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Abstract. The famous Rogers–Ramanujan and Andrews–Gordon iden-
tities are embedded in a doubly-infinite family of Rogers–Ramanujan-
type identities labelled by positive integers m and n. For fixed m and
n the product side corresponds to a specialised character of the affine

Kac–Moody algebra A
(2)
2n at level m, and is expressed as a product of

n2 theta functions of modulus 2m+ 2n+ 1, or by level-rank duality, as
a product of m2 theta functions. Rogers–Ramanujan-type identities for

even moduli, corresponding to the affine Lie algebras C
(1)
n and D

(2)
n+1,

and arbitrary moduli, corresponding to A
(1)
n−1, are also proven.

1. Introduction

The celebrated Rogers–Ramanujan (RR) identities [43]

(1.1) 1 +
∞∑
r=0

qr(r+σ)

(1− q) · · · (1− qr)
=
∞∏
j=0

1

(1− q5j+σ+1)(1− q5j−σ+4)

for σ = 0, 1 are two of the most important combinatorial identities in all
of mathematics, with a remarkably wide range of applications. First recog-
nised by MacMahon and Schur as identities for integer partitions [39, 45],
they have since been linked to algebraic geometry [14], K-theory [15], con-
formal field theory [10,27], group theory [18], Kac–Moody and double affine
Hecke algebras [16,31–36], knot theory [6,23,24], modular forms [13,41], or-
thogonal polynomials [7, 12, 20], statistical mechanics [4, 9], probability [19]
and transcendental number theory [42].

In 1974 Andrews [1] extended (1.1) to an infinite family of Rogers–Rama-
nujan-type identities by proving that
(1.2) ∑
r1≥···≥rm≥0

qr
2
1+···+r2m+ri+···+rm

(q)r1−r2 · · · (q)rm−1−rm(q)rm
=

(q2m+3; q2m+3)∞
(q)∞

θ(qi; q2m+3),

where 1 ≤ i ≤ m + 1, (a)k = (a; q)k = (1 − a)(1 − aq) · · · (1 − aqk−1) (for
k ∈ {0, 1, . . . } ∪ {∞}) a q-shifted factorial and θ(a; q) = (a; q)∞(q/a; q)∞ a
modified theta function. The identities (1.2), which can be viewed as the
analytic counterpart of Gordon’s partition theorem [21], are now commonly
referred to as the Andrews–Gordon (AG) identities.
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The various Lie-algebraic interpretations of the Rogers–Ramanujan and
Andrews–Gordon identities attach algebras of low rank to (1.1) and (1.2).
For example, from the above-cited works of Milne, Lepowsky and Wilson
it follows that they arise as principally specialised characters of integrable

highest-weight modules of the affine Kac–Moody algebra A
(1)
1 . This raises

the question as to whether (1.1) and (1.2) can be embedded in a larger family
of Rogers–Ramanujan-type identities by considering specialised characters of

an appropriately chosen affine Lie algebra X
(r)
N for arbitrary N . In [5] (see

also [17, 49]) some partial results concerning this question were obtained,

resulting in Rogers–Ramanujan-type identities for A
(1)
2 . Unfortunately, the

approach of [5] does not in any obvious manner extend to A
(1)
n for all n.

In this paper we give a more satisfactory answer to the above question

by proving Rogers–Ramanujan and Andrews–Gordon identities for A
(2)
2n for

arbitrary n. In their most compact form, the sum-sides are expressed in
terms of Hall–Littlewood polynomials Pλ(x; q) evaluated at infinite geomet-
ric progressions.

Let θ(a1, . . . , ak; q) = θ(a1; q) · · · θ(ak; q) and for λ = (λ1, λ2, . . . ) an inte-
ger partition, let |λ| := λ1 + λ2 + · · · , 2λ := (2λ1, 2λ2, . . . ) and λ′ the con-
jugate of λ. For example, if λ = (5, 3, 3, 1) then |λ| = 12, 2λ = (10, 6, 6, 2)
and λ′ = (4, 3, 3, 1, 1).

Theorem 1.1 (A
(2)
2n RR and AG identities). For m and n positive integers

let κ = 2m+ 2n+ 1. Then∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
(1.3a)

=
(qκ; qκ)n∞

(q)n∞

n∏
i=1

θ
(
qi+m; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
and ∑

λ
λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
(1.3b)

=
(qκ; qκ)n∞

(q)n∞

n∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j ; qκ

)
=

(qκ; qκ)m∞
(q)m∞

m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j ; qκ

)
.

