
SUPERNOMIAL COEFFICIENTS, BAILEY’S LEMMA AND
ROGERS–RAMANUJAN-TYPE IDENTITIES.

A SURVEY OF RESULTS AND OPEN PROBLEMS

S. OLE WARNAAR

Abstract. An elementary introduction to the recently introduced A2 Bai-
ley lemma for supernomial coefficients is presented. As illustration, some A2

q-series identities are (re)derived which are natural analogues of the classi-
cal (A1) Rogers–Ramanujan identities and their generalizations of Andrews
and Bressoud. The intimately related, but unsolved problems of super-
nomial inversion, An−1 and higher level extensions are also discussed. This
yields new results and conjectures involving An−1 basic hypergeometric se-
ries, string functions and cylindric partitions.

1. Introduction

The purpose of this paper is twofold. Firstly, it intends to provide an easy
introduction to recent results by Andrews, Schilling and the author [9] con-
cerning an A2 Bailey lemma for supernomial coefficients. The fact that the
theorems of [9] have led to the discovery of A2 analogues of the famous Rogers–
Ramanujan identities, (hopefully) justifies such an introduction. Secondly, we
hope to attract some interest in the numerous unsolved problems directly re-
lated to the results of ref. [9].

In the first part of this paper, comprising of sections 2–4, we review the
A1 Bailey lemma and its A2 supernomial generalization, and show how this
provides a natural framework for proving and deriving identities of the Rogers–
Ramanujan type. To make this part of the paper as accessible as possible we
have omitted all proofs and have removed all the usual Bailey miscellanea.
Also, we have chosen to cover only the simplest possible cases that can be
extracted from the general Bailey machinery (see e.g., [1,5,6,9,10,12,30,31]).

In the second part of the paper (sections 5-7) we discuss various questions
that have arisen in relation to our A2 Bailey lemma. Most importantly there
is the problem of generalizing the results of [9] to An−1, but also questions
concerning supernomial inversion, higher-level Bailey lemmas and some related
issues will be surveyed.

1991 Mathematics Subject Classification. Primary 05A30, 05A19; Secondary 33D90,
33D15, 11P82.

Key words and phrases. Rogers–Ramanujan identities, supernomial coefficients, Bailey’s
lemma.

1



2 S. O. WARNAAR

We should remark here that this paper does not in any way discuss the An−1

Bailey lemma of Milne and Lilly [28, 29], nor the An−1 Rogers–Ramanujan
identities of Milne [26, 27]. It is our current belief that the A2 Bailey lemma
for supernomials and the A2 case of Milne and Lilly’s lemma are generalizations
of the classical A1 Bailey lemma, which, in a sense, are orthogonal. Also the
A2 Rogers–Ramanujan identity of this paper appears to be unrelated to the
A2 case of Milne’s An−1 Rogers–Ramanujan identity.

2. A1 Rogers–Ramanujan-type identities

The Gaussian polynomial or q-binomial coefficient is defined as[
n

m

]
=


(q)n

(q)m(q)n−m
for 0 ≤ m ≤ n

0 otherwise,

where (a; q)∞ = (a)∞ =
∏∞

k=0(1− aqk) and

(a; q)n = (a)n =
(a)∞

(aqn)∞
, n ∈ Z.

In particular, (q)0 = 1, (q)n = (1 − q) . . . (1 − qn) and 1/(q)−n = 0 for n ≥ 1.
We will often use a shifted and normalized q-binomial coefficient, defined as

(2.1) S(L, k) =
1

(q)2L

[
2L

L− k

]
=


1

(q)L−k(q)L+k

for − L ≤ k ≤ L

0 otherwise.

By the q-Chu–Vandermonde summation (equation (3.3.10) of [3]), it fol-
lows that the modified q-binomial satisfies the following “invariance property”
(equation (13) of [31] with ck = δk,r) ,

(2.2)
M∑
L=0

qL
2
S(L, r)

(q)M−L
= qr

2

S(M, r).

That is, the modified q-binomial is (up to an overall factor) invariant under

multiplication by qL
2
/(q)M−L followed by a sum over L. It is this property of

the q-binomial that we shall try to generalize to other q-functions.
First, however, let us demonstrate the effectiveness of the result (2.2) in

deriving identities of the Rogers–Ramanujan type. To obtain identities for odd
moduli our starting point is the following specialization of the the q-binomial
formula (equation (II.4) of [15]),

(2.3)
L∑

r=−L

(−1)rq(
r
2)S(L, r) = δL,0,
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with
(
r
2

)
= r(r − 1)/2 for r ∈ Z. Applying (2.2) k times (that is, multiplying

(2.3) by qL
2
/(q)M−L, summing over L using (2.2) and replacing M by L, and

iterating this k times) yields

L∑
r=−L

(−1)rq(
r
2)+kr2S(L, r) =

∑
n1,...,nk−1≥0

qN
2
1 +···+N2

k−1

(q)L−N1(q)n1 · · · (q)nk−1

,

where Nj = nj + · · ·+nk−1. If we let L tend to infinity and use Jacobi’s triple
product identity

(2.4)
∞∑

j=−∞

(−z)jq(
j
2) = (z, q/z, q)∞,

where (a1, . . . , ak; q)n = (a1, . . . , ak)n = (a1)n . . . (ak)n, the following result is
obtained.

Theorem 2.1. For k ≥ 2, |q| < 1, and Nj = nj + · · ·+ nk−1,

(2.5)
∑

n1,...,nk−1≥0

qN
2
1 +···+N2

k−1

(q)n1 · · · (q)nk−1

=
(qk, qk+1, q2k+1; q2k+1)∞

(q)∞
.

For k = 2 this is the (first) Rogers–Ramanujan identity [32–34,38]

(2.6)
∑
n≥0

qn
2

(q)n
=
∞∏
n=0

1

(1− q5n+1)(1− q5n+4)
.

For general k equation (2.5) is (a particular case) of Andrews’ analytic coun-
terpart [2] of Gordon’s partition theorem [18].

To obtain a similar result for even moduli, we start with the simple identity
(equation (40) of [30]),

(2.7)
L∑

r=−L

(−1)rqr
2

S(L, r) =
1

(q2; q2)L
.

