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Abstract. A generalization of the q-(Pfaff)–Saalschütz summa-
tion formula is proved. This implies a generalization of the Burge
transform, resulting in an additional dimension of the “Burge tree”.
Limiting cases of our summation formula imply the (higher-level)
Bailey lemma, provide a new decomposition of the q-multinomial
coefficients, and can be used to prove the Lepowsky and Primc
formula for the A(1)

1 string functions.

1. Introduction

One of the most important summation formulas for basic hypergeo-
metric functions is Jackson’s q-analogue of a 3F2 summation formula of
Pfaff and Saalschütz. Employing standard notation (see e.g., Gasper
and Rahman [13]) this q-(Pfaff)–Saalschütz sum is written as
(1.1)

3φ2

[ a, b, q−n

c, abq1−n/c
; q, q

]
:=

n∑
k=0

(a)k(b)k(q
−n)k qk

(q)k(c)k(abq1−n/c)k

=
(c/a)n(c/b)n

(c)n(c/ab)n

for n ∈ Z+. Here (a)n is the q-shifted factorial, defined for all integers
n by

(a; q)∞ = (a)∞ =
∞∏

k=0

(1− aqk) and (a; q)n = (a)n =
(a)∞

(aqn)∞
.

Defining the q-binomial coefficient as

(1.2)

[
m + n

m

]
=


(q)m+n

(q)m(q)n

for m, n ≥ 0

0 otherwise,
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the q-Saalschütz sum is often written as the following summation for-
mula [17, 9, 1]
(1.3)

M∑
i=0

qi(i+`)

[
L1 + L2 + M − i

M − i

][
L1

i + `

][
L2

i

]
=

[
L1 + M

M + `

][
L2 + M + `

M

]
,

valid for all L1, L2, M, ` ∈ Z except when −L1 ≤ −` ≤ L2 < 0 ≤ M or
−L2 ≤ ` ≤ L1 < 0 ≤ M + `. (In these cases the left-hand side is zero
whereas the right-hand side is not.)

In this paper we generalize the representation (1.3) of the q-Saal-
schütz sum to a summation formula which transforms an N -fold sum
over a product of N + 2 q-binomials to an (N − 1)-fold sum over a
product of N + 1 q-binomials as stated in Theorem 2.1 of the next
section. This generalized q-Saalschütz sum contains many important
special cases and can be applied in connection with the Burge trans-

form, the Bailey lemma, q-multinomial coefficients and level-N A
(1)
1

string functions as summarized below.

(1) In Ref. [7] Burge used equation (1.3) to establish a transfor-
mation on generating functions of (restricted) partition pairs.
This “Burge transform”, which generalizes a special case of the
Bailey lemma, can be used to derive a tree of identities for dou-
bly bounded Virasoro characters [7, 12]. Our generalization of
(1.3) adds a further dimension to the Burge tree as discussed
in Section 3.

(2) Letting b tend to infinity in (1.1) yields the q-Chu–Vandermonde
summation [13, Eq. (II.7)]. The q-binomial version of this is
obtained by letting M tend to infinity in (1.3), resulting in

(1.4)

L2∑
i=0

qi(i+`)

[
L1

i + `

][
L2

i

]
=

[
L1 + L2

L1 − `

]
for L1, L2, M, ` ∈ Z except when −L1 ≤ −` ≤ L2 < 0 or −L2 ≤
` ≤ L1 < 0. This identity can be viewed as a decomposition of
the q-binomial and is easily understood combinatorially using
the notion of the Durfee rectangle of a partition.

The q-binomials have been generalized to q-trinomials in Ref.
[3], and more generally to q-multinomials in Refs. [2, 8, 18, 22,
27]. Our generalized q-Saalschütz sum implies a generalized q-
Chu–Vandermonde sum which provides a new decomposition
formula for q-multinomials in terms of q-binomials (see Section
4.1).



(3) When L1 and L2 tend to infinity in (1.3) we are left with

(1.5)
M∑
i=0

qi(i+`)

(q)M−i

1

(q)i(q)i+`

=
1

(q)M(q)M+`

.

Let {γ}L≥0 and {δ}L≥0 be sequences that satisfy

(1.6) γL =
∞∑

r=L

δr

(q)r−L(aq)r+L

.

Then the pair (γ, δ) is called a conjugate Bailey pair relative to
a [5, 24]. Replacing M → M − L and ` → ` + 2L in equation
(1.5) implies the conjugate Bailey pair

γL =
aLqL2

(q)M−L(aq)M+L

, δL =
aLqL2

(q)M−L

,

with a = q`.
A limit of our generalized q-Saalschütz sum yields (a special

case of) the higher-level generalization of this conjugate Bailey
pair of Refs. [23, 24]. For details see Section 4.2. This paper
thus provides a new proof of the higher-level Bailey lemma of
[23, 24] for a special choice of one of the parameters.

(4) Finally, letting L1, L2 and M all tend to infinity in (1.3) yields
the well-known Durfee rectangle identity

∞∑
i=0

qi(i+`)

(q)i(q)i+`

=
1

(q)∞
.

This formula has many interpretations. Here we only mention

that the right-hand side can be identified with the level-1 A
(1)
1

string function. Combined with the spinon formula of the string
function of Refs. [4, 6, 20, 21, 25], the analogous limit of our
generalized q-Saalschütz sum yields the fermionic expression for
the string function due to Lepowsky and Primc [19] (see Section
4.3).

2. A generalized q-Saalschütz identity

The next theorem states the main result of this paper and provides
a generalization of the q-Saalschütz summation formula (1.3). Let C
be the Cartan matrix of AN−1 (i.e., Cij = 2δi,j − δ|i−j|,1 for i, j =
1, . . . , N − 1 where δi,j is the Kronecker delta symbol) and let I =
2I − C be the corresponding incidence matrix where I is the identity
matrix. Furthermore, let ei, i = 1, . . . , N − 1 be the standard unit



vectors in ZN−1, (ei)j = δi,j, and denote nC−1n =
∑N−1

i,j=1 niC
−1
ij nj and

eiC
−1n = (C−1n)i for n ∈ ZN−1.

