integer so that both sides
are well-defined.

Recalling (2.2), we introduce two generalized hook polynomials as [20, Equation
(VI.8.1)]

cλ = cλ(q, t) =
∏
s∈λ

(1− qa(s)tl(s)+1)(2.7a)

c′λ = c′λ(q, t) =
∏
s∈λ

(1− qa(s)+1tl(s))(2.7b)

and set

(2.8) bλ = bλ(q, t) =
cλ(q, t)

c′λ(q, t)
.

The quadratic norm evaluation of the Macdonald polynomials can be very simply
expressed in terms of this last function as [20, Equation (VI.6.19)]

〈Pλ, Pλ〉−1 = bλ.

Using a generalized q-shifted factorial

(2.9) (a)λ = (a; q, t)λ =
∏
s∈λ

(tl
′(s) − aqa

′(s)) = tn(λ)
n∏
i=1

(at1−i; q)λi

we explicitly have [16, Proposition 3.2]

cλ = t−n(λ)(tn)λ
∏

1≤i<j≤n

(tj−i; q)λi−λj
(tj−i+1; q)λi−λj

(2.10a)

c′λ = t−n(λ)(qtn−1)λ
∏

1≤i<j≤n

(qtj−i−1; q)λi−λj
(qtj−i; q)λi−λj

.(2.10b)

The bλ also features in the Cauchy identity for Macdonald polynomials. Defining
y = (y1, . . . , yn) in addition to the usual x = (x1, . . . , xn), this identity states that
[20, Equation (VI.4.13)]

(2.11)
∑
λ

bλPλ(x)Pλ(y) =
n∏

i,j=1

(txiyj ; q)∞
(xiyj ; q)∞

.

This may be alternatively put in terms of y = (y1, . . . , ym) as [20, Equation (VI.5.4)]

(2.12)
∑
λ

λ1≤m

Pλ(x; q, t)Pλ′(y; t, q) =
∏

1≤i≤n
1≤j≤m

(1 + xiyj).

Next we need the evaluation homomorphism uλ : Λn,F → F defined by

(2.13) uλ(f) = f(qλtδ)

for f ∈ Λn,F . Here qλtδ = (qλ1tδ1 , qλ2tδ2 , . . . , qλntδn), with δ denoting the special
partition δ = (n − 1, n − 2, . . . , 1, 0). Two very important results that will be
frequently used are the specialization [20, Example VI.6.5]

u0(Pλ) = Pλ(tδ) = Pλ(1, t, . . . , tn−1) = tn(λ)
∏
s∈λ

1− qa′(s)tn−l′(s)

1− qa(s)tl(s)+1
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or, by (2.7a), (2.9) and (2.10a), [20, Example VI.6.5]

Pλ(tδ) =
(tn)λ
cλ

(2.14a)

= tn(λ)
∏

1≤i<j≤n

(tj−i+1; q)λi−λj
(tj−i; q)λi−λj

,(2.14b)

and the symmetry [20, Equation (VI.6.6)]

(2.15) uλ(Pµ)u0(Pλ) = uµ(Pλ)u0(Pµ).

Finally we follow Kaneko [16] and Macdonald [21] in defining multivariable basic
hypergeometric series and multivariable bilateral basic hypergeometric series with
Macdonald polynomial argument. Extending the condensed notation for q-shifted
factorials to the multivariable setting by

(a1, . . . , ar)λ = (a1, . . . , ar; q, t)λ =

r∏
j=1

(aj ; q, t)λ =

r∏
j=1

(aj)λ,

we define

(2.16) r+1Φr

[
a1, . . . , ar+1

b1, . . . , br
; q, t, x

]
=
∑
λ

(a1, . . . , ar+1)λ
(b1, . . . , br)λc′λ

Pλ(x).

Often we employ the one-line notation r+1Φr(a1, . . . , ar+1; b1, . . . , br; q, t, x) for the
above series. For n = 1 we have P(k)(x) = xk and c′(k) = (q; q)k so that the r+1Φr
series simplifies to the standard one-variable basic hypergeometric series r+1φr [8].

An important result needed a number of times is the following multivariable ver-
sion of the q-binomial theorem due to Kaneko [16, Theorem 3.5] and Macdonald [21,
Equation (2.2)]:

(2.17) 1Φ0(a; —; q, t, x) =

n∏
i=1

(axi; q)∞
(xi; q)∞

,

for |q| < 1 and max{|xi|}ni=1 < 1. In the Jack polynomial case this was also found
by Yan [26, Proposition 3.1] and in the Schur polynomial case (Jack with α = 1)
by Milne [22, Theorem 1.18]. When a = q−N with N a nonnegative integer the
series on the left of (2.17) terminates leading to

(2.18) 1Φ0(q−N ; —; q, t, x) =

n∏
i=1

(xiq
−N ; q)N .

We also need the generalization of r+1Φr to bilateral series. Let us denote the set
of weakly decreasing integer sequences of length n by P . The relation (1.8) (which
follows from (2.6) by the substitutions λ 7→ λ− (λn, . . . , λn), a 7→ λn) can be used
to define the Macdonald polynomial for all λ ∈ P . By extending the definition of
the q-shifted factorials to all integers n by

(2.19) (a; q)n =
(a; q)∞

(aqn; q)∞

we can also give meaning to (a)λ of (2.9) and c′λ of (2.10b) for λ ∈ P . Observe
that 1/(q; q)−n = 0 for n a positive integer and hence that 1/(qtn−1)λ = 0 if λ is
not a partition. However, (qtn−1)λ/c

′
λ is perfectly well-defined for all λ ∈ P . We
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now use the above definitions to define the bilateral multiple basic hypergeometric
series

(2.20) rΨr

[
a1, . . . , ar
b1, . . . , br

; q, t, x

]
=
∑
λ∈P

(qtn−1, a1, . . . , ar)λ
(b1, . . . , br)λc′λ

Pλ(x).

Again we also employ the one-line notation rΨr(a1, . . . , ar; b1, . . . , br; q, t, x). We
remark that we have chosen a slightly different (more symmetrical) form for rΨr

compared to earlier definitions of Milne for t = q [22] and of Kaneko [18] for general
t. In view of our earlier comments, the series (2.20) simplifies to the unilateral series
(2.16) with r 7→ r − 1 if br = qtn−1. For n = 1 the series (2.20) reduces to the
classical bilateral basic hypergeometric series rψr [8].