Applying (2.2) k − 1 times yields

L∑
r=−L

(−1)rqkr
2

S(L, r) =
∑

n1,...,nk−1≥0

qN
2
1 +···+N2

k−1

(q)L−N1(q)n1 · · · (q)nk−2
(q2; q2)nk−1

.

When L tends to infinity one can again apply the triple product (2.4), resulting
in our next theorem.

Theorem 2.2. For k ≥ 2, |q| < 1, and Nj = nj + · · ·+ nk−1,

(2.8)
∑

n1,...,nk−1≥0

qN
2
1 +···+N2

k−1

(q)n1 · · · (q)nk−2
(q2; q2)nk−1

=
(qk, qk, q2k; q2k)∞

(q)∞
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For k = 2 this identity is due to Euler. For general k the above result was
first obtained by Bressoud [11].

3. Supernomial coefficients

In this section we introduce An−1 generalizations of the q-binomial coeffi-
cients and show how, in the case of A2, the invariance property (2.2) can be
generalized. This is then used to derive A2 Rogers–Ramanujan-type identities
for all moduli. First, however, to serve as a guide for subsequent generaliza-
tions, some of the equations of the previous section are rewritten in manifest
A1 form.

3.1. A1 again. As is often convenient when dealing with root systems of type
An−1, we introduce n variables k1, . . . , kn constrained to the hyperplane k1 +
· · · + kn = 0. We denote k = (k1, . . . , kn), ρ = (1, . . . , n), and for arbitrary
v ∈ Zp we set |v| =

∑p
i=1 vi, so that, in particular, |k| = 0. The Cartan matrix

of An−1 will be denoted by C, i.e., Ci,j = 2δi,j − δ|i−j|,1, i, j = 1, . . . , n− 1.
Now assume n = 2. Then k = (k1, k2) = (k1,−k1), ρ = (1, 2) and C = (2).

We can then rewrite equation (2.1) in vector notation as

(3.1) S(L, k) =


1

(q)L1−k1(q)L1−k2
for k1, k2 ≤ L1

0 otherwise.

where L = (L1).
Similarly, the invariance property (2.2) becomes

(3.2)
M∑
L=0

q
1
2
LCLS(L, k)

(q)M−L
= q

1
2

(k2
1+k2

2)S(M,k),

where, generally, for v, w ∈ Zp, vAv =
∑p

i,j=1 viAi,jvj, (a)v = (a)v1 . . . (a)vp
and

∑w
v=0 =

∑w1

v1=0 · · ·
∑wp

vp=0.

The equations (2.3) and (2.7) that served as input in the derivation of the
Rogers–Ramanujan-type identities become in the new notation

(3.3)
∑
|k|=0

∑
σ∈S2

ε(σ)q
P2
i=1(ki−σi)kiS(L, 2k − σ + ρ) = δL1,0.

and

(3.4)
∑
|k|=0

∑
σ∈S2

ε(σ)q
1
2

P2
i=1(2ki−σi+i)2S(L, 2k − σ + ρ) =

1

(q2; q2)L1

,

where Sn is the permutation group on 1, 2, . . . , n and ε(σ) is the sign of the
permutation σ.
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3.2. Completely antisymmetric An−1 supernomials. The generalization
of the q-binomial coefficient that is needed here is a multivariable extension of
the “n-multinomial coefficient”

(3.5)
(q)λ1+···+λn

(q)λ1 . . . (q)λn
,

defined as follows [19].

Definition 3.1. Let L ∈ Zn−1
+ , λ ∈ Zn

+ and let ν(n) denote the conjugate

of the partition (1L1 . . . (n − 1)Ln−1), i.e., ν
(n)
j = Lj + · · · + Ln−1. Then, for

|λ| = |ν(n)|(=
∑n−1

a=1 aLa),

(3.6)

[
L

λ

]
=
∑
ν

n−1∏
a=1

a∏
j=1

[
ν

(a+1)
j − ν(a+1)

j+1

ν
(a)
j − ν

(a+1)
j+1

]
,

where the sum over ν denotes a sum over sequences ∅ = ν(0) ⊂ ν(1) ⊂ · · · ⊂ ν(n)

of Young diagrams such that each skew diagram ν(a) − ν(a−1) is a horizontal
λa-strip1.

Copying the example of ref. [19], we find that for n = 3, L = (1, 3)
and λ = (3, 2, 2), the contributions to the above sum correspond to ν =
(∅, (3), (3, 2), (4, 3)) and ν = (∅, (3), (4, 1), (4, 3)), yielding

[
3
2

]
+
[

3
2

][
3
1

]
= 2 +

3q + 4q2 + 2q3 + q4. When L = (|λ|, 0, . . . , 0) the only term in the sum is
ν = (∅, λ1, λ1 + λ2, . . . , |λ|), yielding

∏n
a=1

[
λ1+···+λa+1

λ1+···+λa

]
which is the multino-

mial (3.5). Perhaps not immediately evident are the symmetries [37][
L

λ

]
=

[
L′

|L|(1n)− λ

]
and

[
L

λ

]
=

[
L

σ(λ)

]
,

where L′ = (Ln−1, . . . , L1) and σ ∈ Sn.
The (completely antisymmetric) An−1 supernomials have several interesting

interpretations. In ref. [19] they were defined as[
L

λ

]
=
∑
η `|λ|

KηλKη′µ(q),

where µ = (1L1 . . . (n− 1)Ln−1), λ ∈ Zn a composition such that |λ| = |µ|, and
Kλµ(q) and Kλµ the Kostka polynomial and Kostka number, respectively [24].
In [21] this was shown to imply that the supernomials are connection coeffi-
cients between the elementary symmetric functions eλ and the Hall–Littlewood
polynomials Pλ in n variables [24], thanks to

eλ(x1, . . . , xn) =
∑
µ`|λ|

(∑
η `|λ|

KηλKη′µ(q)

)
Pµ(x1, . . . , xn; q).

1Viewing the ν(a)’s as partitions, this means that |ν(a)| − |ν(a−1)| = λa and ν(a)
i ≤ ν(a−1)

i−1

(i.e., the ith part of ν(a) does not exceed the (i− 1)th part of ν(a−1)).
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In [37] the supernomials were introduced from a combinatorial point of view as
the generating functions of inhomogeneous lattice paths, generalizing the fact
that the multinomial coefficient (3.5) is the major index generating function
on words over the alphabet {1, . . . , n}.