Theorem 2.1. Let σ = 0, 1 and let N, `,M,L1 + `+σ
2

, L2 + `+σ
2

be
integers such that ` + σN is even, N ≥ 1 and L1, L2 ≥ 0. Then

(2.1)
M∑
i=0

qi(i+`)/N
[
L1+L2+M−i

M−i

]
×

∑
n∈ZN−1

2i+`+σN
2N

+(C−1n)1∈Z

qnC−1n
[
m+n

n

][
L1+ 1

2
m1

i+`

][
L2+ 1

2
m1

i

]

=
∑

η∈ZN−1

`+σN
2N

+(C−1η)1∈Z

qηC−1η
[
µ+η

η

][
L1+ 1

2
(M+µ1)

M+`

][
L2+ 1

2
(M+`+µN−1)

M

]
with

(2.2) m + n =
1

2
(Im + (2i + `)e1)

and

(2.3) µ + η =
1

2
(Iµ + (M + `)e1 + MeN−1).

The vector m ∈ ZN−1 on the left-hand side is determined by the
(summation) variable n through the (m, n)-system (2.2). Similarly

µ ∈ ZN−1 is determined by (2.3). Also,
[
m+n

n

]
=

∏N−1
j=1

[
mj+nj

nj

]
and

similarly for
[
µ+η

η

]
. We further note that the nature of the solutions of

(2.2) depends on the parity of N . When N is odd one must have

m1 ≡ m3 ≡ · · · ≡ mN−2 ≡ 0 (mod 2),

m2 ≡ m4 ≡ · · · ≡ mN−1 ≡ ` (mod 2)

whereas for N even one finds

m1 ≡ m3 ≡ · · · ≡ mN−1 (mod 2),

m2 ≡ m4 ≡ · · · ≡ mN−2 ≡ ` ≡ 0 (mod 2).(2.4)

This implies that m1 is even for N odd so that L1, L2 must be integers.
This indeed follows from (since N is odd) 0 ≡ `+σN ≡ `+σ (mod 2).
When N is even the partity of m1 is not fixed and there is the freedom
to choose m1 even corresponding to σ = 0 or m1 odd corresponding
to σ = 1. (Since for N even 0 ≡ ` + σN ≡ ` (mod 2), ` is even in
accordance with (2.4) and hence, since L1, L2 must be integers when
m1 even and half an odd integer when m1 odd, it thus follows from



Li + (` + σ)/2 ∈ Z that σ has the same parity as m1.) A similar
analysis of the solutions of the (µ, η)-system (2.3) can be carried out.
The restrictions on the sums over n and η ensure that the components
of m and µ are integer and have the parity as discussed above.

Equation (2.1) yields a summation formula for every N ≥ 1. When
N = 1 the sums over n and η drop out; on the left-hand side m1 = 0
and on the right-hand side one needs to interpret µ1 = M and µ0 =
M + `. Then (2.1) indeed reduces to (1.3) for N = 1.

Proof of Theorem 2.1. Note that both sides of (2.1) are zero unless
M + ` ≥ 0 and M ≥ 0. Furthermore, denoting the identity (2.1) by
I(L1, L2, M, `), it enjoys the symmetry I(L1, L2, M, `) = I(L2, L1, M +
`,−`). Hence we may assume ` ≥ 0 and M ≥ 0 in the proof below.

Throughout the proof we use modified q-binomials defined as

(2.5)

[
m + n

m

]
=

(qn+1)m

(q)m

for m ∈ Z+, n ∈ Z,

and zero otherwise. Note that
[
m+n

m

]
is zero if n < 0 unless m + n < 0.

Let us now show that on both sides of (2.1) the q-binomials (1.2) can
be replaced by the modified q-binomials. Since M, `, L1, L2 ≥ 0 we find
from (2.2) and (2.3) that mi + ni ≥ 0 and µi + ηi ≥ 0 if mi, µi ≥ 0
so that

[
m+n

n

]
and

[
µ+η

η

]
in (2.1) can be replaced by the modified q-

binomials
[
m+n

m

]
and

[
µ+η

µ

]
, respectively. The other q-binomials can be

turned into modified q-binomials since the top entries are nonnegative
by the conditions on the parameters.

The proof of (2.1) makes frequent use of the following identity which
is a corollary of Sears’ transformation formula for a balanced 4φ3 series
[13, Eq. (III.15)]

(2.6)
∑
i∈Z

qi(i−a+e+g)
[
i+a
a

][
b−i
c−i

][
d

i+e

][
f

i+g

]
=

∑
i∈Z

qi(i−a+e+g)
[

a−g
a−g−i

][
b−d+e

c−i

][
c+d−i
c+e

][
i+f
i+g

]
,

where a, b, c, d, e, f, g ∈ Z and the condition a + b = c + d + f applies.
Since we need the Sears transform (2.6) with negative entries in the
q-binomials it is essential that definition (2.5) is used here. (The above
formula is not correct for all a, . . . , g ∈ Z with the use of (1.2)).



We start by shifting n → n + ie1, followed by i → i − n1. This
transforms the left-hand side of (2.1) into∑

i,n

q(i−n1)(i−n1−m1+`)+nC−1n

×
[
L1+L2+M+n1−i

M+n1−i

][
L1+ 1

2
m1

i+`−n1

][
L2+ 1

2
m1

i−n1

][
m1+i
m1

] N−1∏
α=2

[
mα+nα

mα

]
where the sum over n is restricted by

(2.7)
` + σN

2N
+ (C−1n)1 ∈ Z

and the (m, n)-system is given by

(2.8) m + n =
1

2
(Im + `e1).