Kaneko [18, Equation (1.11)] proved the following multiple series analogue of
Ramanujan’s celebrated 1ψ1 summation formula:

(2.21) 1Ψ1(a; b; q, t, x) =

n∏
i=1

(qtn−i, bt1−i/a, axi, q/axi; q)∞
(bt1−i, qtn−i/a, xi, bt1−n/axi; q)∞

for |bt1−n/a| < |xi| < 1 for all i ∈ {1, . . . , n}. Kaneko’s proof utilizes the q-binomial
theorem (2.17) (obtained for b = qtn−1) and Ismail’s analytic argument. A different
proof based on a Gauss summation for Macdonald polynomials was subsequently
found by Baker and Forrester [6, Theorem 6.1]. We should also mention that the
Schur case of the theorem, corresponding to t = q, was first obtained by Milne
using a determinant evaluation [22, Theorem 1.14].

A last comment concerning the Macdonald polynomials Pλ for λ ∈ P is that the
relations (2.5), (2.6) and (2.15) still hold. In the case of (2.6) we may now in fact
assume that λn + a is any integer. In the case of (2.5),

Pλ(zx) = (znx1 . . . , xn)λnPλ−λn(zx)

= z|λ|(x1 . . . , xn)λnPλ−λn(x) = z|λ|Pλ(x)

by (1.8), then (2.5), and then (1.8). For (2.6) the above claim is evident as both
sides may be rewritten by (1.8) as (x1 . . . xn)λn+aPλ−λn(x). Finally, in the case of
(2.15),

uλ(Pµ)u0(Pλ) = qµn|λ|t(λn+µn)(
n
2)uλ(Pµ−µn)u0(Pλ−λn)

= qµn|λ|+λn|µ|−nλnµnt(λn+µn)(
n
2)uλ−λn(Pµ−µn)u0(Pλ−λn)

= qµn|λ|+λn|µ|−nλnµnt(λn+µn)(
n
2)uµ−µn(Pλ−λn)u0(Pµ−µn)

= · · · = uµ(Pλ)u0(Pµ).

by (1.8), then (2.5), then (2.15), et cetera.

3. Proofs

3.1. Proof of Theorem 1.1. We take the 1Ψ1 sum (2.21), replace x 7→ zx with z
a scalar and use (2.5). Then we apply the evaluation homomorphism uµ defined in
(2.13) and utilize the symmetry (2.15) to eliminate uµ(Pλ), with λ the summation
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index of the 1Ψ1 series. Hence∑
λ∈P

(qtn−1, a)λz
|λ|

(b)λc′λ

uλ(Pµ)u0(Pλ)

u0(Pµ)

=

n∏
i=1

(qtn−i, bt1−i/a, azqµitn−i, q1−µiti−n/az; q)∞
(bt1−i, qtn−i/a, zqµitn−i, bq−µiti−2n+1/az; q)∞

.

To transform this into Theorem 1.1 we need to specialize

t = qk, z = qα, a = −cq(n−1)k, b = −cqα+β+3(n−1)k.

Using (1.7) and (2.10b) in the form

(3.1) c′λ(q, qk) = q−kn(λ)(q1+(n−1)k; q, qk)λ
∏

1≤i<j≤n

(q1+(j−i−1)k; q)k
(q1+(j−i−1)k+λi−λj ; q)k

,

and noting that

(3.2) (a; q)k(aqk; q)n = (a; q)k+n,

yields

u0(Pλ)

c′λ(q, qk)
=

q2kn(λ)

(q1+(n−1)k; q, qk)λ
(3.3)

×
∏

1≤i<j≤n

1− q(j−i)k+λi−λj
1− q(j−i)k

(q1+(j−i−1)k+λi−λj ; q)2k−1
(q1+(j−i−1)k; q)2k−1

=
q2kn(λ)

(q1+(n−1)k; q, qk)λ

n∏
i=1

1− qik

1− qk
(q; q)k

(q; q)(i−1)k(q; q)ik

×
∏

1≤i<j≤n

(1− q(j−i)k+λi−λj )(q1+(j−i−1)k+λi−λj ; q)2k−1,

where here and in the following Pλ(x) = Pλ(x; q, qk). Employing the definitions
(1.2) and (1.3) of the q-gamma function and theta function, we thus obtain the
identity

(3.4)
∑
λ∈P

qα|λ|+2kn(λ)uλ(Pµ)

u0(Pµ)

n∏
i=1

(−cqα+β+(3n−i−2)k+λi ; q)∞
(−cq(n−i)k+λi ; q)∞

×
∏

1≤i<j≤n

(1− q(j−i)k+λi−λj )(q1+(j−i−1)k+λi−λj ; q)2k−1

=

n∏
i=1

1− qk

1− qik
Γq(α+ (n− i)k + µi)Γq(β + (i− 1)k − µi)Γq(ik + 1)

Γq(α+ β + (n+ i− 2)k)Γq(k + 1)

× ϑ(−cqα+(2n−i−1)k+µi ; q)

ϑ(−cq(n−i)k; q)
.

The next step of the proof relies on the following lemma. Let Sn be the symmetric
group, with elements w given by the permutations of (1, . . . , n). Sn acts on f(x) as
w(f(x)) = f(w(x)) = f(xw1

, . . . , xwn).

Lemma 3.1. For k a positive integer and w ∈ Sn let

(3.5a) hλ = hw(λ)
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and

(3.5b) hλ = 0 if |λi − λj | ∈ {0, . . . , k − 1}.
for all 1 ≤ i < j ≤ n. Then, formally,

(3.6)
∑
λ∈P

hλ+kδ =
(1− t)n

(t; t)n

∞∑
λ1,...,λn=−∞

hλ
∏

1≤i<j≤n

qλi − tqλj
qλi − qλj

.

Note that because of the symmetry (3.5a) not all of the inequalities in (3.5b) are
independent. For example, (3.5b) follows from the weaker hλ = 0 if λi − λi+1 ∈
{0, . . . , k − 1} for all i ∈ {1, . . . , n− 1}.