If we now restrict (3.6) to n = 3, and set ν(1) = λ1, ν(2) = (λ1 +m,λ2 −m)
and ν(3) = (L1 + L2, L2) we get[

L

λ

]
=
∑
m

[
λ1 − λ2 + 2m

m

][
L1

λ1 − L2 +m

][
L2

λ2 −m

]
for λ1 +λ2 +λ3 = L1 +2L2 and zero otherwise. The following, more symmetric,
representation may be derived using the q-Chu–Vandermonde sum,[

L

λ

]
=
∑
r

qr1r23(q)L1(q)L2

(q)r1(q)r2(q)r3(q)r12(q)r13(q)r23
,

where the summation over r denotes a sum over r1, . . . , r23 such that

r1 + r12 + r13 = λ1, r2 + r12 + r23 = λ2, r3 + r13 + r23 = λ3

and
r1 + r2 + r3 = L1, r12 + r13 + r23 = L2.

3.3. An A2 invariance property. We now show how, in the case of A2, the
supernomials may be used to generalize the q-binomial invariance (3.2). The
first step is, of course, to again shift and normalize the supernomials, and for
general rank we define in analogy with (2.1) and (3.1),

(3.7) S(L, k) =
1

(q)CL

[
CL

Ln−1(1n)− k

]
with L ∈ Zn−1

+ and k ∈ Zn such that |k| = 0. Observe that
∑n

i=1(Ln−1− ki) =

nLn−1 =
∑n−1

a=1 a(CL)a so that the condition |λ| = |ν(n)| in definition (3.1) is
automatically satisfied.

Considering A2 again, we would like to show that the following invariance
property holds (compare with (3.2))

(3.8)
M∑
L=0

q
1
2
LCLS(L, k)

(q)M−L
= q

1
2

(k2
1+k2

2+k2
3)S(M,k).

The analogy with A1 breaks down, however, and a somewhat unexpected (to
us at least) result arises as follows (theorem 4.3 of [9] with a = 1).

Theorem 3.2. Let L,M ∈ Z2
+, k ∈ Z3, such that |k| = 0 and let S(L, k)

be the A2 supernomial defined in (3.7) and T (L, k) be defined in (3.11) below.
Then

(3.9)
M∑
L=0

q
1
2
LCLS(L, k)

(q)M−L
= q

1
2

(k2
1+k2

2+k2
3)(q)|M |T (M,k)
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and

(3.10)
M∑
L=0

q
1
2
LCLT (L, k)

(q)M−L
= q

1
2

(k2
1+k2

2+k2
3)T (M,k).

So we do find an invariance property, but only after summing the super-
nomial S to a new q-function T , given in the following definition.

Definition 3.3. For L ∈ Z2
+ and k ∈ Z3 such that |k| = 0,

(3.11) T (L, k) =
1

(q)2
L1+L2

3∏
i=1

[
L1 + L2

L1 + ki

]
.

The fact that (3.8) is not correct and has to be replaced by the non-trivial
theorem 3.2 is the main obstacle for treating the general rank case. Indeed,
for arbitrary An−1 we find that (L,M ∈ Zn−1

+ , k ∈ Zn such that |k| = 0)

M∑
L=0

q
1
2
LCLS(L, k)

(q)M−L
= q

1
2

(k2
1+···+k2

n)S(M,k)

is invalid for any n ≥ 3. How to correct this, in a way similar to Theorem 3.2,
is unclear to us at present. A partial result on An−1 is given in proposition 6.1
of section 6.

4. A2 Rogers–Ramanujan-type identities

We now use the two summations of theorem 3.2 to obtain A2 analogues of
theorems 2.1 and 2.2. Were there 2 cases to consider for A1, corresponding to
odd and even modulus, this time we have to consider moduli in the residue
classes of 3.

First we need the A2 generalization of (3.3) (Proposition 5.1 of [9] with
` = 0).

Proposition 4.1. For L ∈ Z2 such that CL ∈ Z2
+,

(4.1)
∑
|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1(3ki−2σi)kiS(L, 3k − σ + ρ) = δL1,0δL2,0.

We now invoke theorem 3.2. First this gives, thanks to (3.9), a doubly
bounded version of the A2 Euler identity,

(4.2)
∑
|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1(3ki−2σi)ki+(3ki−σi+i)2T (L, 3k − σ + ρ) =

1

(q)L(q)|L|
.
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Next we can apply (3.10) and after an (`− 1)-fold iteration we arrive at

∑
|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1(3ki−2σi)ki+`(3ki−σi+i)2T (L, 3k − σ + ρ)

=
∑

n1,...,n`−1∈Z2
+

q
1
2

P`−1
j=1NjCNj

(q)L−N1(q)n1 · · · (q)n`−1
(q)|n`−1|

,

where Nj = nj + · · · + n`−1 ∈ Z2
+. To transform this into identities of the

Rogers–Ramanujan type we let L1, L2 tend to infinity and apply the A2 Mac-
donald identity [23] (in a representation of [25])

(4.3)
∑
|k|=0

∑
σ∈S3

ε(σ)
3∏
i=1

q
3
2
k2
i+σikix3ki+σi−i

i = (q)2
∞

∏
1≤i<j≤3

(xix
−1
j , qxjx

−1
i )∞.

This leads to the following A2 analogue of the identities (2.5) (theorem 5.1
of [9] with i = k).

Theorem 4.2. For |q| < 1, k ≥ 2 and Nj = nj + · · ·+ nk−1,

∑
n1,...,nk−1∈Z2

+

q
1
2

Pk−1
j=1 NjCNj

(q)n1 · · · (q)nk−1
(q)|nk−1|

=
(qk, qk, qk+1, q2k, q2k+1, q2k+1, q3k+1, q3k+1; q3k+1)∞

(q)3
∞

.