Since the (m, n)-system has become i-independent, only the first four
q-binomials depend on the summation variable i. Hence we may apply
(2.6) with a = m1, b = L1 + L2 + M + n1, c = M + n1, d = L1 + 1

2
m1,

e = `− n1, f = L2 + 1
2
m1 and g = −n1 to obtain∑

i,n

q(i−n1)(i−n1−m1+`)+nC−1n

×
[
L1+M+n1+ 1

2
m1−i

M+`

][
L2+M+`− 1

2
m1

M+n1−i

][
L2+ 1

2
m1+i

i−n1

][
m1+n1

m1+n1−i

] N−1∏
α=2

[
mα+nα

mα

]
.

Shifting n → n + i(2e1 − e2) and m → m − 2ie1, which leaves the
(m, n)-system (2.8) and the restriction (2.7) on the summation over n
invariant, yields∑

i,n

q(i+
m2−m1

2
)2−(

m1−`
2

)2+nC−1n
[
L1+M+ 1

2
m1+n1

M+`

][
L2+M+`− 1

2
m1+i

M+n1+i

]
×

[
L2+ 1

2
m1

−i−n1

][
m1+n1

m1+n1−i

][
m2+n2−i

m2

] N−1∏
α=3

[
mα+nα

mα

]
,

where we have used the (m, n)-system to simplify the exponent of q.
Shifting i → n2− i one can apply (2.6) with a = m2, b = L2 +M + `−
1
2
m1 + n2, c = M + n1 + n2, d = L2 + 1

2
m1, e = −n1 − n2, f = m1 + n1

and g = m1 + n1 − n2, observing that

c + d + f − a− b = 2m1 + 2n1 −m2 − ` = 0



thanks to (2.8). This yields∑
i,n

q(i−m3−m2
2

)2−(
m1−`

2
)2+nC−1n

[
L1+M+ 1

2
m1+n1

M+`

][
L2+M+ 1

2
m1+n1+n2−i

M

]
×

[
m2+n2−m1−n1

m2+n2−m1−n1−i

][
M+`−m1−n1

M+n1+n2−i

][
m1+n1+i

m1+n1−n2+i

] N−1∏
α=3

[
mα+nα

mα

]
.

Shifting n → n + i(e1 + e2 − e3) and m → m − 2i(e1 + e2), which
again leaves the (m, n)-system (2.8) and the restriction (2.7) on the
sum over n unchanged, leads to

(2.9)
∑
i,n

q(i+
m3−m2

2
)2−(

m1−`
2

)2+nC−1n
[
L1+M+n1+ 1

2
m1

M+`

][
L2+M+ 1

2
m1+n1+n2

M

]
×

[
m2+n2−m1−n1

m2+n2−m1−n1−i

][
M+`−m1−n1+i

M+n1+n2+i

][
m1+n1

m1+n1−n2−i

][
m3+n3−i

m3

] N−1∏
α=4

[
mα+nα

mα

]
.

We now need the following lemma.

Lemma 2.2. For p = 3, . . . , N , let

fp =
∑
i,n

q(i+
mp−mp−1

2
)2−(

m1−`
2

)2+nC−1n
[
L1+M+ 1

2
m1+n1

M+`

][
L2+M+ 1

2
m1+n1+n2

M

]
×

(p−3∏
α=1

[M+
∑α+2

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

M+
∑α

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

])( N−1∏
α=p+1

[
mα+nα

mα

])
×

[ ∑p−1
α=1(−1)p−α−1(mα+nα)∑p−1

α=1(−1)p−α−1(mα+nα)−i

][M+`−m1−
∑p−2

α=1 nα+i

M+
∑p−1

α=1 nα+i

]
×

[ ∑p−2
α=1(−1)p−α(mα+nα)∑p−2

α=1(−1)p−α(mα+nα)−np−1−i

][
mp+np−i

mp

]
,

with (m, n)-system (2.8) and mN = nN = 0. Then fp = fp+1 for
3 ≤ p < N .

Proof. Change i → np − i and apply (2.6) with a = mp, b = M + ` −
m1 −

∑p−2
α=1 nα + np, c = M +

∑p
α=1 nα, d =

∑p−2
α=1(−1)p−α(mα + nα),

e = d − np−1 − np, f =
∑p−1

α=1(−1)p−α−1(mα + nα) and g = f − np,
observing that

c + d + f − a− b = 2

p−1∑
α=1

nα + m1 + mp−1 −mp − ` = 0



by summing up the first p− 1 components of the (m, n)-system (2.8).
This leads to

fp =
∑
i,n

q(np−i+
mp−mp−1

2
)2−(

m1−`
2

)2+nC−1n

×
[
L1+M+ 1

2
m1+n1

M+`

][
L2+M+ 1

2
m1+n1+n2

M

]
×

(p−3∏
α=1

[M+
∑α+2

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

M+
∑α

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

])( N−1∏
α=p+1

[
mα+nα

mα

])
×

[ ∑p
α=1(−1)p−α(mα+nα)∑p

α=1(−1)p−α(mα+nα)−i

][M+`−m1−
∑p−1

α=1 nα

M+
∑p

α=1 nα−i

]
×

[M+
∑p

α=1 nα+
∑p−2

α=1(−1)p−α(mα+nα)−i

M+
∑p−2

α=1 nα+
∑p−2

α=1(−1)p−α(mα+nα)

][ ∑p−1
α=1(−1)p−α−1(mα+nα)+i∑p−1

α=1(−1)p−α−1(mα+nα)−np+i

]
.