Before giving a proof, let us first show how Lemma 3.1 can be applied to trans-
form (3.4) into the statement of Theorem 1.1. To this end we identify hλ+kδ with the
summand on the left of (3.4). Hence, by |δ| =

(
n
2

)
, n(δ) =

(
n
3

)
and n(λ) =

∑
i<j λj ,

hλ = q−αk(
n
2)−2k

2(n3)+α|λ| Pµ(qλ)

Pµ(qkδ)

n∏
i=1

(−cqα+β+2(n−1)k+λi ; q)∞
(−cqλi ; q)∞

×
∏

1≤i<j≤n

q(2k−1)λj (qλj − qλi)(q1−k+λi−λj ; q)2k−1.

Now clearly the first line on the right is symmetric in λ. To see that also the second
line is symmetric note that by

(3.7) (a; q)n = (q1−n/a; q)n(−a)nq(
n
2)

both
∏
i<j(q

λj − qλi) and
∏
i<j q

(2k−1)λj (q1−k+λi−λj ; q)2k−1 are skew-symmetric

functions (of λ), making their product a symmetric function. Next observe that
thanks to the factor (q1−k+λi−λj ; q)2k−1 also the inequalities (3.5b) hold, putting us
in a position to apply Lemma 3.1. Choosing t = qk in the lemma, recalling definition
(1.4), and using the above-discussed fact that the second line in the expression for
hλ is symmetric in λ, so that we may interchange λi and λj , we obtain the second
integral evaluation of Theorem 1.1 with λ replaced by µ.

The conditions on α and β imposed by the theorem follow from the fact that,
taking into account all the variable changes, we have effectively applied (2.17) with
xi 7→ qα+(n−i)k+λi and b/a 7→ qα+β+2(n−1)k. Since 0 < q < 1 the inequality
|bt1−n/a| < |xi| < 1 (with t = qk) therefore translates into Re(α+ β) + (n− 1)k >
Re(α) + (n − i)k + λi > 0. Since λ is a partition this yields Re(α) > −λn and
Re(β) > λ1.

Proof of Lemma 3.1. We take the left-hand side of the identity of the lemma and
replace λ 7→ λ − kδ, i.e., λi 7→ λi − k(n − i). This leads to the sum

∑′
λ∈P hλ

where the prime denotes the added restriction λi − λi+1 ≥ k. Since hλ = 0 for
λi − λi+1 ∈ {0, . . . , k − 1} we may drop the prime to simply get

∑
λ∈P hλ. Now

by the symmetry (3.5a) and the fact that hλ = 0 for λi = λj we may further
replace this by (1/n!)

∑∞
λ1,...,λn=−∞ hλ. Next we need the summation identity [20,

Equation (III.1.4)]

(3.8)
∑
w∈Sn

w

( ∏
1≤i<j≤n

xi − txj
xi − xj

)
=

n∏
i=1

1− ti

1− t
.

(This follows by viewing the symmetric function on the left as the ratio of two
skew-symmetric polynomials—the denominator polynomial being the Vandermonde
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determinant. Since both polynomials are of degree n − 1 and vanish for xi = xj ,
the left must be independent of x and may be evaluated by taking x = tδ. For
this specialization the only non-vanishing contribution comes from the (unique)
permutation of maximum length, leading to the desired right-side.) Hence

∞∑
λ1,...,λn=−∞

hλ =
(1− t)n

(t; t)n

∞∑
λ1,...,λn=−∞

hλ
∑
w∈Sn

w

( ∏
1≤i<j≤n

qλi − tqλj
qλi − qλj

)

=
(1− t)n

(t; t)n

∞∑
λ1,...,λn=−∞

∑
w∈Sn

w

(
hλ

∏
1≤i<j≤n

qλi − tqλj
qλi − qλj

)

= n!
(1− t)n

(t; t)n

∞∑
λ1,...,λn=−∞

hλ
∏

1≤i<j≤n

qλi − tqλj
qλi − qλj

. �

3.2. Proof of Theorem 1.4. Let the structure constants fνλµ = fνλµ(q, t) be given

by [20, Equation (VI.7.1′)]

(3.9) Pλ(x)Pµ(x) =
∑
ν

fνλµPν(x).

Substituting this in the left-hand side of (1.9) and performing the resulting integral
by the β = k case of Corollary 1.3 we get

(3.10) LHS(1.9) = qαk(
n
2)+2k2(n3)(1− q)kn

2
n∏
i=1

Γq(ik)Γq(ik + 1)

Γq(k + 1)

×
∑
ν

fνλµ(q, qk)Pν(qkδ; q, qk)

n∏
i=1

1

(qα+(n−i)k+νi ; q)nk
,

where we have used

(3.11)
Γq(a+ n)

Γq(a)
=

(qa; q)n
(1− q)n

.

To perform the sum over ν we need the following proposition.

Proposition 3.1. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be partitions. Then∑
ν

fνλµPν(tδ)
(zt−n)ν

(z)ν
= Pλ(tδ)Pµ(tδ)

n∏
i,j=1

(zt1−i−j ; q)λi+µj
(zt2−i−j ; q)λi+µj

.

Note that for given λ and µ this result is a rational function identity. Indeed, by
the homogeneity of the Macdonald polynomials, fνλµ = 0 if |ν| 6= |λ| + |µ|, so that
only a finite number of terms contribute to the sum on the left. In view of this it
clearly suffices to prove the proposition for |z| < min{|tn+i−1|}ni=1 (i.e., |z| < |t|n if
|t| ≥ 1 and |z| < |t|2n−1 if |t| ≤ 1). This restriction on z in the proof given below
arises from the use of the q-binomial theorem (2.17).

Proof of Proposition 3.1. By (2.19) we first rewrite the above identity as
(3.12)∑

ν

fνλµPν(tδ)

n∏
i=1

(zt1−iqνi ; q)∞
(zt1−n−iqνi ; q)∞

= Pλ(tδ)Pµ(tδ)

n∏
i,j=1

(zt2−i−jqλi+µj ; q)∞
(zt1−i−jqλi+µj ; q)∞

.
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For the sake of compactness of subsequent equations we set z = yt2n−1 and then
use the 1Φ0 sum (2.17) to expand the product over i in the summand on the left.
Hence

LHS(3.12) =
∑
ν,η

fνλµ
(tn)ηy

|η|

c′η
uν(Pη)u0(Pν),

where we have used (2.5) and Pν(tδ) = u0(Pν). By the symmetry (2.15) this yields

LHS(3.12) =
∑
ν,η

fνλµ
(tn)ηy

|η|

c′η
uη(Pν)u0(Pη).