Although this theorem is indeed very much akin to theorem (2.1), there is
a striking (as well as annoying) difference. This is the fact that on the right-
hand side we have a (q)3

∞ in the denominator where one would have liked to
see a (q)2

∞. Indeed, to interpret the right-hand side combinatorially, we have
to first multiply with (q)∞. Then the right-hand side becomes the generating
function of pairs of partitions (λ1, λ2) such that λ1 has no parts congruent to
0,±k,±2k (mod 3k+1) and λ2 has no parts congruent to 0,±k (mod 3k+1).
Also, the right-hand side can (again after multiplication by (q)∞) be identified
with a character of the W3 algebra. The conclusion clearly is that the left-
hand side, when multiplied with (q)∞ is a series with only positive integer
coefficients. How to make this manifest is unclear to us. Only when k = 2
we have succeeded (section 5.4 of [9]) in rewriting the above identity when
multiplied with (q)∞ such that both sides are manifestly positive series. The
price for this, however, is that the Z2 symmetry of the summand is broken.
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Theorem 4.3 (A2 Rogers–Ramanujan identity). For |q| < 1,

(q)∞
∑

r1,r2≥0

qr
2
1−r1r2+r22

(q)r1(q)r2(q)r1+r2

=
∑

r1,r2≥0

qr
2
1−r1r2+r22

(q)r1

[
2r1

r2

]

=
∞∏
n=0

1

(1− q7n+1)2(1− q7n+3)(1− q7n+4)(1− q7n+6)2
.

It seems a worthwhile exercise to find a partition theoretic interpretation
for the middle term of this A2 Rogers–Ramanujan identity, or, even better, to
rewrite the left-hand side into a series that is manifestly of A2-type as well as
manifestly positive, and to then find a combinatorial interpretation.

To obtain identities of the Rogers–Ramanujan type for moduli congruent to
2 modulo 3, we replace q by 1/q in the A2 Euler identity (4.2). Using[

m+ n

n

]
1/q

= q−mn
[
m+ n

n

]
and definition (3.11) of T this yields∑

|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1(3ki−σi+i)2−3(ki−2σi)kiT (L, 3k − σ + ρ) =

q2L1L2

(q)L(q)|L|
.

Iterating this `− 1 times using equation (3.10) leads to∑
|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1 `(3ki−σi+i)2−3(ki−2σi)kiT (L, 3k − σ + ρ)

=
∑

n1,...,n`−1∈Z2
+

q
1
2

P`−2
j=1NjCNj+

1
2
N`−1BN`−1

(q)L−N1(q)n1 · · · (q)n`−1
(q)|n`−1|

,

where Bi,j = 2δi,j + δ|i−j|,1, i, j = 1, 2. Letting L1, L2 go to infinity and using
the Macdonald identity (4.3) gives the following theorem (theorem 5.3 of [9]
with i = k).

Theorem 4.4. For |q| < 1, k ≥ 2 and Nj = nj + · · ·+ nk−1,

∑
n1,...,nk−1∈Z2

+

q
1
2

Pk−2
j=1 NjCNj+

1
2
Nk−1BNk−1

(q)n1 · · · (q)nk−1
(q)|nk−1|

=
(qk−1, qk, qk, q2k−1, q2k−1, q2k, q3k−1, q3k−1; q3k−1)∞

(q)3
∞

.

For k = 2 the above identity is the first Rogers–Ramanujan identity (2.6) in
disguise [9].
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It remains to find identities for moduli congruent to 0 (mod 3). What is
needed now is the A2 analogue of identity (3.4) provided by Gessel and Krat-
tenthaler (equation (6.18) of [17]).

Proposition 4.5. For L ∈ Z2
+,

(4.4)
∑
|k|=0

∑
σ∈S3

ε(σ)q
1
2

P3
i=1(3ki−σi+i)2T (L, 3k − σ + ρ) =

(q3; q3)|L|
(q3; q3)L(q)2

|L|
.

Applying theorem 3.2 this readily gives∑
|k|=0

∑
σ∈S3

ε(σ)q
`
2

P3
i=1(3ki−σi+i)2T (L, 3k − σ + ρ)

=
∑

n1,...,n`−1∈Z2
+

q
1
2

P`−1
j=1NjCNj(q3; q3)|n`−1|

(q)L−N1(q)n1 · · · (q)n`−2
(q3; q3)n`−1

(q)2
|n`−1|

.

When L1, L2 approach infinity this yields our final Rogers–Ramanujan-type
theorem (theorem 5.4 of [9] with i = k).

Theorem 4.6. For |q| < 1, k ≥ 2 and Nj = nj + · · ·+ nk−1,

∑
n1,...,nk−1∈Z2

+

q
1
2

Pk−1
j=1 NjCNj(q3; q3)|nk−1|

(q)n1 · · · (q)nk−2
(q3; q3)nk−1

(q)2
|nk−1|

=
(qk, qk, qk, q2k, q2k, q2k, q3k, q3k; q3k)∞

(q)3
∞

.

5. Reduction and inversion

So far, we have used the A1 and A2 summations (2.2), (3.9) and (3.10) to
derive complicated identities out of simpler ones. Of, course, when given a
complicated identity, it is of interest to know whether this identity is reducible
to a simpler one. That is, whether, iteration of some yet unknown simpler
identity produces the complicated identity. The answer to this question is
easily given, and in the case of A1 the following result holds [7] (which actually
is the q → 1/q version of (2.2))

(5.1)
M∑
L=0

(−1)M−Lq(
M−L

2 )−M2

(q)M−L
S(L, r) = q−r

2

S(M, r).

Iterating this identity using the invariance property (2.2) implies

N∑
M=0

qM
2

(q)N−M

M∑
L=0

(−1)M−Lq(
M−L

2 )−M2

(q)M−L
S(L, r) = S(N, r).
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Interchanging the two sums on the left-hand side and then shifting M →M+L
gives

N∑
L=0

S(L, r)

(q)N−L

N−L∑
M=0

(−1)Mq(
M
2 )
[
N − L
M

]
= S(N, r),

which is indeed true since, by (2.3), the inner sum yields δL,N . (Of course,
applying (5.1) to (2.2), instead of (2.2) to (5.1) is consistent with the above.)

In exactly the same way one can establish that

M∑
L=0

( 2∏
i=1

(−1)Mi−Liq(
Mi−Li

2 )

(q)Mi−Li

)
q−

1
2
MCM(q)|L|T (L, k) = q−

1
2

(k2
1+k2

2+k2
3)S(M,k)

and
M∑
L=0

( 2∏
i=1

(−1)Mi−Liq(
Mi−Li

2 )

(q)Mi−Li

)
q−

1
2
MCMT (L, k) = q−

1
2

(k2
1+k2

2+k2
3)T (M,k).