(2.10)

We now carry out the transformations n → n + i(e1 + ep − ep+1)
and m → m − 2i(e1 + e2 + · · · + ep), which leave the (m, n)-system
unchanged. (Here eN := 0.) Using nC−1(e1 + ep − ep+1) =

∑p
α=1 nα

and (e1 + ep − ep+1)C
−1(e1 + ep − ep+1) = 2, as well as the (m, n)-

system, yields

(np − i +
mp −mp−1

2
)2 − (

m1 − `

2
)2 + nC−1n →

(np +
mp −mp−1

2
)2 − (i− m1 − `

2
)2 + 2i(i +

p∑
α=1

nα) + nC−1n

= (i +
mp+1 −mp

2
)2 − (

m1 − `

2
)2 + nC−1n

transforming (2.10) into fp+1 as desired. �

Equation (2.9) corresponds to f3 and we can thus use the above
lemma to replace it with fN . Since mN = 0, the last q-binomial in
fN is 1 and we can perform the sum over i using the q-Saalschütz
sum, which is the special case a = 0 of the Sears transformation (2.6).
(When a = 0, the only nonvanishing term on the right-hand side of
(2.6) corresponds to i = −g.) Specifically, we take fN , replace i by −i
and apply (2.6) with the same choice of parameters as in the proof of



Lemma 2.2 but with p = N , nN = 0 and a = mN = 0. Then we get

∑
n

q(
mN−1

2
)2−(

m1−`
2

)2+(nN−1−
∑N−2

α=1 (−1)N−α(mα+nα))(
∑N−1

α=1 (−1)N−α−1(mα+nα))

× qnC−1n
(N−3∏

α=1

[M+
∑α+2

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

M+
∑α

β=1 nβ+
∑α

β=1(−1)α−β(mβ+nβ)

])
×

[
L1+M+ 1

2
m1+n1

M+`

][ M+`−m1−
∑N−2

α=1 nα

M+`−m1−
∑N−1

α=1 nα−
∑N−1

α=1 (−1)N−α−1(mα+nα)

]
×

[
L2+M+ 1

2
m1+n1+n2

M

][ M+`−m1−
∑N−1

α=1 nα

M+`−m1−
∑N−2

α=1 nα−
∑N−2

α=1 (−1)N−α(mα+nα)

]
.

(2.11)

All that remains to be done is to clean up the above expression. Intro-
duce a new variable η ∈ ZN−1 through its components as follows

ηi = n2i + n2i+1 for i = 1, . . . , bN/2c − 1

ηN−i = n2i+1 + n2i+2 for i = 1, . . . , b(N − 1)/2c − 1

ηb(N+1)/2c =
N−2∑
α=1

(−1)N−α(mα + nα)− nN−1

ηb(N+1)/2c±1 =
N−1∑
α=1

(−1)N−α−1(mα + nα) + nN−1

for N even/odd. Also define µ through the (µ, η)-system (2.3) Elim-
inating m and n from (2.11) in favour of µ and η, we finally get the

right-hand side of (2.1). We also note that (C−1η)1 =
∑N−1

i=1 (N −
i)ηi/N yields (−n1 +

∑N−1
i=2 (N − i)ni)/N = (C−1n)1 − n1 so that the

restriction (2.7) on the sum over n translates into the restriction

` + σN

2N
+ (C−1η)1 ∈ Z

for the sum over η as it should.
�

3. The Burge transform

Perhaps the most interesting application of our generalized q-Saal-
schütz sum (2.1) arises when it is combined with the Burge trans-
form [7, 12]. The Burge transform is a generalization of (a special
case) of the Bailey lemma and can be utilized to derive an infinite tree
(a Burge tree) of polynomial identities from a single initial identity. In



this section we show that each element of a Burge tree can be trans-
formed using (2.1) to yield an additional infinite series of polynomial
identities.

In his study of restricted partition pairs Burge considered the poly-
nomial

(3.1) X(p,p′)
r,s (M1, L1, M2, L2)

=
∞∑

j=−∞

{
qj(pp′j+p′(M12+r)−ps)

[
M1+L1−(p′−p)j

M1+pj

][
M2+L2+(p′−p)j

M2−pj

]
−q(pj+M12+r)(p′j+s)

[
M1+L1−(p′−p)j+r−s

M1+pj+r

][
M2+L2+(p′−p)j−r+s

M2−pj−r

]}
,

with M12 = M1 −M2, and proved that it is the generating function of
pairs of partitions (λ, µ) such that

0 ≤ λ1 ≤ · · · ≤ λM1 ≤ L1, 0 ≤ µ1 ≤ · · · ≤ µM2 ≤ L2,

and
λi − µi−r+1 ≥ 1− s, µi − λi−p+r+1 ≥ 1− p′ + s.

Here the integers p, p′, r, s are restricted to p, p′ ≥ 1, 0 ≤ r + M12 ≤ p
and 0 ≤ s− L12 ≤ p′, with L12 = L1 − L2. There are four exceptional
cases, r = 0, r = p, r = −M12 and r = p − M12 that demand the
additional conditions µ1 ≤ s− 1, λ1 ≤ p′− s− 1, λM2 ≥ L1− s+1 and
µM1 ≥ L2 − p′ + s + 1, respectively [14, 12].

The important observation made in [7] is that

(3.2) X
(p,p+p′)
r,r+s (M1, L1, M2, L2)

=
∑
i∈Z

qi(i+M12)
[
L1+L2+M2−i

M2−i

]
X(p,p′)

r,s (i + M12, L1 − i, i, L2 −M12 − i)

and

(3.3) X
(p′,p+p′)
s−M12,r+s+L12

(M1, L1, M2, L2)

=
∑
i∈Z

qi(i+M12)
[
L1+L2+M2−i

M2−i

]
X(p,p′)

r,s (L1 − i, i + M12, L2 −M12 − i, i)

where the second equation follows from the first by exploiting the sym-
metry

(3.4) X(p,p′)
r,s (M1, L1, M2, L2) = X

(p′,p)
s−L12,r+M12

(L1, M1, L2, M2).