The sum over ν can now be carried out by (3.9), leading to

LHS(3.12) =
∑
η

(tn)ηy
|η|

c′η
uη(Pλ)uη(Pµ)u0(Pη).

By two more applications of (2.15) this gives

LHS(3.12) = u0(Pλ)u0(Pµ)
∑
η

(tn)ηy
|η|

c′η

uλ(Pη)uµ(Pη)

u0(Pη)
.

From (2.8) and (2.14a) it thus follows that

LHS(3.12) = u0(Pλ)u0(Pµ)
∑
η

bηy
|η|uλ(Pη)uµ(Pη).

This nearly completes the proof. All that is needed now is the homogeneity of the
Macdonald polynomials and the Cauchy identity (2.11). By virtue of these,

LHS(3.12) = u0(Pλ)u0(Pµ)

n∏
i,j=1

(yt2n+1−i−jqλi+µj ; q)∞
(yt2n−i−jqλi+µj ; q)∞

.

Recalling that z = yq2n−1 this is in accordance with the right-hand side of (3.12).
�

We remark here that a dual version of Proposition 3.1 without the free parameter
z is given by Proposition 3.2 of Section 3.6.

We now return to the proof of Theorem 1.4. Replacing z 7→ qαt2n−1 and then
choosing t = qk, the identity of Proposition 3.1 can be written as∑

ν

fνλµ(q, qk)Pν(qkδ; q, qk)

n∏
i=1

1

(qα+(n−i)k+νi ; q)nk

= Pλ(qkδ; q, qk)Pµ(qkδ; q, qk)

n∏
i,j=1

1

(qα+(2n−i−j)k+λi+µj ; q)k
.

Using this to perform the sum over ν in (3.10) results in the right-hand side of
(1.9).

In the above we have not yet addressed to condition Re(α) > −λn−µn imposed
on the theorem. To see how this arises note that we first applied Corollary 1.3
with β = k and λ 7→ ν. This step is justified if Re(α) > −νn. The next step was
to perform the sum over ν in (3.10). According to [20, Equation (7.4)] fνλµ = 0
unless ν ⊃ λ and ν ⊃ µ. Hence we may without loss of generality assume that
νn ≥ µn. Recalling the notation (2.1), let µ̃ and ν̃ be the partitions µ̃ = µ − µn
and ν̃ = ν − µn. From (3.9) and (1.8) we have PλPµ̃ =

∑
ν f

ν
λµPν̃ . Since also
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PλPµ̃ =
∑
ν̃ f

ν̃
λµ̃Pν̃ we conclude that fνλµ = f ν̃λµ̃. But f ν̃λµ̃ = 0 if ν̃ 6⊃ λ. Hence

fνλµ = 0 if νn < λn + µn. This last result implies that by summing over ν in (3.10)

the condition Re(α) > −νn on the summand translates into Re(α) > −λn − µn.

3.3. Proof of Corollary 1.6. To obtain this from Theorem 1.4 is rather straight-
forward. Multiplying boths sides of (1.9) by (−1)|µ|Pµ′(y; qk, q) and summing over
µ such that µ1 = `(µ′) ≤ m we find by the use of the Cauchy identity (2.12) that

LHS(1.10) = qαk(
n
2)+2k2(n3)(1− q)kn

2

Pλ(qkδ; q, qk)

n∏
i=1

Γq(ik)Γq(ik + 1)

Γq(k + 1)

×
∑
µ

µ1≤m

(−1)|µ|Pµ′(y; qk, q)Pµ(qkδ; q, qk)

n∏
i,j=1

1

(qα+(2n−i−j)k+λi+µj ; q)k
.

Next we eliminate Pµ(qkδ; q, qk) by (2.14a), use

n∏
i,j=1

1

(qα+(2n−i−j)k+λi+µj ; q)k

=
1

(1− q)kn2

n∏
i=1

Γq(α+ (n− i)k + λi)

Γq(α+ (2n− i)k + λi)

(qα+(2n−i−1)k+λi ; q, qk)µ
(qα+(2n−i)k+λi ; q, qk)µ

as follows from

(3.13) (aqn; q)k =
(a; q)k(aqk; q)n

(a; q)n
,

(2.9) and (3.11), and replace the summation index µ by µ′. As a result

LHS(1.10)

= qαk(
n
2)+2k2(n3)Pλ(qkδ; q, qk)

n∏
i=1

Γq(α+ (n− i)k + λi)Γq(ik)Γq(ik + 1)

Γq(α+ (2n− i)k + λi)Γq(k + 1)

×
∑
µ

µ1≤n

(−1)|µ|
(qnk; q, qk)µ′Pµ(y; qk, q)

cµ′(q, qk)

n∏
i=1

(qα+(2n−i−1)k+λi ; q, qk)µ′

(qα+(2n−i)k+λi ; q, qk)µ′
,

with µ = (µ1, . . . , µm). Comparing this with the right-hand side of (1.10) it remains
to show that the last line can be written as the n+1Φn series claimed in the corollary.
For this we need

(a; q, t)λ′ = (−1)|λ|(a−1; t, q)λ and cλ′(q, t) = c′λ(t, q),

both of which follow immediately from the definitions of the respective functions in
terms of the arm-(co)length and leg-(co)length and the fact that under transposition
arms become legs and and legs become arms. The sum over µ may thus be written
as ∑

µ
µ1≤n

(q−nk; qk, q)µPµ(y; qk, q)

c′µ(qk, q)

n∏
i=1

(q−α−(2n−i−1)k−λi ; qk, q)µ
(q−α−(2n−i)k−λi ; qk, q)µ

.

By definition (2.16) this is seen to be in accordance with the n+1Φn series on the
right of (1.10).
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3.4. Proof of Theorem 1.7. The proof presented below is a streamlined q-version
of the proof of Corollary 1.8 given by Kadell [13].

First we show that it suffices to proof the theorem for a = 0, or, equivalently,
for a = k − 1. To this end we assume a > 0 and replace µ 7→ µ+ a. Next we twice
apply (2.6) (with λ 7→ µ) and use both (3.2) and (3.7) to write

(xi; q)a(q/xi; q)k−a−1 = (−xi)aq(
a
2)(q1−a/xi; q)k−1.

Comparing the resulting constant term identity with Theorem 1.7 for a = 0, we
conclude that the a > 0 cases follow from the a = 0 case if

C.T.