(The second equation can also be found by taking q → 1/q in (3.10).) Using
this one can see that the two initial condition identities (4.1) and (4.4) are
indeed “maximally reduced”. To further reduce (4.4), for example, one would
have to find “nice” representations for

M∑
L=0

( 2∏
i=1

(−1)Mi−Liq(
Mi−Li

2 )

(q)Mi−Li

)
q−

1
2
MCM (q3; q3)|L|

(q3; q3)L(q)2−τ
|L|

,

with τ either 0 or 1. This appears not to be possible. (Hence the analogy with
A1 breaks down in this case, since (2.7) can be reduced to

∑
r(−1)rS(L, r) =

(−1)L/(q2; q2)L using (5.1) and the q-Chu–Vandermonde sum.)
Another question of interest is that of inversion. For A1 it can be stated as

follows: find a function S̄(r, L) such that

(5.2)
∑
L≥0

S̄(r, L)S(L, s) = δr,s and
∑
r≥0

S(L, r)S̄(r,M) = δL,M .

In [4] Andrews provides the solution,

S̄(r, L) = (−1)r−Lq(
r−L

2 )(1− q2r)
(q)L+r−1

(q)r−L
,

with S̄(0, 0) = 1. This can be used to find further identities of the type

(5.3)
∑
r≥0

αrS(L, r) = βL,

since (5.2) and (5.3) imply

αr =
∑
L≥0

S̄(r, L)βL.
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For example, taking βL = δL,0 immediately yields αr = S̄(r, 0) = (−1)rq(
r
2)(1+

qr) and α0 = 1, which gives identity (2.3).
The A2 analogue of the inversion formula (5.2) can be stated as follows:

(5.4)
∑

L1,L2≥0

S̄(k, L)S(L, k′) = δk,k′ and
∑

k1≥k2≥k3
|k|=0

S(L, k)S̄(k, L′) = δL,L′ .

To see that the inverse supernomial S̄(L, k) exists we observe that S(L, k) (for
k1 ≥ k2 ≥ k3 and |k| = 0) is non-zero if and only if 2L1 ≥ L2, 2L2 ≥ L1,
k3 ≥ −L1 and k1 ≤ L2. Hence, if we define K = (k1 + k2, k1) and write
S(L,K) instead of S(L, k) it follows that S(L,K) is non-zero if and only if

(5.5) K1 ≤ L1, K2 ≤ L2

and

(5.6) 2K1 ≥ K2, 2K2 ≥ K1, 2L1 ≥ L2, 2L2 ≥ L1.

Consequently, if we view S(L,K) as an entry of an infinite-dimensional matrix
with L and K in the ranges given by (5.6), then equation (5.5) implies that S is
invertible. We have computed S̄(K,L) for many different L and K, and despite
the fact that we identified S̄(K,L) for all K = (r, 2r − p) with p = 0, . . . , 3
we failed to observe enough regularity to guess (and then prove, of course) a
formula for arbitrary K. For those in for a challenge, here are the cases p = 0
and 1, (S̄((0, 0), (0, 0)) = 1)

S̄((r, 2r), L) = (−1)L2q(
r−L1

2 )+(r+L1−L2
2 )(1− q3r)

(q)L2+r−1

(q)r−L1

and

S̄((r,2r − 1), L) = (−1)L2+1q(
r−L1

2 )+(r+L1−L2−1
2 )(1− q3r−2)

(q)L2+r−2(q)L1−L2+r

(q)r−L1(q)L1−L2+r−1

− (−1)L2+1q(
r−L1−1

2 )+(r+L1−L2−1
2 )+3r−3 (q)L2+r−2(q)1

(q)r−L1−1

,

both for r ≥ 1. (To correctly get S̄((1, 1), (0, 0)), first set L1 = L2 = 0 and
simplify to S̄((2, 2r − 1), (0, 0)) = −qr(r−2)(q + qr + q2r). Then set r = 1.)

The situation for T (L, k) is much simpler, in that an inverse does not exists.
Indeed, assuming again that k1 ≥ k2 ≥ k3 (and, of course, |k| = 0), and writing
T (L,K), we find that T (L,K) is non-zero if and only if (5.5) and

(5.7) 2K1 ≥ K2, 2K2 ≥ K1, L1 ≥ 0, L2 ≥ 0

hold. Hence, viewing T as an infinite-dimensional matrix with rows indexed by
L and columns by K, with ranges given by (5.7), T is no longer invertible, its
rows and columns ranging over different (infinite) sets. (A right and/or a left
inverse might of course exist, but the highly overdetermined set of equations
does not admit a solution.)
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6. Higher rank and level

Perhaps the two most important open questions are those of generalizing
theorem (3.2) to An−1 and to higher level.

First addressing the An−1 problem, we would like to establish the arbitrary
rank version of the A1 sum (2.2) and the A2 summations (3.9) and (3.10).
As mentioned in section 3.3, the non-trivial nature of theorem 3.2, has so-far
prevented us from making much progress in this direction. The only general
result that we have established can be stated as follows.

Proposition 6.1. Let L ∈ Zn−1
+ and k ∈ Zn such that |k| = 0 and let S(L, k)

be the An−1 supernomial of equation (3.7). Then, for M1,Mn−1 ∈ Z+,

(6.1)
∑

L∈Zn−1
+

q
1
2
LCLS(L, k)

(q)M1−L1(q)Mn−1−Ln−1

=
q

1
2

Pn
i=1 k

2
i (q)n−1

M1+Mn−1∏n
i=1(q)M1+ki(q)Mn−1−ki

.

The proof of this only requires the q-Chu–Vandermonde sum and will be
presented in the appendix. Letting M1,Mn−1 tend to infinity, this result yields
an An−1 version of what is referred to in ref. [8] as the weak form of Bailey’s
lemma,

(6.2)
∑
L∈Z+

q
1
2
LCLS(L, k) =

q
1
2

Pn
i=1 k

2
i

(q)n−1
∞

.

Thus, given a supernomial identity one may derive a new q-series identity by
the above summation, but one cannot iterate ad infinitum.

For A3 we further have the following isolated result.

Proposition 6.2. Let L ∈ Z3
+ and k ∈ Z4 such that |k| = 0 and let S(L, k) be

the A3 supernomial of equation (3.7). Then, for M2 ∈ Z+,

(6.3)
∑
L∈Z3

+

q
1
2
LCLS(L, k)

(q)M2−L2

=
q

1
2

P4
i=1 k

2
i (q)2

2M2∏
1≤i<j≤4(q)M2+ki+kj

.