The proof of the Burge transform follows from the q-Saalschütz formula
(1.3). In [7, 12] the defining equation (3.1) is substituted into (3.2),
then the sums over i and j are interchanged, followed by the variable
change i → i+ pj and i → i+ pj + r in the terms corresponding to the



second and third line of (3.1), respectively (referred to as the positive
and negative terms below). Then the q-Saalschütz sum is used with
L1 → L1+M12−(p′−p)j, L2 → L2−M12+(p′−p)j, M → M2−pj and
` → M12+2pj for the positive terms and L1 → L1+M12−(p′−p)j+r−s,
L2 → L2−M12+(p′−p)j−r+s, M → M2−pj−r and ` → M12+2pj+2r
for the negative terms. This gives the left-hand side of (3.2). However,
we note that it needs to be verified that the summation (1.3) has not
been employed when the variables therein lie in the ranges given just
below (1.3). This means that

(3.5) − L1 −M12 + (p′ − p)j − r + s ≤ −M12 − 2pj − 2r

≤ L2 −M12 + (p′ − p)j − r + s < 0 ≤ M2 − pj − r

and

(3.6) − L2 + M12 − (p′ − p)j + r − s ≤ M12 + 2pj + 2r

≤ L1 + M12 − (p′ − p)j + r − s < 0 ≤ M1 + pj + r

and the corresponding inequalities obtained by setting r = s = 0 should
not hold for any j ∈ Z. Eliminating j gives several conditions on the
parameters in (3.2). In particular (3.5) can only hold if

2pj > −M12 − 2r and 2p′j < M12 + L12 − 2s.

Similarly, (3.6) can only hold if

2pj < −M12 − 2r and 2p′j > M12 + L12 − 2s.

If, for example, M12 = L12 = 0 these conditions cannot be satisfied for
any j recalling that 0 ≤ r ≤ p and 0 ≤ s ≤ p′. Hence, setting

X(p,p′)
r,s (M, L, M, L) = X(p,p′)

r,s (M, L),

the symmetric version of the Burge transform (3.2)

(3.7) X
(p,p+p′)
r,r+s (M, L) =

M∑
i=0

qi2
[
2L + M − i

2L

]
X(p,p′)

r,s (i, L− i)

always holds. By the same arguments one can show that the symmetric
form of (3.3)

X
(p′,p+p′)
s,r+s (M, L) =

M∑
i=0

qi2
[
2L + M − i

2L

]
X(p,p′)

r,s (L− i, i)

is true for arbitrary M and L.
By iterating the two Burge transformations, starting with an ap-

propriate initial identity for X
(p,p′)
r,s , one can derive an infinite tree of



polynomial identities. This was mentioned in [7] and explicitly carried
out in [12]. To illustrate this we follow [12] and use the trivial result

(3.8) X
(1,2)
0,1 (M, L) = δL,0

to derive the Burge tree

X
(1,2)
0,1

yyssssssssss

%%KKKKKKKKKK

X
(1,3)
0,1

||yy
yy

yy
yy

%%KKKKKKKKKK
X

(2,3)
1,1

yyssssssssss

""EE
EE

EE
EE

X
(1,4)
0,1

""FFFFFFFF

||zz
zz

zz
zz

X
(3,4)
1,1 X

(2,5)
1,2 X

(3,5)
1,2

X1,5
0,1 X4,5

1,1

where a node with label X
(p,p′)
r,s corresponds to a polynomial identity

for X
(p,p′)
r,s (M, L). (Actually, in Ref. [12] an extension of the Burge tree

was constructed by exploiting various symmetries of X
(p,p′)
r,s .) Explicitly

some of the identities in the above tree are [7, 12],

X
(1,3)
0,1 (M, L) = qL2

[
L + M

2L

]
(3.9)

X
(2,3)
1,1 (M, L) =

[
2L + M

2L

]
(3.10)

X
(3,4)
1,1 (M, L) =

L∑
m=0

m even

q
1
2
m2

[
2L + M − 1

2
m

2L

][
L

m

]
(3.11)

X
(2,5)
1,2 (M, L) =

L∑
n=0

qn2

[
2L + M − n

2L

][
2L− n

n

]
.(3.12)



Equation (3.10) is a doubly bounded version of the Euler identity, equa-
tion (3.11) is a doubly bounded analogue of the vacuum-character iden-
tity of the Ising model

∞∑
m=0

m even

q
1
2
m2

(q)m

=
1

2

{
(−q1/2)∞ + (q1/2)∞

}

=
∞∏

j=1

(1 + q8j−3)(1 + q8j−5)(1− q8j)

1− q2j

and (3.12) is a doubly bounded version of the (first) Rogers–Ramanujan
identity

∞∑
n=0

qn2

(q)n

=
∞∏

j=1

1

(1− q5j−1)(1− q5j−4)
.

To see how (2.1) transforms an identity in the Burge tree, let us first

introduce a generalization of the polynomial X
(p,p′)
r,s (M1, L1, M2, L2) as

follows. Let N be a positive integer, σ = 0, 1 and let M1, M2, L1 +
M12+σ

2
, L2 + M12+σ

2
be integers such that M12 +σN is even. Also assume

that (p′ − p)/N ∈ Z+ and (r − s)/N ∈ Z, for r, s integers. Then

X(p,p′),N
r,s,σ (M1, L1, M2, L2)

(3.13)

=
∞∑

j=−∞

q
j
N

(pp′j+p′(M12+r)−ps)
∑

η∈ZN−1

M12+2pj+σN
2N

+(C−1η)1∈Z

qηC−1η
[
η+µ

η

]

×
[
M1+L1−(p′−p)j/N− 1

2
(M2−pj−µ1)

M1+pj

]
×

[
M2+L2+(p′−p)j/N− 1

2
(M1+pj−µN−1)

M2−pj

]
−

∞∑
j=−∞

q
1
N

(pj+M12+r)(p′j+s)
∑

η∈ZN−1

M12+2pj+2r+σN
2N

+(C−1η)1∈Z

qηC−1η
[
η+µ

η

]