[
Pλ(x; q, qk)Pµ(x−1; q, qk)

n∏
i=1

(q1−a
xi

; q
)
k−1

∏
1≤i<j≤n

(xi
xj
,
qxj
xi

; q
)
k

]

= gaλ,µ(q) C.T.

[
Pλ(x; q, qk)Pµ(x−1; q, qk)

n∏
i=1

( q
xi

; q
)
k−1

∏
1≤i<j≤n

(xi
xj
,
qxj
xi

; q
)
k

]
.

with gaλ,µ(q) = qa(|µ|−|λ|). This is readily established by the substitution xi 7→ xiq
−a

on the left. Although this changes the expression within the square brackets, it does
not alter the constant term. The homogeneity (2.5) of the Macdonald polynomials
now does the rest.

Below we present a proof for a = k− 1. By the comment following Theorem 1.7
this is equivalent to proving the case a = 0.

Let us denote the a = k−1 instance of the expression within the square brackets
in Theorem 1.7 by Skλ,µ(q). For N a fixed integer such that µ1 ≤ N denote µ̂ the

complement of µ with respect to (Nn), i.e., µ̂i = N − µn−i+1 for i ∈ {1, . . . , n}.
Then, by

(3.14) Pµ(x; q, t) = (x1 · · ·xn)NPµ̂(x−1; q, t)

(see e.g., [6]), (3.7) and (3.2),

Skλ,µ(q) = (−1)k(
n
2)q(

n
2)(

k
2)Pλ(x; q, qk)Pµ̂(x; q, qk)

×
n∏
i=1

x
−(n−1)k−N
i (xi; q)k−1

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k
.

Since we need the constant term of Skλ,µ(q) we may replace x 7→ qx and use the

homogeneity of the Macdonald polynomials and nN − |µ̂| = |µ| to get

(3.15) C.T.
[
Skλ,µ(q)

]
= (−1)k(

n
2)q(

n
2)(

k
2)+|λ|−|µ|C.T.

[
Pλ(x; q, qk)Pµ̂(x; q, qk)

×
n∏
i=1

x
−(n−1)k−N
i (xiq; q)k−1

∏
1≤i<j≤n

x2ki

(xjq1−k
xi

; q
)
2k

]
.

Our next step is to use the well-known and easy to prove fact (see e.g., [3, 9, 17])
that if f(x) is a Laurent polynomial in x, then

C.T.[f(x)] = lim
ε→0

(1− qε

1− q

)n ∫
[0,1]n

( n∏
i=1

xε−1i

)
f(x)dqx.
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According to the above we may compute the right-hand side of (3.15) by the α 7→
ε −N − (n − 1)k and µ 7→ µ̂ instance of Theorem 1.4 (where the integral in (1.9)
is analytically continued using its evaluation). Replacing qε by ω this yields

C.T.
[
Skλ,µ(q)

]
= (−1)k(

n
2)q(

n
2)(

k
2)−k

2(n+1
3 )+|λ|−|µ|−Nk(n2)

× Pλ(qkδ; q, qk)Pµ̂(qkδ; q, qk)

n∏
i=1

(q; q)ik−1(q; q)ik
(q; q)k

× lim
ω→1

(1− ω)n
n∏

i,j=1

1

(ωq(n−i−j+1)k−N+λi+µ̂j ; q)k
,

where we have also used (1.2) to eliminate some q-gamma functions. We now
eliminate µ̂ in favour of µ. To achieve this we replace j 7→ n+ 1− j in the double
product on the right and use (2.14b) to obtain

Pµ̂(qδ) = tN(n2)−(n−1)|µ|Pµ(qδ).

Hence

(3.16) C.T.
[
Skλ,µ(q)

]
= (−1)k(

n
2)q(

n
2)(

k
2)−k

2(n+1
3 )+|λ|−|µ|−k(n−1)|µ|

× Pλ(qkδ; q, qk)Pµ(qkδ; q, qk)

n∏
i=1

(q; q)ik−1(q; q)ik
(q; q)k

× lim
ω→1

(1− ω)n
n∏

i,j=1

1

(ωq(j−i)k+λi−µj ; q)k
.

It remains to deal with the limit of the double product. For fixed i consider

(3.17)

n∏
j=1

1

(ωq(j−i)k+λi−µj ; q)k
.

It has a pole at ω = 1 if there is a j ∈ {1, . . . , n} such that (j − i)k + λi − µj ∈
{1− k, . . . , 0}. Clearly, there can at most be one such j, since

((j + 1− i)k + λi − µj+1)− ((j − i)k + λi − µj) = k + µj − µj+1 ≥ k.

Hence (3.17) has at most one simple pole at ω = 1. Since (1 − ω)n has a zero of
order n at ω = 1 it follows that the C.T.

[
Skλ,µ(q)

]
= 0 unless for each i ∈ {1, . . . , n}

the product (3.17) has a pole. Hence for the constant term to be non-zero there
must for each i be a (unique) j, say ji, such that

(3.18) (ji − i)k + λi − µji ∈ {1− k, . . . , 0}.

Therefore

((ji − i)k + λi − µji)− ((ji+1 − i− 1)k + λi+1 − µji+1
) ∈ {1− k, . . . , k − 1}.

Since λi − λi+1 ≥ 0 this implies that (ji − ji+1)k + µji+1
− µji < 0. If ji ≥ ji+1

then µji+1
− µji ≥ 0 so that (ji − ji+1)k + µji+1

− µji ≥ 0. Since this would lead
to a contradiction, we infer that ji < ji+1 for all i, which implies that ji = i.
Substituting this back into (3.18) we conclude that C.T.

[
Skλ,µ(q)

]
= 0 unless

(3.19) µi − λi ∈ {0, . . . , k − 1} for all i ∈ {1, . . . , n}.