We note the beautiful level-rank duality exhibited by the products on the
right, especially those of (1.3b). We also note that for n = 1 we recover
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the Rogers–Ramanujan identities and the i = 1 and m+ 1 instances of the
Andrews–Gordon identities in a representation due to Stembridge [47] (see
also [18]). The equivalence with (1.1) and (1.2) follows from the specialisa-
tion formula [38, p. 213]

q(σ+1)|λ|P2λ(1, q, q2, . . . ; q) =
∏
i≥1

qri(ri+σ)

(q)ri−ri+1

, ri := λ′i,

and the fact that λ1 ≤ m implies that λ′i = ri = 0 for i > m. As shown in
the next section, the more general Pλ(1, q, q2, . . . ; qn) is also expressible in
terms of q-shifted factorials, allowing for a formulation of Theorem 1.1 free
of Hall–Littlewood polynomials.

We have also found an even modulus analogue of Theorem 1.1. Surpris-
ingly, the σ = 0 and σ = 1 cases correspond to dual affine Lie algebras.

Theorem 1.2 (C
(1)
n RR and AG identities). For m and n positive integers

let κ = 2m+ 2n+ 2. Then∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)
(1.4)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q)n+1
∞

×
n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j ; qκ

)
=

(qκ; qκ)m∞
(q)m∞

m∏
i=1

θ
(
qi+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j+1; qκ

)
.

Theorem 1.3 (D
(2)
n+1 RR and AG identities). For m and n positive integers

such that n ≥ 2 let κ = 2m+ 2n. Then∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−2

)
(1.5)

=
(qκ; qκ)n∞

(q2; q2)∞(q)n−1
∞

∏
1≤i<j≤n

θ
(
qj−i, qi+j−1; qκ

)
=

(qκ; qκ)m∞
(q)m∞

m∏
i=1

θ
(
qi; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j ; qκ

)
.

The (m,n) = (1, 2) case of (1.5) is equivalent to Milne’s modulus 6
Rogers–Ramanujan identity [40, Theorem 3.26].

By combining (1.3)–(1.5) we obtain an identity of mixed type.
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Corollary 1.4. For m and n positive integers let κ = 2m+ n+ 2. Then

(1.6)
∑
λ

λ1≤m

q(σ+1)|λ|P2λ

(
1, q, q2, . . . ; qn

)

=
(qκ; qκ)m∞

(q)m∞

m∏
i=1

θ
(
qi−σ+1; qκ

) ∏
1≤i<j≤m

θ
(
qj−i, qi+j−σ+1; qκ

)
,

where σ = 0, 1.

Rogers–Ramanujan-type identities for A
(1)
n−1 also exist, although their for-

mulation is perhaps slightly less satisfactory, involving a limit.

Theorem 1.5 (A
(1)
n−1 RR and AG identities). For m and n positive integers

let κ = m+ n. Then

lim
r→∞

q−m(r2)P(mr)(1, q, q
2, . . . ; qn) =

(qκ; qκ)n−1
∞

(q)n∞

∏
1≤i<j≤n

θ(qj−i; qκ)

=
(qκ; qκ)m−1

∞
(q)m∞

∏
1≤i<j≤m

θ(qj−i; qκ).

The remainder of this paper is organised as follows. In the next section
we recall some basic definitions and facts from the theory of Hall–Littlewood
polynomials and use this to give an alternative, combinatorial representa-
tion for the left-hand side of (1.6). Then, in Sections 3 and 4, we prove
Theorems 1.1–1.3 and Theorem 1.5, respectively, and interpret each of the
theorems from the point of view of representation theory.

2. The Hall–Littlewood polynomials

Let λ = (λ1, λ2, . . . ) be a partition [3], i.e., λ1 ≥ λ2 ≥ · · · such that
only finitely-many λi > 0. The positive λi are called the parts of λ and
the number of parts, denoted l(λ), is the length of λ. The size |λ| of λ is
the sum of its parts. The diagram of λ consists of l(λ) left-aligned rows of
squares such that the ith row contains λi squares. For example, the diagram
of ν = (6, 4, 4, 2) of length 4 and size 16 is

The conjugate partition λ′ follows by transposing the diagram of λ. For
example, ν ′ = (4, 4, 3, 3, 1, 1). The nonnegative integers mi = mi(λ), i ≥ 1
give the multiplicities of parts of size i, so that |λ| =

∑
i imi. It is easy to

see that mi = λ′i − λ′i+1. We say that a partition is even if all its parts are
even. Note that λ′ is even if all multiplicities mi(λ) are even. The partition
ν in our example is an even partition. Given two partitions λ, µ we write
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µ ⊆ λ if the diagram of µ is contained in the diagram of λ, or, equivalently,
if µi ≤ λi for all i. To conclude our discussion of partitions we define the
generalised q-shifted factorial bλ(q) as

(2.1) bλ(q) =
∏
i≥1

(q)mi =
∏
i≥1

(q)λ′i−λ′i+1
.

Hence bν(q) = (q)2
1(q)2.