×
[
M1+L1−((p′−p)j−r+s)/N− 1

2
(M2−pj−r−µ1)

M1+pj+r

]
×

[
M2+L2+((p′−p)j−r+s)/N− 1

2
(M1+pj+r−µN−1)

M2−pj−r

]
,

with (µ, η)-systems

µ + η =
1

2
(Iµ + (M1 + pj)e1 + (M2 − pj)eN−1)



for the first term of the right-hand side and

µ + η =
1

2
(Iµ + (M1 + pj + r)e1 + (M2 − pj − r)eN−1)

for the second term of the right-hand side. In Section 4.1 we will show
that in the limit when M1, M2 tend to infinity for fixed M12 the above
polynomials become proportional to the one-dimensional configuration
sums of solvable lattice models of Date et al. [10, 11], which are bounded

analogues of level-N A
(1)
1 branching functions.

Using (2.1), it follows that

(3.14) X
(p,p+Np′),N
r,r+Ns,σ (M1, L1, M2, L2)

=
∑
i∈Z

qi(i+M12)/N
[
L1+L2+M2−i

M2−i

] ∑
n∈ZN−1

2i+M12+σN
2N

+(C−1n)1∈Z

qnC−1n
[
m+n

n

]

×X(p,p′)
r,s (i + M12, L1 − i +

1

2
m1, i, L2 −M12 − i +

1

2
m1),

where on the right-hand side we assume the (m, n)-system

(3.15) m + n =
1

2
(Im + (2i + M12)e1).

Because of the conditions L1, L2 ≥ 0 in (2.1), a sufficiency condition
for the above transformation to hold is⌊

L1 + M12(N − 1)/(2N)− s− r/N

p′ + p/N

⌋
≤

⌊
L1 + M12 + r − s

p′ − p

⌋
⌊

L2 −M12(N − 1)/(2N) + s + r/N

p′ + p/N

⌋
≤

⌊
L2 −M12 − r + s

p′ − p

⌋(3.16)

together with the inequalities obtained by setting r = s = 0, where

we assumed that p′ > p. (The kernel of X
(p,p+Np′),N
r,r+Ns,σ and of X

(p,p′)
r,s

on either side of (3.14) is zero unless the summation variable j lies in
certain ranges. The above conditions make sure that in these ranges of
j the conditions L1, L2 ≥ 0 of Theorem 2.1 apply).

Using the symmetry (3.4) one also finds

(3.17) X
(p′,Np+p′),N
s−M12,N(r+L12+M12)+s−M12,σ(M1, L1, M2, L2)

=
∑
i∈Z

qi(i+M12)/N
[
L1+L2+M2−i

M2−i

] ∑
n∈ZN−1

2i+M12+σN
2N

+(C−1n)1∈Z

qnC−1n
[
m+n

n

]

×X(p,p′)
r,s (L1 − i +

1

2
m1, i + M12, L2 −M12 − i +

1

2
m1, i),



where again (3.15) holds. This time a sufficient condition is that⌊
L2 −M12(N − 1)/(2N)− s− r/N

p′ + p/N

⌋
≤

⌊
L1 + M12 + r − s

p′ − p

⌋
⌊

L1 + M12(N − 1)/(2N) + s + r/N

p′ + p/N

⌋
≤

⌊
L2 −M12 − r + s

p′ − p

⌋(3.18)

holds, as well as the inequalities obtained by setting r = s = 0, where
again p′ > p.

Again we consider the simpler case when M12 = L12 = 0. Setting

X(p,p′),N
r,s,σ (M, L, M, L) = X(p,p′),N

r,s,σ (M, L),

the generalized Burge transformations (3.14) and (3.17) simplify to

(3.19) X
(p,p+Np′),N
r,r+Ns,σ (M, L) =

M∑
i=0

qi2/N

[
2L + M − i

2L

]

×
∑

n∈ZN−1

2i+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

]
X(p,p′)

r,s (i, L− i +
1

2
m1)

and

(3.20) X
(p′,Np+p′),N
s,Nr+s,σ (M, L) =

M∑
i=0

qi2/N

[
2L + M − i

2L

]

×
∑

n∈ZN−1

2i+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

]
X(p,p′)

r,s (L− i +
1

2
m1, i)

both with (m, n)-system

(3.21) m + n =
1

2
(Im + 2ie1).

The sufficiency conditions (3.16) and (3.18) (and their r = s = 0
counterparts) reduce to the single condition

(3.22)

⌊
L + s + r/N

p′ + p/N

⌋
≤

⌊
L− r + s

p′ − p

⌋
.

To end this section let us give some simple examples of our extensions
to the Burge transform, by finding the generalizations of equations
(3.9)–(3.12) to arbitrary N . First, applying (3.19) to (3.8) yields

X
(1,2N+1),N
0,N,σ (M, L) = qL2

∑
m∈ZN−1

q
1
4
mTm

[
L + M − 1

2
m1

2L

][
m + n

m

]
,



with m+n = 1
2
(IT m+2Le1) and (IT )i,j = δ|i−j|,1+δi,jδi,1 the incidence

matrix of the tadpole graph with N − 1 nodes, and T = 2I − IT the
corresponding Cartan-like matrix. When N is odd σ = 0, L ∈ Z and
m ∈ 2ZN−1. When N is even m2i+1 ≡ 2L ≡ σ (mod 2) and m2i ≡ 0
(mod 2). The sufficiency condition (3.22) is satisfied. Next applying
(3.20) to (3.8) yields