This is in accordance with the comments made following Theorem 1.7.
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In the remainder we assume (3.19) to hold. Then

lim
ω→1

(1− ω)n
n∏

i,j=1

1

(ωq(j−i)k+λi−µj ; q)k

=

n∏
i,j=1
i 6=j

1

(q(j−i)k+λi−µj ; q)k
lim
ω→1

n∏
i=1

1− ω
(ωqλi−µi ; q)k

=
(−1)|λ|+|µ|

(q; q)nk−1

n∏
i=1

q(
λi−µi

2 )
[
k − 1

µi − λi

]
q

n∏
i,j=1
i6=j

1

(q(j−i)k+λi−µj ; q)k

= (−1)|λ|+|µ|+k(
n
2)qk

2(n+1
3 )−(n2)(

k
2)−k{n(λ)+n(µ)−(n−1)|µ|}

× 1

(q; q)nk−1

n∏
i=1

q(
λi−µi

2 )
[
k − 1

µi − λi

]
q

×
∏

1≤i<j≤n

1

(q(j−i)k+λi−µj ; q)k(q1−k+(j−i)k+µi−λj ; q)k
.

where we have used the easily proved

lim
ω→1

1− ω
(ωq−a; q)k

=
(−1)aq(

a+1
2 )

(q; q)k−1

[
k − 1

a

]
q

and (3.7). Substituting the above in (3.16) and using (1.7) to eliminate the spe-
cialized Macdonald polynomials completes the proof of the a = k − 1 instance of
Theorem 1.7.

3.5. Proof of Corollary 1.9. We first invoke the following simple lemma, which
is essentially the content of parts (a)–(c) of [20, Example VI.9.1], to show that
Theorem 1.7 is equivalent to (1.13).

Lemma 3.2. Let f(x) be a symmetric Laurent polynomial. Then

C.T.

[
f(x)

∏
1≤i<j≤n

(xi
xj
,
xj
xi

; q
)
k

]
= n!

(1− qk)n

(qk; qk)n
C.T.

[
f(x)

∏
1≤i<j≤n

(xi
xj
,
qxj
xi

; q
)
k

]
.

Since Pλ(x)Pµ(x−1)ha,k(x) with ha,k given by (1.14) is a symmetric Laurent
polynomial this clearly establishes the equivalence of Theorem 1.7 and the scalar
product evaluation of (1.13).

Proof of Lemma 3.2. Suppressing their k-dependence, let us denote the expressions
within the square brackets on the left and right by L(x) and R(x), respectively.
Clearly, L(x) = w(L(x)), C.T.[R(x)] = C.T.[w(R(x))] and

R(x) = L(x)
∏

1≤i<j≤n

xi − qkxj
xi − xj

.
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Combining these facts gives

C.T.[R(x)] =
1

n!

∑
w∈Sn

C.T.[w(R(x))]

=
1

n!
C.T.

[
L(x)

∑
w∈Sn

w

( ∏
1≤i<j≤n

xi − qkxj
xi − xj

)]

=
1

n!

(qk; qk)n
(1− qk)n

C.T.[L(x)],

where in the final step we have used (3.8). �

Next we show that (1.13) implies (1.15). Since Pλ(x)Pµ(x−1) is homogeneous of
degree |λ|−|µ|,

∏
i<j(xi/xj , xj/xi; q)k is homogeneous of degree zero and hk−1,k(x)

is a polynomial with constant term 1, it follows that

〈Pλ, Pµ〉′ = 〈Pλ, Pµ〉′δ|λ|,|µ| = 〈Pλhk−1,k, Pµ〉′δ|λ|,|µ|

From (1.13) we know that 〈Pλhk−1,k, Pµ〉′ = 0 unless µi−λi ∈ {0, . . . , k−1} for all
i ∈ {1, . . . , n}. Combined with the fact that |λ| = |µ| this yields that λ = µ. Hence

〈Pλ, Pµ〉′ = 〈Pλhk−1,k, Pµ〉′δλµ.

Using (1.13) with λ = µ and a = k − 1 to evaluate the scalar product on the right
leads to (1.15).

Having shown that Theorem 1.7 implies (1.13) and (1.15) has prepared us to
show that the same theorem also implies Corollary 1.9.

Since the right-hand side of (1.16) is a symmetric polynomial in x it may be
expanded in terms of the Macdonald polynomials as in the left-hand side. The
exercise is thus to determine the coefficients ckλµ(q). Using (1.12) we obtain from

(1.16) the identity ∑
λ

ckλµ(q)〈Pλ, Pν〉′ = 〈Pµhk−1,k, Pν〉′.

By the orthogonality (1.15) this yields

ckλµ(q) =
〈Pµhk−1,k, Pλ〉′

〈Pλ, Pλ〉′
,

where we have replaced ν by λ. Thanks to (1.13) and (1.15), both scalar products
can be explicitly computed resulting in the expression for ckλµ(q) as claimed in

(1.17).
Somewhat more general but easily derivable from Corollary 1.9 is the following

q-binomial theorem.

Corollary 3.3. Let µ = (µ1, . . . , µn) be a partition and a and k integers such that
a ∈ {0, . . . , k − 1}. Then

∑
λ∈P

ca,kλµ (q)Pλ(x; q, qk) = Pµ(x; q, qk)

n∏
i=1

(xi; q)a

( q
xi

; q
)
k−a−1

,
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where

ca,kλµ (q) = (−1)|λ|+|µ|
n∏
i=1

q(
λi−µi

2 )
[

k − 1

a+ µi − λi

]
q

×
∏

1≤i<j≤n

(q(j−i)k+µi−µj ; q)k(q1−k+(j−i)k+λi−λj ; q)k
(q1+a−k+(j−i)k+µi−λj ; q)k(q−a+(j−i)k+λi−µj ; q)k

.

Here we again adopt the convention of Theorem 1.7 that ca,kλµ (q) = 0 unless

a+ µi − λi ∈ {0, . . . , k − 1} for all i ∈ {1, . . . , n}.

Proof. Replace λ 7→ λ− (k− a− 1) and x 7→ qk−a−1x. Using (2.5), (2.6) and (3.7)
it then follows that we reduce to the case a = k − 1. �

3.6. Proof of Theorem 1.10. Key in our proof is the following sum over the
structure constants of Macdonald polynomials.

Proposition 3.2. If λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) are partitions then

(3.20)
∑
ν

fλµν
(q/t)ν
c′ν

= t(1−n)|µ|Pµ(tδ)
(qtn−1)λ

c′λ

n∏
i,j=1

(qtj−i−1; q)λi−µj
(qtj−i; q)λi−µj

.

Below we present two proofs of this result. The first and longer proof explains
the origin of the above identity. The second and shorter proof uses Corollary 1.9
but obscures what is really going on. First, however, we show how (3.20) leads
to Theorem 1.10. Multiplying both sides of (3.20) by Pλ(x) and summing over λ
yields∑

λ

(qtn−1)λPλ(x)

c′λ

n∏
i,j=1

(qtj−i−1; q)λi−µj
(qtj−i; q)λi−µj

= t(n−1)|µ|
Pµ(x)

Pµ(tδ)
1Φ0(q/t; —; q, t, x),

where we have used (3.9) and definition (2.16). Summing the 1Φ0 series by the
q-binomial theorem (2.17) completes the proof.