For a fixed positive integer n, let x = (x1, . . . , xn). Given a partition

λ such that l(λ) ≤ n, write xλ for the monomial xλ11 . . . xλnn and define
vλ(q) =

∏n
i=0(q)mi/(1 − q)mi , where m0 := n − l(λ). The Hall–Littlewood

polynomial Pλ(x; q) is defined as the symmetric function [38]

Pλ(x; q) =
1

vλ(q)

∑
w∈Sn

w

(
xλ
∏
i<j

xi − qxj
xi − xj

)
,

where the symmetric group Sn acts on x by permuting the xi. It follows from
the definition that Pλ(x; q) is a homogeneous polynomial of degree |λ|, a fact
used repeatedly in the rest of this paper. Pλ(x; q) is defined to be identically
0 if l(λ) > n. The Hall–Littlewood polynomials may be extended in the usual
way to symmetric functions in countably-many variables, see [38]. Below we
only need this for x a geometric progression.

For x = (x1, x2, . . . ) not necessarily finite, let pr be the r-th power sum
symmetric function

pr(x) = xr1 + xr2 + · · · ,

and pλ =
∏
i≥1 pλi . The power sums {pλ(x1, . . . , xn)}l(λ)≤n form a Q-basis

of the ring of symmetric functions in n variables. If φq denotes the ring
homomorphism φq(pr) = pr/(1 − qr), then the modified Hall–Littlewood
polynomials P ′λ(x; q) are defined as the image of the Pλ(x; q) under φq:

P ′λ = φq
(
Pλ
)
.

We also require the Hall–Littlewood polynomials Qλ and Q′λ defined by

(2.2) Qλ(x; q) = bλ(q)Pλ(x; q) and Q′λ(x; q) = bλ(q)P ′λ(x; q).

Clearly, Q′λ = φq
(
Qλ
)
.

Up to the point where the x-variables are specialised, our proof of Theo-
rems 1.1–1.3 features the modified rather than the ordinary Hall–Littlewood
polynomials. Through specialisation we arrive at Pλ evaluated at a geomet-
ric progression thanks to

(2.3) P ′λ(1, q, . . . , qn−1; qn) = Pλ(1, q, q2, . . . ; qn),

which readily follows from

φqn
(
pr(1, q, . . . , q

n−1)
)

=
1− qnr

1− qr
· 1

1− qnr
= pr(1, q, q

2, . . . ).
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From [28, 50] we may infer the following combinatorial formula for the
modified Hall–Littlewood polynomials:

Q′λ(x; q) =
∑ λ1∏

i=1

n∏
a=1

x
µ
(a−1)
i −µ(a)i
a q(

µ
(a−1)
i

−µ(a)
i

2
)
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
q

,

where the sum is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0) = λ′ and[
n

m

]
q

=


(q)n

(q)m(q)n−m
if m ∈ {0, 1, . . . , n}

0 otherwise

is a q-binomial coefficient. Therefore, by (2.1)–(2.3),

(2.4)
∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; qn)

=
∑ 2m∏

i=1

{
q

1
2

(σ+1)µ
(0)
i

(qn; qn)
µ
(0)
i −µ

(0)
i+1

n∏
a=1

qµ
(a)
i +n(µ

(a−1)
i

−µ(a)
i

2
)
[
µ

(a−1)
i − µ(a)

i+1

µ
(a−1)
i − µ(a)

i

]
qn

}
,

where the sum on the right is over partitions 0 = µ(n) ⊆ · · · ⊆ µ(1) ⊆ µ(0)

such that (µ(0))′ is even and l(µ(0)) ≤ 2m. This may be used to express the
sum sides of (1.3)–(1.6) combinatorially. To see that (2.4) indeed generalises
the sums in (1.1) and (1.2), we note that the above simplifies for n = 1 to∑

λ
λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; q) =
∑ 2m∏

i=1

q
1
2
µi(µi+σ)

(q)µi−µi+1

summed on the right over partitions µ of length at most 2m whose conjugates
are even. Such partitions are characterised by the restriction µ2i = µ2i−1 =:
ri so that we get∑

λ
λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; q) =
∑

r1≥···≥rm≥0

m∏
i=1

qri(ri+σ)

(q)ri−ri+1

in accordance with (1.2). If instead we consider m = 1 and replace µ(j) by
(rj , sj) for j ≥ 0, we find

∞∑
r=0

q(σ+1)rP(2r)(1, q, q
2, . . . ; qn)

=
∑ q(σ+1)r0

(qn; qn)r0

n∏
j=1

qrj+sj+n(
rj−1−rj

2
)+n(sj−1−sj

2
)
[
rj−1 − sj
rj−1 − rj

]
qn

[
sj−1

sj

]
qn

=
(qn+4; qn+4)∞

(q)∞
θ
(
q2−σ; qn+4

)
,
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where the second sum is over r0, s0, . . . , rn−1, sn−1 such that r0 = s0, and
rn = sn := 0.