X
(2,N+2),N
1,1,σ (M, L) =

[
2L + M

2L

]
δσ,0

which, for σ = 0, is a doubly bounded version of the Euler identity for

the level-N string functions of type A
(1)
1 . Our third example follows

after inserting (3.9) into (3.20),

X
(3,N+3),N
1,1,σ (M, L) =

∑
m∈ZN

q
1
4
mCm

[
2L + M − 1

2
m1

2L

][
m + n

m

]
,

with (m, n)-system m+n = 1
2
(Im+2Le1) ∈ ZN , where I now is the

incidence matrix of the AN Dynkin diagram. When N is odd σ = 0,
L ∈ Z and m ∈ 2ZN−1 and when N is even m2i ≡ 2L ≡ σ (mod 2)
and m2i+1 ≡ 0 (mod 2). These identities are bounded analogues of

identities for level-N A
(1)
1 branching functions isomorphic to unitary

minimal Virasoro characters. Finally we use (3.19) and (3.10) to find

X
(2,3N+2),N
1,N+1,σ (M, L) =

M∑
i=0

qi2/N

[
2L + M − i

2L

] ∑
n∈ZN−1

2i+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

][
2L− i + m1

i

]

where (3.21) holds. As remarked before, for N = 1 (σ = 0) this is a
doubly bounded version of the (first) Rogers–Ramanujan identity. For
N = 2 it becomes

X
(2,8),2
1,3,σ (M, L) =

M∑
i=0

i∑
n=0

n+i+σ even

q(i2+n2)/2

[
2L + M − i

2L

][
i

n

][
2L− n

i

]

which can be recognized as a doubly bounded version of

∞∑
n=0

qn2
(−q; q2)n

(q2; q2)n

=
∞∏

j=1

1

(1− q8j−1)(1− q8j−4)(1− q8j−7)

due to Slater [26] and related to the (first) Göllnitz–Gordon partition
identity [15, 16],



4. Special limits of Theorem 2.1

4.1. q-Multinomial coefficients. In Refs. [2, 8, 18, 22, 27] q-multi-
nomial coefficients were introduced as q-analogues of the coefficients in
the expansion

(1 + x + x2 + · · ·+ xN)L =

NL
2∑

a=−NL
2

(
L

a

)
N

xa+NL
2 ,

for L ∈ Z+. The q-multinomial coefficients are the generating function
of a wide class of combinatorial objects: (i) unrestricted lattice paths
related to the RSOS lattice models of Date et al. with H-function
statistic [10, 11], (ii) Durfee dissection partitions [27] and (iii) tabloids
of shape (NL) and content (1a2NL−a) with the statistic “value” [8], et
cetera.

Here we need the following explicit representation for the q-multi-
nomials [22]
(4.1)

T (N)
n (L, a) =

∑
η∈ZN−1

L
2
+ a

N
+(C−1η)1∈Z

qηC−1(η−en)(q)L

(q)L
2
− a

N
−(C−1η)1

(q)L
2
+ a

N
−(C−1η)N−1

(q)η

,

where L ∈ Z+, 2a ∈ {−NL,−NL+2, . . . , NL} and n ∈ {0, 1, . . . , N −
1}. Repeated use of Newton’s binomial expansion shows that

lim
q→1

T (N)
n (L, a) =

(
L

a

)
N

so that T
(N)
n (L, a) is indeed a q-analogue of the multinomial coefficient.

Theorem 2.1 provides a new representation of the q-multinomials
when n = 0. To see this we let M tend to infinity in (2.1) resulting in

∞∑
i=0

qi(i+`)/N
∑

n∈ZN−1

2i+`+σN
2N

+(C−1n)1∈Z

qnC−1n
[
m+n

n

][
L1+ 1

2
m1

i+`

][
L2+ 1

2
m1

i

]

=
∑

η∈ZN−1

`+σN
2N

+(C−1η)1∈Z

qηC−1η(q)L1+L2

(q)L1− `
2N

− `
2
−(C−1η)1

(q)L2+ `
2N

+ `
2
−(C−1η)N−1

(q)η

.



If we now set L1 = 1
2
(L + `) and L2 = 1

2
(L − `) (so that σ ≡ L

(mod 2)) and compare with the right-hand side of (4.1), we find that

(4.2) T
(N)
0 (L, `/2) =

∞∑
i=0

qi(i+`)/N
∑

n∈ZN−1

L
2
+ 2i+`

2N
+(C−1n)1∈Z

qnC−1n
[
m+n

n

][ 1
2
(L+`+m1)

i+`

][ 1
2
(L−`+m1)

i

]
,

with m given by (2.2).
When N = 1 the above decomposition of the q-multinomial coeffi-

cients reduces to the q-Chu–Vandermonde sum (1.4) and a combina-
torial interpretation is easily given as follows. The q-binomial

[
m+n

m

]
is the generating function of partitions that fit in a box of dimension
m times n. Hence the summand on the left-hand side of (1.4) is the
generating function of partitions that fit in a box of dimension L1 − `
times L2 + ` which have a Durfee rectangle of size i by i + ` (maximal
rectangle of the Ferrers graph that has a horizontal excess of ` nodes).
Summing over i removes the Durfee rectangle restriction resulting in
the right-hand side. It seems an interesting problem to also explain the
q-multinomial decomposition (4.2) combinatorially.

There is a corresponding formula for 1 ≤ n < N − 1 which, however,
is less appealing (and which we will not prove here)

T (N)
n (L, (n− `)/2)− q(`+1)/NT (N)

n (L, (n + ` + 2)/2)

=
∞∑
i=0

qi(i+`)/N
∑

n∈ZN−1

L
2
+ 2i+`−n

2N
+(C−1n)1∈Z

qnC−1(n−eN−n)
[
m+n

n

]

×
([ 1

2
(L+`+m1

i+`

][ 1
2
(L−`+m1)

i

]
−

[ 1
2
(L+`+2+m1)

i+`+1

][ 1
2
(L−`−2+m1)

i−1

])
with

m + n =
1

2
(Im + (2i + `)e1 + eN−n).