First proof of Proposition 3.2. The proof hinges on the simple identity

(3.21) fνλµ = f λ̂µν̂
〈Pλ, Pλ〉′

〈Pν , Pν〉′
,

where, as before, the partitions λ̂ and ν̂ are the complements of λ and ν with respect
to (Nn), with ν1 and λ1 not exceeding N . The identity (3.21) may seem to lack
the necessary symmetry, but we note (see also the proof below) that 〈Pλ, Pλ〉′ =
〈Pλ̂, Pλ̂〉

′.
The following proof of (3.21) is correct for all t provided we take the more general

definition of the scalar product (1.12) in terms of an n-dimensional integral as given
in [20, Equation (VI.9.10)]. However, since (3.21) is a rational function identity it
certainly suffices to establish its truth for just t = qk. We leave it to the reader to
either take t = qk in all of the remainder or to assume the generalized definition of
the scalar product 〈·, ·〉′.

From the orthogonality of the Macdonald polynomials with respect to the scalar
product 〈·, ·〉′ it follows that

fνλµ =
〈PλPµ, Pν〉′

〈Pν , Pν〉′
.
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Let f̄(x) = f(x−11 , . . . , x−1n ) and en(x) = x1 . . . xn. Then, by 〈·f, ·〉′ = 〈·, ·f̄〉′,
enēn = 1 and (3.14),

f λ̂µν̂ =
〈PµPν̂ , Pλ̂〉

′

〈Pλ̂, Pλ̂〉′
=
〈eNn PµP̄ν , eNn P̄λ〉′

〈eNn P̄λ, eNn P̄λ〉′
=
〈PλPµ, Pν〉′

〈Pλ, Pλ〉′
= fνλµ

〈Pν , Pν〉′

〈Pλ, Pλ〉′
.

We now take z = tnq−N in the identity of Proposition 3.1 and make the substitution
(3.21). Also using [20, Equation (VI.9.6)]

〈Pλ, Pλ〉′

〈Pν , Pν〉′
=

(qtn−1)ν
(qtn−1)λ

c′λ
c′ν

Pλ(tδ)

Pν(tδ)

then gives

∑
ν

f λ̂µν̂
(qtn−1, q−N )ν
(q−N tn)νc′ν

= Pµ(tδ)
(qtn−1)λ

c′λ

n∏
i,j=1

(q−N tn−i−j+1; q)λi+µj
(q−N tn−i−j+2; q)λi+µj

.

Next we replace the summation index ν by ν̂ and eliminate ν̂ and λ in favour of ν

and λ̂ using [6, Equation (4.1)]

(a)λ̂ = (−q/a)|λ|tn(λ)qn(λ
′)−N |λ| (a)(Nn)

(q1−N tn−1/a)λ

and [6, Equation (4.5)]

c′
λ̂

= (−1)|λ|tn(λ)−N(n2)qn(λ
′)−N |λ| (qtn−1)(Nn)

(qtn−1, q−N )λ
c′λ.

Therefore

∑
ν̂

f λ̂µν
(q/t)ν
c′ν

= t(1−n)|µ|Pµ(tδ)
(qtn−1)λ̂

c′
λ̂

n∏
i,j=1

(qtj−i−1; q)λ̂i−µj
(qtj−i; q)λ̂i−µj

,

where we have also used that f λ̂µν = 0 unless |µ|+ |ν| = |λ̂| and

(a; q)n−k
(b; q)n−k

=
(a; q)n
(b; q)n

(q1−n/b; q)k
(q1−n/b; q)k

( b
a

)k
.

Next note that summing over the partition ν̂ is equivalent to summing over ν.

Indeed, (Nn) ⊃ ν̂ implies that also (Nn) ⊃ ν. But since f λ̂µν = 0 if ν1 > λ̂1 = N−λ1
we may simply sum over all partitions ν = (ν1, . . . , νn). Finally renaming λ̂ as λ
completes the proof. �

Second proof of Proposition 3.2. Since fλµν = 0 unless |λ| = |µ| + |µ|, only a finite
number of terms contribute to the sum on the left. Hence for fixed λ and µ equation
(3.20) is a rational function identity. It thus suffices to give a proof for sufficiently
many values of t, and in the following we will show that (3.20) is true for t = qk

with k a positive integer.



24 S. OLE WARNAAR

We take (1.16), replace x by q1−kx and then expand the product on the right
using (2.18). Hence

RHS(1.16)|x 7→xq1−k = Pµ(xq1−k; q, qk) 1Φ0(q1−k; —; q, qk, x)

= q(1−k)|µ|Pµ(x; q, qk)
∑
ν

(q1−k; q, qk)ν
c′ν(q, qk)

Pν(x; q, qk)

= q(1−k)|µ|
∑
λ,ν

fλµν(q, qk)
(q1−k; q, qk)ν
c′ν(q, qk)

Pλ(x; q, qk).

Equating coefficients of Pλ(x; q, qk) with the left-hand side of (1.16) (with x 7→
xq1−k) yields

∑
ν

fλµν(q, qk)
(q1−k; q, qk)ν
c′ν(q, qk)

= q(k−1)(|µ|−|λ|)ckλµ(q).

By (1.7), (3.1), (3.7) and (3.13) this is in accordance with equation (3.20) for
t = qk. �

4. Back to Askey

It seems appropriate to end this paper with another one of Askey’s conjec-
tures. By examining a special limit of the Askey–Habsieger–Kadell integral (Con-
jecture 1.3 with λ = 0) Askey was led to conjecture the sum [3, Conjecture 7]

(4.1)

N∑
λ1,...,λn=0

n∏
i=1

(
λi + a− 1

λi

)(
N − λi + b− 1

N − λi

) ∏
1≤i<j≤n

(1− k + λj − λi)2k

=

n∏
i=1

(a)(i−1)k(b)(i−1)k(a+ b)N+(i−1)k(ik)!

(a+ b)(n+i−2)k(N − (i− 1)k)!k!
.