We conclude this section with a remark about Theorem 1.5. Due to the
occurrence of the limit, the left-hand side does not take the form of the
usual sum-side of a Rogers–Ramanujan-type identity. For special cases it is,
however, possible to eliminate the limit. For example, for partitions of the
form (2r) we found that

(2.5) P(2r)(1, q, q
2, . . . ; q2n+δ)

=
∑

r≥r1≥···≥rn≥0

qr
2−r+r21+···+r2n+r1+···+rn

(q)r−r1(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn

for δ = 0, 1. This turns the m = 2 case of Theorem 1.5 into

∑
r1≥···≥rn≥0

qr
2
1+···+r2n+r1+···+rn

(q)r1−r2 · · · (q)rn−1−rn(q2−δ; q2−δ)rn

=
(q2n+2+δ; q2n+2+δ)∞

(q)∞
θ(q; q2n+2+δ).

For δ = 1 this is the i = 1 case of the Andrews–Gordon identity (1.2) (withm
replaced by n). For δ = 0 it corresponds to an identity due to Bressoud [11].
We do not know how to generalise (2.5) to arbitrary rectangular shapes.

3. Proof of Theorems 1.1–1.3

3.1. The Watson–Andrews approach. In 1929 Watson proved the Rog-
ers–Ramanujan identities (1.1) by first proving a new basic hypergeometric
series transformation between a terminating balanced 4φ3 series and a ter-
minating very-well-poised 8φ7 series [48]

(3.1)
(aq, aq/bc)N
(aq/b, aq/c)N

N∑
r=0

(b, c, aq/de, q−N )r
(q, aq/d, aq/e, bcq−N/a)r

qr

=

N∑
r=0

1− aq2r

1− a
(a, b, c, d, e, q−N )r

(q, aq/b, aq/c, aq/d, aq/e)r

(
a2qN+2

bcde

)r
.

Here a, b, c, d, e are indeterminates, N is a nonnegative integer and

(a1, . . . , am)k = (a1, . . . , qm; q) = (a1; q)k · · · (am; q)k.
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By letting b, c, d, e tend to infinity and taking the nonterminating limit N →
∞, Watson arrived at what is known as the Rogers–Selberg identity [44,46]1

(3.2)
∞∑
r=0

arqr
2

(q)r
=

1

(aq)∞

∞∑
r=0

1− aq2r

1− a
(a)r
(q)r

(−1)ra2rq5(r2)+2r.

For a = 1 or a = q the sum on the right can be expressed in product-form
by the Jacobi triple-product identity

∞∑
r=−∞

(−1)rxrq(
r
2) = (q)∞ θ(x; q),

resulting in (1.1).
Almost 50 years after Watson’s work, Andrews showed that the Andrews–

Gordon identities (1.2) for i = 1 and i = m + 1 follow in much the same
manner from a multiple series generalisation of (3.1) in which the 8φ7 series
on the right is replaced by a terminating very-well-poised 2m+6φ2m+5 series
depending on 2m+ 2 parameters instead of b, c, d, e [2]. Again the key steps
are to let all these parameters tend to infinity, to take the nonterminating
limit and express the a = 1 or a = q instances of the resulting sum as a
product by the Jacobi triple-product identity.

Recently, in joint work with Bartlett, we obtained an analogue of An-
drews’ multiple series transformation for the Cn root system [8, Theorem
4.2]. Apart from the variables (x1, . . . , xn)—which play the role of a in (3.1),
and are related to the underlying root system—the Cn Andrews transforma-
tion again contains 2m+ 2 parameters. Unfortunately, simply following the
Andrews–Watson procedure is no longer sufficient. In [40] Milne already ob-
tained the Cn analogue of the Rogers–Selberg identity (3.2) (the m = 1 case
of (3.3) below) and considered specialisations along the lines of Andrews and
Watson. Only for C2 did this result in a Rogers–Ramanujan-type identity:
the modulus 6 case of (1.5) mentioned previously.

The initial two steps towards proof of (1.3)–(1.6), however, are the same
as those of Watson and Andrews: we let all 2m + 2 parameters in the Cn

Andrews transformation tend to infinity and take the nonterminating limit.
Then, as shown in [8], the right-hand side can be expressed in terms of
modified Hall–Littlewood polynomials, resulting in the level-m Cn Rogers–
Selberg identity

(3.3)
∑
λ

λ1≤m

q|λ|P ′2λ(x; q) = L(0)(x; q)

1Here and elsewhere in the paper we ignore questions of convergence. From an ana-
lytic point of view the transition from (3.1) to (3.2) requires the use of the dominated
convergence theorem, imposing the restriction |q| < 1 on the Rogers–Selberg identity.
We however choose to view this identity as an identity between formal power series in
q, in line with the combinatorial and representation-theoretic interpretations of Rogers–
Ramanujan-type identities.
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for

L(0)
m (x; q) :=

∑
r∈Zn+

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+1)ri
i q(m+1)r2i+n(ri2 )

×
n∏

i,j=1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.