But even for A3 we have not found a sufficiently simple expression for the
more general ∑

L∈Z3
+

q
1
2
LCLS(L, k)

(q)M−L

(with M ∈ Z3
+) to suggest how (after taking out possible factors) to iterate

further.
Another important problem is to generalize (6.2) to higher levels. Here the

observation is that 1/(q)n−1
∞ (divided by q(n−1)/24) is the level-1 A

(1)
n−1 string

function. It is thus natural to ask for a generalization of (6.2) involving level-
N An−1 string functions [20]. The simplest such functions admit the following
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representation

Ck(q) =
1

(q)n−1
∞

∑
η

q
1
2
η(C⊗C−1)η

(q)η
,

for k ∈ Zn such that |k| = 0. Here η is a vector in the tensor-product space

Zn−1 ⊗ ZN−1 with entries η
(a)
j , a = 1, . . . , n − 1, j = 1, . . . , N − 1, C ⊗ C−1

denotes the tensor product of the An−1 Cartan matrix and the inverse AN−1

Cartan matrix, and the sum is over η such that∑n−1
i=a ki
N

−
N−1∑
j=1

C−1
1,j η

(a)
j ∈ Z, a = 1, . . . , n− 1.

Multiplied by q−(n2−1)N/24(N+n), Ck is the string function CΛ
µ in the representa-

tion of Georgiev [16], with Λ = NΛ0 and µ =
∑n−1

a=1(ka−ka−1)Λ̄a (k0 = kn). It
was conjectured in [37] (equation (9.9) with ` = λ = σ = 0) that the following
identity holds.

Conjecture 6.3. For n ≥ 2, N ≥ 1 and k ∈ Zn such that |k| = 0,

(6.4)
∑

L∈Zn−1
+

q
1

2N
LCLS(L, k)

∑
η

q
1
2
η(C⊗C−1)η

[
µ+ η

η

]
= q

1
2N

(k2
1+···+k2

n)Ck(q).

Here the following notation is employed on the left-hand side. The sum over
η ∈ Zn−1 ⊗ ZN−1 denotes a sum such that

La
N
−

N−1∑
j=1

C−1
1,j η

(a)
j ∈ Z, a = 1, . . . , n− 1.

The vector µ is fixed by η through the equation

(C ⊗ I)η + (I ⊗ C)µ = CL⊗ eN−1,

where I is the identity matrix and ej is the jth standard unit vector. For
v, w ∈ Zp,

[
v+w
v

]
=
∏p

i=1

[
vi+wi
vi

]
. A proof of conjecture 6.3 for n = 2 has been

given in [36].
The simplest application of the previous propositions and conjecture requires

the An−1 form of equations (3.3) and (4.1).

Proposition 6.4. For L ∈ Zn−1 such that CL ∈ Zn−1
+ ,

(6.5)
∑
|k|=0

∑
σ∈Sn

ε(σ)q
1
2

Pn
i=1(nki−2σi)kiS(L, nk − σ + ρ) = δL1,0 . . . δLn−1,0.

A proof using crystal base theory has recently been obtained by Schilling
and Shimozono (equation. (6.6) of [35]). If we apply proposition 6.1 to this



SUPERNOMIAL COEFFICIENTS . . . 15

identity we find a doubly bounded An−1 Euler identity,∑
|k|=0

q(
n+1

2 )
Pn
i=1 k

2
i+(n+1)

Pn
i=1 iki det

1≤i,j≤n

(
qj(j−i−nki)

[
M+M ′

M+i−j+nki

])
=
[
M+M ′

M

]
,

where we have traded the sum over Sn for a determinant. Using some results
of [17] this can be rewritten in q-hypergeometric notation as

(6.6)
∑
|k|=S

q(
n+1

2 )
Pn
i=1 k

2
i+

Pn
i=1 iki

∏
1≤i<j≤n

(1− qnkj−nki+j−i)

×
n∏
i=1

(q)M+M ′+i−1

(q)M+nki+i−1(q)M ′−nki−i+n
= (−1)(n−1)Sq(n+1)(S+1

2 )[M+M ′

M+S

]
.

This generalizes Milne’s theorem 1.9 of [26] (or theorem 6.1 of [27]), which
is recovered when M = 0 and M ′ → ∞. It also generalizes theorem 22 of
Gessel and Krattenthaler [17] which corresponds to (6.6) with M ′ → ∞. A
proof of (6.6) based on Milne and Lilly’s An−1 analogue of Watson’s q-Whipple
transform [29] has recently been found by Krattenthaler [22].

If instead of (6.1) we use (6.3) it follows that

(6.7)
∑
|k|=S

q10
P4
i=1 k

2
i+

P4
i=1 iki

∏
1≤i<j≤4

1− q4kj−4ki+j−i

(q)M+4ki+4kj+i+j−3

=
(−1)Sq5(S+1

2 )

(q)2M+4S+4(q)2M+4S+2(q)M+2S

which we have failed to recognize as a (generalization of a) known A3 q-hyper-
geometric identity. In fact, (6.7) is very misleading in that it incorrectly hints
at the possibility to sum∑
|k|=S

q(
n+1

2 )
Pn
i=1 k

2
i+

Pn
i=1 iki

∏
1≤i<j≤n

(1− qnkj−nki+j−i)

×
∏

1≤i1<···<ip≤n

1

(q)M+nki1+···+nkip+i1+···+ip−(p+1
2 )
.

Computer experimentations reveal that only for p = 1 and p = n−1 (equation
(6.6) with M ′ → ∞ and (6.6) with M → ∞) and for n = 3, p = 2 this is the
case.

Finally we note that a level-N An−1 Euler identity is obtained if we sum
(6.5) by application of (6.4),

(6.8)
∑
|k|=0

∑
σ∈Sn

ε(σ)q
1
2

Pn
i=1(nki−2σi)ki+

1
N

(nki−σi+i)2Cnk−σ+ρ(q) = 1.
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7. Supernomial identities and beyond?