This is contained in Askey’s last q-integral [3, Conjecture 8] proved by Evans [7],
Kadell [15] and Tarasov and Varchenko [25, Theorem E.8]. Although we are at
present unable to use the Macdonald machinery to deal with Askey’s last conjecture,
we will show that the multivariable basic hypergeometric series studied in this paper
can certainly deal with (4.1).

Let us begin by introducing the series

r+1Φ̃r

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
=

∞∑
λ1,...,λn=0

n∏
i=1

(a1, . . . , ar+1; q)λiz
λi

(q, b1, . . . , br; q)λi

∏
1≤i<j≤n

q2kλi(q1−k+λj−λi ; q)2k

for k a nonnegative integer and n a positive integer. When k = 0 this of course
trivializes to the n-th power of an ordinary r+1φr series. We now claim the following
n-dimensional version of the q-Pfaff–Saalschütz summation.
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Theorem 4.1. For N a nonnegative integer there holds

3Φ̃2

[
a, b, q−N

c, abq1−N+2(n−1)k/c
; q, q

]
= q2k

2(n3)+k(
n
2)

n∏
i=1

(
(q; q)ik
(q; q)k

(a, b, q−N ; q)(n−i)k

(c, abq1−N+2(n−1)k/c; q)(n−i)k

×
(cq(1−i)k/a, cq(1−i)k/b; q)N−(n−1)k

(cq(n−i)k, cq(2−n−i)k/ab; q)N−(n−1)k

)
.

Note that for N < (n − 1)k the right-hand side vanishes as it should. Indeed,
because the summand on the left is zero for |λi−λj | ∈ {0, . . . , k} or max{λi}ni=1 >
N , there are no non-zero contributions to the sum when N < (n− 1)k.

To see how the theorem relates to (4.1) we let b tend to zero and then replace
a 7→ qa and c 7→ q1−N−b. By the usual manipulations involving q-shifted factorials,
this leads to

(4.2)
N∑

λ1,...,λn=0

n∏
i=1

qbλi
[
λi + a− 1

λi

]
q

[
N − λi + b− 1

N − λi

]
q

∏
1≤i<j≤n

q2kλi(q1−k+λj−λi ; q)2k

= q2k
2(n3)+bk(

n
2)

n∏
i=1

(qa, qb; q)(i−1)k(qa+b; q)N+(i−1)k(q; q)ik

(qa+b; q)(n+i−2)k(q; q)N−(i−1)k(q; q)k
,

which is the obvious q-analogue of (4.1). For k = 1 (4.2) is equivalent to [19,
Theorem 6] of Krattenthaler.

Proof of Theorem 4.1. The theorem is really nothing but a rewriting of the Pfaff–
Saalschütz sum for Macdonald polynomials due to Baker and Forrester [6, Equation
4.7]

3Φ2

[
a, b, q−N

c, abtn−1q1−N/c
; q, t, qtδ

]
=

(c/a, b/a)(Nn)

(c, c/ab)(Nn)
.

Taking t = qk and using (3.3) this can be written as

∑
λ

(a, b, q−N ; q, qk)λq
2kn(λ)+|λ|

(q1+(n−1)k, c, abq1−N+(n−1)k/c; q, qk)λ

×
∏

1≤i<j≤n

(1− q(j−i)k+λi−λj )(q1+(j−i−1)k+λi−λj ; q)2k−1

=
(c/a, b/a; q, qk)(Nn)

(c, b/ab; q, qk)(Nn)

n∏
i=1

1− qk

1− qik
(q; q)(i−1)k(q; q)ik

(q; q)k
.

Multiplying both sides by

(4.3)

n∏
i=1

(aq(1−n)k, bq(1−n)k, q−N+(1−n)k; q)(n−i)k

(q, cq(1−n)k, abq1−N/c; q)(n−i)k
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and using (2.9) and (3.2), this becomes∑
λ

n∏
i=1

(aq(1−n)k, bq(1−n)k, q−N+(1−n)k; q)λi+(n−i)k q
λi

(q, cq(1−n)k, abq1−N/c; q)λi+(n−i)k

×
∏

1≤i<j≤n

q2kλj (1− q(j−i)k+λi−λj )(q1+(j−i−1)k+λi−λj ; q)2k−1

=
(c/a, b/a; q, qk)(Nn)

(c, c/ab; q, qk)(Nn)

×
n∏
i=1

1− qk

1− qik
(q; q)ik
(q; q)k

(aq(1−n)k, bq(1−n)k, q−N+(1−n)k; q)(n−i)k

(cq(1−n)k, abq1−N/c; q)(n−i)k
.

Because (4.3) is zero for N ∈ {−(n − 1)k, . . . ,−1} the above sum is true for all
integers N such that N+(n−1)k ≥ 0. Next we replace a 7→ aq(n−1)k, b 7→ bq(n−1)k,
c 7→ cq(n−1)k and N 7→ N − (n− 1)k. This yields

(4.4)
∑
λ

n∏
i=1

(a, b, q−N ; q)λi+(n−i)k q
λi

(q, c, abq1−N+2(n−1)k/c; q)λi+(n−i)k

×
∏

1≤i<j≤n

q2kλi(1− q(j−i)k+λi−λj )(q1+(j−i−1)k+λi−λj ; q)2k−1

=

n∏
i=1

(
1− qk

1− qik
(q; q)ik
(q; q)k

(a, b, q−N ; q)(n−i)k

(c, abq1−N+2(n−1)k/c; q)(n−i)k

×
(cq(1−i)k/a, bq(1−i)k/a; q)N−(n−1)k

(cq(n−i)k, cq(2−n−i)k/ab; q)N−(n−1)k

)
,

where N should now be a nonnegative integer. Defining

hλ = q−2k
2(n3)−k(

n
2)

n∏
i=1

(a, b, q−N ; q)λiq
λi

(q, c, abq1−N+2(n−1)k/c; q)λi

×
∏

1≤i<j≤n

q2kλi(1− qλi−λj )(q1−k+λi−λj ; q)2k−1

the left-hand side of (4.4) is nothing but
∑
λ hλ+kδ. Since hλ satisfies (3.5a) and

(3.5b) we may utilize the unilateral version of Lemma 3.1 obtained by replacing the
sum on the left of (3.6) by

∑
λ and the sum on the right of (3.6) by

∑∞
λ1,...,λn=0.

Provided we take t = qk in the unilateral form of (3.6) and use the symmetry of
hλ, we obtain Theorem 4.1. �
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