Here

∆C(x) :=

n∏
i=1

(1− x2
i )

∏
1≤i<j≤n

(xi − xj)(xixj − 1)

is the Cn Vandermonde product and f(xqr) is shorthand for f(x1q
r1 , . . . , xnq

rn).
As mentioned previously, (3.3) for m = 1 is Milne’s Cn Rogers–Selberg for-
mula [40, Corollary 2.21].

Comparing the left-hand side of (3.3) with that of (1.3)–(1.5) it follows
that we should make the simultaneous substitutions

(3.4) q 7→ qn, xi 7→ q(n+σ+1)/2−i (1 ≤ i ≤ n).

Then, by the homogeneity and symmetry of the (modified) Hall–Littlewood
polynomials and (2.3),∑

λ
λ1≤m

q|λ|P ′2λ(x; q) 7−→
∑
λ

λ1≤m

q(σ+1)|λ|P2λ(1, q, q2, . . . ; qn).

The problem we face is that making the substitution (3.4) on the right-hand
side of (3.3) and then writing the resulting q-series in product form is very
difficult. To get around this problem, we take a rather different route and
(up to a small constant) first double the rank of the underlying Cn root
system and then take a limit in which products of pairs of x-variables tend
to one. To do so we require another result from [8].

First we need to extend our earlier definition of the q-shifted factorial
to (a)k = (a)∞/(aq

k)∞. Importantly, 1/(q)k = 0 for k a negative integer.
Then, for x = (x1, . . . , xn), p an integer such that 0 ≤ p ≤ n and r ∈ Zn,

(3.5) L(p)
m (x; q) :=

∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

x
2(m+p+1)ri
i q(m+1)r2i+(n+p)(ri2 )

×
n∏
i=1

n∏
j=p+1

(
−xi
xj

)ri (xixj)ri
(qxi/xj)ri

.

Note that the summand of L
(p)
m (x; q) vanishes if one of rp+1, . . . , rn < 0.

Lemma 3.1 ([8, Lemma A.1]). For 1 ≤ p ≤ n− 1,

(3.6) lim
xp+1→x−1

p

L(p−1)
m (x; q) = L(p)

m (x1, . . . , xp−1, xp+1, . . . , xn; q).
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This will be the key to the proof of all four generalised Rogers–Ramanujan
identities, although the level of difficulty varies considerably from case to
case. We begin with the simplest proof, that of (1.4).

3.2. Proof of the (1.4). By iterating (3.6) we obtain

lim
y1→x−1

1

. . . lim
yn→x−1

n

L(0)
m (x1, y1, . . . , xn, yn) = L(n)

m (x1, . . . , xn).

Hence, after replacing x 7→ (x1, y1, . . . , xn, yn) in (3.3) (which corresponds
to the doubling of the rank mentioned previously) and taking the yi → x−1

i
limit for 1 ≤ i ≤ n, we find

(3.7)
∑
λ

λ1≤m

q|λ|P ′2λ(x±; q) =
1

(q)n∞
∏n
i=1 θ(x

2
i ; q)

∏
1≤i<j≤n θ(xi/xj , xixj ; q)

×
∑
r∈Zn

∆C(xqr)
n∏
i=1

xκri−i+1
i q

1
2
κr2i−nri ,

where κ = 2m+ 2n+ 2 and f(x±) = f(x1, x
−1
1 , . . . , xn, x

−1
n ). Next we make

the simultaneous substitutions

(3.8) q 7→ q2n, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n),

which corresponds to (3.4) with (n, σ) 7→ (2n, 0). By

(q2n; q2n)n∞

n∏
i=1

θ(q2n−2i+1; q2n)
∏

1≤i<j≤n
θ(qj−i, q2n−i−j+1; q2n) =

(q)n+1
∞

(q2; q2)∞
,

and

q2n|λ|P ′2λ(qn−1/2, q1/2−n, . . . , q1/2, q−1/2; q2n)

= q2n|λ|P ′2λ(q1/2−n, q3/2−n, . . . , qn−1/2; q2n) by symmetry

= q|λ|P ′2λ(1, q, . . . , q2n−1; q2n) by homogeneity

= q|λ|P2λ(1, q, q2, . . . ; q2n) by (2.3),

this yields

(3.9)
∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n

)
=

(q2; q2)∞

(q)n+1
∞

M ,

where

M :=
∑
r∈Zn

∆C(x̂q2nr)

n∏
i=1

x̂κri−i+1
i qnr

2
i−2n2ri .