So far we have given two applications of theorem 3.2, based on the initial con-
dition identities (4.1) and (4.4). Many more identities can however be derived.
In ref. [37] an infinite hierarchy of A2 supernomial identities was conjectured,
of which (4.1) is the first instance. Taking this conjectured hierarchy as input
to theorem 3.2 leads to a doubly-infinite family of A2 q-series identities. We
will not carry out this programme in full here, but shall instead make some
intriguing observations concerning some of the identities that may be derived.
In fact, since all will be conjectural, we shall present our speculations in a more
general An−1 setting.

First we need the conjecture of [37] (equation (9.2) with q → 1/q andN = 1).
Using the tensor-product notation of the previous section we define for all
integers p ≥ n,

Fp,L(q) =
q

LCL
2(p−n)

(q)CL

∑
µ

q
1
2
η(C⊗C−1)η

[
µ+ η

µ

]
.

Here L ∈ Zn−1
+ , C ⊗C−1 is the tensor product of the An−1 and inverse Ap−n−1

Cartan matrices, and the sum is over µ ∈ Zn−1 ⊗ Zp−n−1, with entries µ
(a)
j ,

a = 1, . . . , n− 1, j = 1, . . . , p− n− 1, such that

(7.1) (C−1 ⊗ I)µ ∈ Zp−n−1.

The vector η is determined by L and µ through the relation

(7.2) η = L⊗ e1 − (C−1 ⊗ C)µ.

As special cases we have

Fn,L(q) = δL1,0 . . . δLn−1,0

and

Fn+1,L(q) =
q

1
2
LCL

(q)CL
.

Conjecture 7.1. For n ≥ 2, p ≥ n, L ∈ Zn−1
+ and k ∈ Zn such that |k| = 0,

(7.3)
∑
|k|=0

∑
σ∈Sn

ε(σ)q
1
2

Pn
i=1(pki−2σi)kiS(L, pk − σ + ρ) = Fp,L(q).

For p = n the conjecture becomes proposition 6.4 and for p = n+ 1 a proof
has been found by Schilling and Shimozono (equation. (6.5) of [35]).

Now we apply proposition 6.1 to this conjecture and replace p by p − 1.
Extending definition (3.11) of T to An−1 by

T (L, k) =
1

(q)2
L1+L2

n∏
i=1

[
L1 + L2

L1 + ki

]
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for |k| = 0, this gives

(7.4)
∑
|k|=0

∑
σ∈Sn

ε(σ)qφp,k,σT (M, (p− 1)k − σ + ρ)

=
1

(q)|M |

∑
µ

q
1
2
µ(C−1⊗C)µ

(q)
M1−

P
b C
−1
1,bµ

(b)
1

(q)
M2−

P
b C
−1
n−1,bµ

(b)
1

[
µ+ η

µ

]
,

where the sum over µ is again restricted by (7.1), η is given by (7.2) with
L→ (∞n−1) and

φp,k,σ =
1

2

n∑
i=1

((p− 1)ki − 2σi)ki + ((p− 1)ki − σi + i)2.

Next we observe that a very similar identity can be derived by replacing
q → 1/q in (7.3). Defining the reciprocal An−1 supernomial T ′ as

T ′(L, k) ∼ S(L, k; 1/q)

such that T ′(L, k) =
∑

j≥0 ajq
j with a0 > 0, we find

(7.5)
∑
|k|=0

∑
σ∈Sn

ε(σ)qφp,k,σT ′(L, pk − σ + ρ) =
∑
µ

q
1
2
µ(C−1⊗C)µ

(q)CL

[
µ+ η

µ

]
,

where (7.1) and (7.2) again apply.
Still this is not the end of the story. In [17] Gessel and Krattenthaler gener-

alized plane partitions to what they termed cylindric partitions. For a special
class of these cylindric partitions they derived an expression for the generating
function close to the left-hand sides of (7.4) and (7.5). Supported by com-
puter checks, we turn this into the following conjecture. For L,M ∈ Z+ and
k, k′ ∈ Zn such that |k| = |k′| = 0, set

T ′′(L,M, k, k′) =
n∏
i=1

[
M + L− ki + k′i

L− ki

]
.

Then, for L,M ∈ Z+,

(7.6)
∑
|k|=0

∑
σ∈Sn

ε(σ)qφp,k,σT ′′(L,M, pk − σ + ρ, (p− 1)k − σ + ρ)

=
∑
µ

q
1
2
µ(C−1⊗C)µ

[
M + nL−

∑
bC
−1
1,bµ

(b)
1

nL

][
µ+ η

µ

]
with sum over η as in (7.1) and η given by

η = nL(C−1e1 ⊗ e1)− (C−1 ⊗ C)µ.

The left-hand side of this identity coincides with the generating function in
theorem 3 of [17] with r → n, λ → (Ln), µ → (0n), d → p − n, α → (0p−n),
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β → (0, . . . , 0, n − p + 1), ai → M and bi → 0. For p = n + 1 the above is
identity (6.2) of [17].

We note that (7.4), (7.5) and (7.6) are consistent. Specifically, (7.4) with
M2 →∞ and (7.6) with L→∞ coincide (identifying M1 with M), and (7.5)
with L = ((n−1)L1, . . . , 2L1, L1) and (7.6) with M →∞ coincide (identifying
L1 and L).

The three above conjectures strongly suggest the existence of a unifying
identity of the form

(7.7)
∑
|k|=0

∑
σ∈Sn

ε(σ)qφp,k,σT (L,M, pk − σ + ρ, (p− 1)k − σ + ρ)

=
∑
µ

q
1
2
µ(C−1⊗C)µ

n−1∏
a=1

([Ma + (CL)a −
∑

bC
−1
a,bµ

(b)
1

(CL)a

])[µ+ η

µ

]

with sum over µ such that (7.1) holds, η given by (7.2) and L,M ∈ Zn−1
+ . The

generalized supernomial T (L,M, k, k′) (where L,M ∈ Zn−1, k, k′ ∈ Zn and
|k| = |k′| = 0) must satisfy the following consistency conditions:

lim
CL→(∞n−1)

T (L, (M1, 0
n−3,M2), k, k′) = T ((M1,M2), k)(q)M1+M2

lim
M→(∞n−1)

T (L,M, k, k′) = T ′(L, k)

T (((n− 1)L1, . . . , 2L1, L1), (M1, 0
n−2), k, k′) = T ′′(L1,M1, k, k

′).