Although this identity has the structure f(L, `)−q(`+1)/Nf(L,−`−2) =
g(L, `)− q(`+1)/Ng(L,−`− 2), it is not true that f(L, `) = g(L, `).

To conclude our discussion of the q-multinomial coefficients, let us
point out that the polynomials defined in equation (3.13) are related to
one-dimensional configuration sums of lattice models of Date et al [10,
11]. Let L ∈ Z and choose

L1 =
1

2

(
L−M12 −

r − s

N

)
L2 =

1

2

(
L + M12 +

r − s

N

)



so that σ = 0, 1 is fixed by the condition that L − (r − s)/N + σ is
even. Then

lim
M1,M2→∞
M12 fixed

(q)2LX(p,p′),N
r,s,σ (M1, L1, M2, L2)

=
∞∑

j=−∞

{
q

j
N

(pp′j+p′(M12+r)−ps)T
(N)
0

(
L,

1

2
(r + M12 − s) + p′j

)
−q

1
N

(pj+M12+r)(p′j+s)T
(N)
0

(
L,

1

2
(r + M12 + s) + p′j

)}
,

which, for p′ = p + N , is proportional to the configuration sums of the
models of Date et al. in the representation obtained in [22, Eq. (3.15)].

4.2. Bailey’s lemma. In this section we show that the limit L1, L2 →
∞ of Theorem 2.1 gives rise to the higher-level Bailey lemma (or more
precisely the higher-level conjugate Bailey pairs) of Refs. [23, 24].

Bailey’s lemma [5] is an elegant tool to prove q-series identities such
as the famous Rogers–Ramanujan identities. Let α = {αL}L≥0, β =
{βL}L≥0 be a pair of sequences that satisfies

βL =
L∑

i=0

αi

(q)L−i(aq)L+i

.

Such a pair is called a Bailey pair relative to a. Recalling the definition
(1.6) of a conjugate Bailey pair, it follows by a simple interchange of
sums that

(4.3)
∞∑

L=0

αLγL =
∞∑

L=0

βLδL.

Many known q-series identities follow from (4.3) after substitution of
suitable Bailey and conjugate Bailey pairs.

Now let L1, L2 tend to infinity in (2.1) and replace i → i − L, ` →
` + 2L and M → M − L. This yields

M∑
i=L

qi(i+`)/N

(q)i−L(q)i+L+`(q)M−i

∑
n∈ZN−1

2i+`+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

]

=
qL(L+`)/N

(q)M−L(q)M+L+`

∑
η∈ZN−1

2L+`+σN
2N

+(C−1η)1∈Z

qηC−1η

[
µ + η

η

]
,



with (m, n)-system (2.2) and (µ, η)-system

(4.4) µ + η =
1

2
(Iµ + (M + L + `)e1 + (M − L)eN−1).

Comparing with (1.6) one reads off the following conjugate Bailey pair
(which is the special case λ = 0 of [24, Corollary 2.1])

γL =
aL/NqL2/N

(q)M−L(aq)M+L

∑
η∈ZN−1

2L+`+σN
2N

+(C−1η)1∈Z

qηC−1η

[
µ + η

η

]
,

δL =
aL/NqL2/N

(q)M−L

∑
n∈ZN−1

2L+`+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

]
,

with a = q` and where (4.4) and m + n = 1
2
(Im + (2L + `)e1) hold.

4.3. String functions. Taking the limit L1, L2, M → ∞ in Theo-
rem 2.1 we obtain

(4.5)
∞∑
i=0

qi(i+`)/N

(q)i(q)i+`

∑
n∈ZN−1

2i+`+σN
2N

+(C−1n)1∈Z

qnC−1n

[
m + n

n

]

=
1

(q)∞

∑
η∈ZN−1

`+σN
2N

+(C−1η)1∈Z

qηC−1η

(q)η

.

It was shown in Refs. [4, 6, 20, 21, 25] that the left-hand side is pro-

portional to a level-N , A
(1)
1 string function CN

m,` defined as follows. Let

Θn,m(z, q) =
∑

j∈Z+n/2m

qmj2

z−mj

be the classical theta function of degree m and characteristic n. The

A
(1)
1 character of the highest weight module of highest weight (N −

`)Λ0 + `Λ1 (where Λ0 and Λ1 are the fundamental weights of A
(1)
1 and

0 ≤ ` ≤ N) is given by

χ`(z, q) =

∑
σ=±1 σΘσ(`+1),N+2(z, q)∑

σ=±1 σΘσ,2(z, q)
.

The level-N A
(1)
1 string functions are defined by the expansion

χ`(z, q) =
∑

m∈2Z+`

CN
m,`(q)q

m2

4N z−
1
2
m.



According to the above-cited references

CN
m,`(q) = q

(`+1)2

4(N+2)
−m2

4N
− 1

8

∞∑
i=0

XN+2
`+1 (2i + m)

(q)i(q)i+m

= q
(`+1)2

4(N+2)
− `2

4N
− 1

8

∞∑
i=0

qi(i+m)/N

(q)i(q)i+m

×
∑

n∈ZN−1

2i+m+`
2N

+(C−1n)1∈Z

qnC−1(n−e`)

[
m + n

n

]
,

with m + n = 1
2
(Im + (2i + m)e1 + e`) and Xp

s (L) a one-dimensional
configuration sum of the (p−1)-state Andrews–Baxter–Forrester model
in regime I,

Xp
s (L) =

∞∑
j=−∞

qj(pj+s)

{[
L

1
2
(L− s + 1)− pj

]
−

[
L

1
2
(L− s− 1)− pj

]}
.

Comparing with (4.5) we obtain the following expression of the string
function

CN
m,σN(q) =

q
1

4(N+2)
− 1

8

(q)∞

∑
η∈ZN−1

m+σN
2N

+(C−1η)1∈Z

qηC−1η

(q)η

,

which was first derived by Lepowsky and Primc [19].
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