What remains is to express M in product form. As a first step we use
the Cn Weyl denominator formula [29, Lemma 2]

(3.10) ∆C(x) = det
1≤i,j≤n

(
xj−1
i − x2n−j+1

i

)
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as well as multilinearity, to write M as
(3.11)

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i qnκr

2−2n2r
(

(x̂iq
2nr)j−1 − (x̂iq

2nr)2n−j+1
))

.

We now replace (i, j) 7→ (n − j + 1, n − i + 1) and, viewing the resulting
determinant as being of the form det

(∑
r uij;r −

∑
r vij;r

)
, we change the

summation index r 7→ −r − 1 in the sum over vij;r. Then
(3.12)

M = det
1≤i,j≤n

(
qaij

∑
r∈Z

y2nr−i+1
i q2nκ(r2)+ 1

2
κr
(

(yiq
κr)j−1 − (yiq

κr)2n−j
))

,

where yi = qκ/2−i and aij = j2 − i2 + (i − j)(κ + 1)/2. Since the factor
qaij does not contribute to the determinant, we can apply the Bn Weyl
denominator formula [29]
(3.13)

det
1≤i,j≤n

(
xj−1
i − x2n−j

i

)
=

n∏
i=1

(1− xi)
∏

1≤i<j≤n
(xi − xj)(xixj − 1) =: ∆B(x)

to obtain

M =
∑
r∈Zn

∆B(yqκr)
n∏
i=1

y2nri−i+1
i q2nκ(ri2 )+ 1

2
κri .

By the D
(2)
n+1 Macdonald identity [37]

∑
r∈Zn

∆B(xqr)

n∏
i=1

x2nri−i+1
i q2n(ri2 )+ 1

2
ri

= (q1/2; q1/2)∞(q)n−1
∞

n∏
i=1

θ(xi; q
1/2)∞

∏
1≤i<j≤n

θ(xi/xj , xixj ; q)

with (q, x) 7→ (qκ, y) this results in
(3.14)

M = (qκ/2; qκ/2)∞(qκ; qκ)n−1
∞

n∏
i=1

θ
(
qi; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j ; qκ

)
,

where we have also used the simple symmetry θ(qa−b; qa) = θ(qb; qa). Sub-
stituting (3.14) into (3.9) proves the first equality of (1.4).

To show that the second equality holds is a straightforward exercise in
manipulating infinite products, and we omit the details.

There is a somewhat different approach to (1.4) based on the representa-

tion theory of the affine Kac–Moody algebra C
(1)
n [26]. Let I = {0, 1, . . . , n},

and αi, α
∨
i and Λi for i ∈ I the simple roots, simple coroots and fundamen-

tal weights of C
(1)
n . Let 〈·, ·〉 denote the usual pairing between the Cartan

subalgebra h and its dual h∗, so that 〈Λi, α∨j 〉 = δij . Finally, let V (Λ) be the
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integrable highest-weight module of C
(1)
n of highest weight Λ with character

chV (Λ).
The homomorphism

(3.15) F1 : C[[e−α0 , . . . , e−αn ]]→ C[[q]], F1(e−αi) = q for all i ∈ I

is known as principal specialisation. In [25] Kac showed that the principally
specialised characters admit a product form. Let ρ be the Weyl vector (that
is 〈ρ, α∨i 〉 = 1 for i ∈ I) and mult(α) the multiplicity of α. Then Kac’s
formula is given by

(3.16) F1
(

e−Λ chV (Λ)
)

=
∏
α∈∆∨+

(
1− q〈Λ+ρ,α〉

1− q〈ρ,α〉

)mult(α)

,

where ∆∨+ is the set of positive coroots. This result, which is valid for all

types X
(r)
N , can be rewritten in terms of theta functions. Assuming C

(1)
n and

setting

Λ = (λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition, this rewriting takes the form

(3.17) F1
(

e−Λ chV (Λ)
)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q; q)n+1

∞

×
n∏
i=1

θ
(
qλi+n−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qλi−λj−i+j , qλi+λj+2n+2−i−j ; qκ

)
,

where κ = 2n+ 2λ0 + 2.
The earlier product form now arises by recognising (see e.g., [8, Lemma

2.1]) the right-hand side of (3.7) as

e−mΛ0 chV (mΛ0)

upon the identification

q = e−α0−2α1−···−2αn−1−αn and xi = e−αi−···−αn−1−αn/2 (1 ≤ i ≤ n).