(The first condition applies when n ≥ 3 only.) A further restriction on the
possible form of T is obtained by observing that the right-hand side is, up to
a factor qMCL, invariant under the change q → 1/q, so that

T (L,M, k, k′; 1/q)

T (L,M, k, k′; q)
= q−MCL+

Pn
i=1 kik

′
i .

Despite these strong restrictions on T (especially when n = 3) we have not
succeeded in finding a closed form expression when n ≥ 3. For n = 2 the
third condition specifies T and (7.7) has been proven in [14] using the Burge
transform [13].
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Appendix A. Proof of proposition 6.1

To prove the proposition we recall the definitions (3.1) and (3.7) of the An−1

supernomials. Inserting these, the left-hand side of (6.1) corresponds to the
following multiple sum

(A.1)
∑

L∈Zn−1
+

∑
ν

q
1
2
LCL

(q)M1−L1(q)Mn−1−Ln−1(q)CL

n−1∏
a=1

a∏
j=1

[
ν

(a+1)
j − ν(a+1)

j+1

ν
(a)
j − ν

(a+1)
j+1

]
,

where the sum over ν denotes a sum over the variables ν
(a)
j for 1 ≤ a ≤ n and

1 ≤ j ≤ a such that

ν
(n)
j = Ln−1 + Lj − Lj−1, j = 1, . . . , n

(with L0 = Ln = 0) and

a∑
j=1

ν
(a)
j −

a−1∑
j=1

ν
(a−1)
j = Ln−1 − ka

Instead of working with the variables L and ν
(a)
j we find it more convenient

to introduce new variables µ
(a)
j = ν

(a+1)
j −ν(a)

j for 1 ≤ a ≤ n−1 and 1 ≤ j ≤ a.
If we also define the quantities

A
(a)
j = ka+1 − kj +

a−j∑
i=1

µ
(a−i)
j −

j−1∑
i=1

µ
(j−1)
i ,

(again for 1 ≤ a ≤ n − 1 and 1 ≤ j ≤ a) then it is elementary to show the
following string of relations:

ν
(a)
j =

{
Ln−1 − ka + µ

(a−1)
j + A

(a−1)
j for j = 1, . . . a− 1,

Ln−1 − ka −
∑a−1

i=1 µ
(a−1)
i for j = a,

a∑
j=1

A
(a)
j = aka+1 −

a∑
j=1

kj,

La =
a∑
j=1

(µ
(n−1)
j + A

(n−1)
j − kn),

and

ν
(n)
j − ν

(n)
j+1 = (CL)j =

{
µ

(n−1)
j − µ(n−1)

j+1 + A
(n−1)
j − A(n−1)

j+1 j = 1, . . . , n− 2,

µ
(n−1)
n−1 +

∑n−1
i=1 µ

(n−1)
i + A

(n−1)
n−1 j = n− 1.
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Using all of these, the expression (A.1) can be rewritten as

q
1
2

Pn
i=1 k

2
i

∑
µ

q
Pn−1
a=1

Pa
j=1 µ

(a)
j (A

(a)
j +

Pj
i=1 µ

(a)
i )

(q)
M1+kn−A(n−1)

1 −µ(n−1)
1

(q)
Mn−1−kn−

Pn−1
j=1 µ

(n−1)
j

× (q)−1

µ
(n−1)
n−1 +

Pn−1
j=1 µ

(n−1)
j +A

(n−1)
n−1

n−2∏
j=1

(q)−1

µ
(n−1)
j −µ(n−1)

j+1 +A
(n−1)
j −A(n−1)

j+1

×
n−1∏
a=1

([
µ

(a)
a +

∑a
j=1 µ

(a)
j + A

(a)
a

µ
(a)
a

] a−1∏
j=1

[
µ

(a)
j − µ

(a)
j+1 + A

(a)
j − A

(a)
j+1

µ
(a)
j

])
.

Observing that A
(a)
j depends on µ

(b)
k with 1 ≤ b ≤ a − 1 only, we can now

successively sum over µ(n−1), . . . , µ(1) by repeatedly applying

(A.2)
∑
µ(a)

q
Pa
j=1 µ

(a)
j (A

(a)
j +

Pj
i=1 µ

(a)
i )

(q)
M1+ka+1−A(a)

1 −µ
(a)
1

(q)
Mn−1−ka+1−

Pa
j=1 µ

(a)
j

× 1

(q)
µ

(a)
a

(q)
A

(a)
a +

Pa
j=1 µ

(a)
j

∏a−1
j=1(q)

µ
(a)
j

(q)
A

(a)
j −A

(a)
j+1−µ

(a)
j+1

=
(q)M1+Mn−1

(q)M1+ka+1(q)Mn−1−ka+1(q)M1+ka+1−A(a)
1

(q)
Mn−1−ka+1+A

(a)
a

∏a−1
j=1(q)

A
(a)
j −A

(a)
j+1

and by rewriting the right-hand side as

(A.3)
(q)M1+Mn−1

(q)M1+ka+1(q)Mn−1−ka+1(q)M1+ka−A(a−1)
1 −µ(a−1)

1
(q)

Mn−1−ka−
Pa−1
j=1 µ

(a−1)
j

× 1

(q)
A

(a−1)
a−1 +µ

(a−1)
a−1 +

Pa−1
j=1 µ

(a−1)
j

a−2∏
j=1

1

(q)
A

(a−1)
j −A(a−1)

j+1 +µ
(a−1)
j −µ(a−1)

j+1

using

A
(a)
j =

{
ka+1 − ka + A

(a−1)
j + µ

(a−1)
j for j = 1, . . . , a− 1,

ka+1 − ka −
∑a−1

i=1 µ
(a−1)
i for j = a.

The final sum over µ1 then yields the right-hand side of (6.1). The proof of

the key identity (A.2) follows by successively summing over µ
(a)
a , . . . , µ

(a)
1 using

the q-Chu–Vandermonde sum (equation (3.3.10) of [3]),∑
j≥0

qj(j+a)

[
b

j

][
a+ c

j + a

]
=

[
a+ b+ c

c

]
.

Of course, in a complete proof, the statements that one can successively
sum over the µ(n−1), . . . , µ(1) using (A.2) and (A.3), and that (A.2) follows from
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successively summing over µ
(a)
a , . . . µ

(a)
1 require a proof by induction. This takes

(a lot of) space, but requires no intellectual effort other than that of avoiding
typos. It is therefore omitted here.
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