Since (3.8) corresponds exactly to the principal specialisation (3.15) it fol-
lows from (3.17) with λ = (m, 0n) that

F1
(

e−mΛ0 chV (mΛ0)
)

=
(q2; q2)∞(qκ/2; qκ/2)∞(qκ; qκ)n−1

∞
(q; q)n+1

∞

×
n∏
i=1

θ
(
qn−i+1; qκ/2

) ∏
1≤i<j≤n

θ
(
qj−i, qi+j ; qκ

)
.

We should remark that this representation-theoretic approach is not essen-
tially different from our earlier q-series proof. Indeed, the principal spe-

cialisation formula (3.17) itself is an immediate consequence of the D
(2)
n+1
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Macdonald identity, and if, instead of the right-hand side of (3.7), we con-
sider the more general

e−Λ chV (Λ) =
1

(q)n∞
∏n
i=1 θ(x

2
i ; q)

∏
1≤i<j≤n θ(xi/xj , xixj ; q)

×
∑
r∈Zn

det
1≤i,j≤n

(
(xiq

ri)j−λi−1 − (xiq
ri)2n−j+λi+1

) n∏
i=1

xκri+λi−i+1
i q

1
2
κr2i−nri

for κ = 2n + 2λ0 + 2, then all of the steps carried out between (3.7) and
(3.14) carry over to this more general setting. The only notable changes are
that (3.11) generalises to

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr+λi−i+1
i qnκr

2−2n2r

×
(

(x̂iq
2nr)j−λi−1 − (x̂iq

2nr)2n−j+λi+1
))

.

and that in (3.12) we have to redefine yi and aij as qκ/2−λn−i+1−i and j2 −
i2 + (i− j)(κ+ 1)/2 + (j − 1/2)λn−j+1 − (i− 1/2)λn−i+1.

3.3. Proof of the (1.3a). Again we iterate (3.6), but this time the variable
xn, remains unpaired:

lim
y1→x−1

1

. . . lim
yn−1→x−1

n−1

L(0)
m (x1, y1, . . . , xn−1, yn−1, xn) = L(n−1)

m (x1, . . . , xn).

Therefore, if we replace x 7→ (x1, y1, . . . , xn−1, yn−1, xn) in (3.3) (changing
the rank from n to 2n − 1) and take the yi → x−1

i limit for 1 ≤ i ≤ n − 1,
we obtain∑

λ
λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, xn; q

)
(3.18)

=
1

(q)n−1
∞ (qx2

n)∞
∏n−1
i=1 (qx±i xn, qx

±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
−x

κ
i

xn

)ri
q

1
2
κr2i−

1
2

(2n−1)ri
(xixn)ri

(qxi/xn)ri
,

where κ = 2m+ 2n+ 1, (ax±i )∞ := (axi)∞(ax−1
i )∞ and

(ax±i x
±
j )∞ := (axixj)∞(ax−1

i xj)∞(axix
−1
j )∞(ax−1

i x−1
j )∞.

Recalling the comment immediately after (3.5), the summand of (3.18) van-
ishes unless rn ≥ 0.

Let x̂ := (−x1, . . . ,−xn−1,−1) and

(3.19) φr =

{
1 if r = 0

2 if r = 1, 2, . . . .
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Letting xn tend to 1 in (3.18) using

lim
xn→1

∆C(xqr)

∆C(x)

n∏
i=1

(xixn)ri
(qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,

we find∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
=

1

(q)n∞
∏n−1
i=1 (qx±i , qx

±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2i−

1
2

(2n−1)ri .

It is easily checked that the summand on the right (without the factor φrn)
is invariant under the variable change rn 7→ −rn. Using the elementary
relations
(3.20)
θ(−1; q) = 2(−q)2

∞, (−q)∞(q; q2)∞ = 1, θ(z,−z; q)θ(qz2; q2) = θ(z2),

we can thus simplify the above to∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, 1; q

)
(3.21)

=
1

(q)n∞
∏n
i=1 θ(x̂i; q)θ(qx̂

2
i ; q

2)
∏

1≤i<j≤n θ(x̂i/x̂j , x̂ix̂j ; q)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri .

The remainder of the proof is similar to that of (1.4). We make the
simultaneous substitutions

(3.22) q 7→ q2n−1, xi 7→ qn−i (1 ≤ i ≤ n),

so that from here on x̂i := −qn−i. By

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−qn−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n
θ(qj−i, q2n−i−j ; q2n−1) = 2(q)n∞

and (2.3), this results in∑
λ

λ1≤m

q|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=

M

2(q)n∞
,
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for

M :=
∑
r∈Zn

∆B

(
x̂q(2n−1)r

) n∏
i=1

x̂κri−i+1
i q

1
2

(2n−1)κr2i−
1
2

(2n−1)2ri .

By (3.13) and multilinearity M can be rewritten in the form

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q

1
2

(2n−1)κr2− 1
2

(2n−1)2r

×
((
x̂iq

(2n−1)r
)j−1 −

(
x̂iq

(2n−1)r
)2n−j))

.

Following the same steps that led from (3.11) to (3.12) yields

(3.23) M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

(−1)ry
(2n−1)r−i+1
i q(2n−1)κ(r2)

×
(

(yiq
κr)j−1 − (yiq

κr)2n−j
))

,

where

(3.24) yi = q
1
2

(κ+1)−i and bij := j2 − i2 +
1

2
(i− j)(κ+ 3).

Again the factor (−1)i−jqbij does not contribute and application of (3.13)
gives

M =
∑
r∈Zn

∆B(yiq
κr)

n∏
i=1

(−1)riy
(2n−1)ri−i+1
i q(2n−1)κ(ri2 ).

To complete the proof we apply the following variant of the B
(1)
n Macdonald

identity2

(3.25)
∑
r∈Zn

∆B(xqr)

n∏
i=1

(−1)rix
(2n−1)ri−i+1
i q(2n−1)(ri2 )

= 2(q)n∞

n∏
i=1

θ(xi; q)
∏

1≤i<j≤n
θ(xi/xj , xixj ; q),

with (q, x) 7→ (qκ, y).

Again (1.3a) can be understood representation-theoretically, but this time

the relevant Kac–Moody algebra is A
(2)
2n . According to [8, Lemma 2.3] the

right-hand side of (3.21) with x̂ interpreted not as x̂ = (−x1, . . . ,−xn−1,−1)
but as

x̂i = e−α0−···−αn−i (1 ≤ i ≤ n)

2The actual B
(1)
n Macdonald identity has the restriction |r| ≡ 0 (mod 2) in the sum

over r ∈ Zn, which eliminates the factor 2 on the right. To prove the form used here it
suffices to take the a1, . . . , a2n−1 → 0 and a2n → −1 limit in Gustafson’s multiple 6ψ6

summation for the affine root system A
(2)
2n−1, see [22].
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and q as

(3.26) q = e−2α0−···−2αn−1−αn

is the A
(2)
2n character

e−mΛn chV (mΛn).

The substitution (3.22) corresponds to

(3.27) eα0 7→ −1 and eαi 7→ q (1 ≤ i ≤ n).

Denoting this by F , we have the general specialisation formula

(3.28) F
(

e−Λ chV (Λ)
)

=
(qκ; qκ)n∞

(q)n∞

n∏
i=1

θ
(
qλ0−λi+i; qκ

)
×

∏
1≤i<j≤n

θ
(
qλi−λj−i+j , qλi+λj−i−j+2n+1; qκ

)
,

where κ = 2n+ 2λ0 + 1 and

Λ = 2λnΛ0 + (λn−1 − λn)Λ1 + · · ·+ (λ1 − λ2)Λn−1 + (λ0 − λ1)Λn

for λ = (λ0, λ1, . . . , λn) a partition. For λ = (m, 0n) (so that Λ = mΛn) this
is in accordance with (1.3a).

3.4. Proof of (1.3b). In (3.18) we set xn = q1/2 so that∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

(q)n−1
∞ (q2)∞

∏n−1
i=1 (q3/2x±i , qx

±2
i )∞

∏
1≤i<j≤n−1(qx±i x

±
j )∞

×
∞∑

r1,...,rn−1=−∞

∞∑
rn=0

∆C(x̂qr)

∆C(x̂)

n∏
i=1

(−1)ri x̂κrii q
1
2
κr2i−nri ,

where κ = 2m+ 2n+ 1 and x̂ = (x1, . . . , xn−1, q
1/2). The rn-dependent part

of the summand is

(−1)rnqκ(
rn+1

2 )−nrn 1− q2rn+1

1− q

n−1∏
i=1

xiq
ri − qrn+1/2

xi − q1/2
· xiq

rn+ri+1/2 − 1

xiq1/2 − 1
,



THE A
(2)
2n ROGERS–RAMANUJAN IDENTITIES 17

which is readily checked to be invariant under the substitution rn 7→ −rn−1.
Hence∑

λ
λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−1, q

1/2; q
)

=
1

2(q)n∞
∏n−1
i=1 (−1)θ(q1/2xi, x2

i ; q)
∏

1≤i<j≤n−1 θ(xi/xj , xixj ; q)

×
∑
r∈Zn

∆C(x̂qr)

n∏
i=1

(−1)ri x̂κri−ii q
1
2
κr2i−nri+

1
2 .

Our next step is to replace xi 7→ xn−i+1 and ri 7→ rn−i+1. By θ(x; q) =
−xθ(x−1; q) and (3.20), this leads to∑

λ
λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n ; q
)

(3.29)

=
1

(q)n∞
∏n
i=1 θ(−q1/2x̂i; q)θ(x̂2

i ; q
2)
∏

1≤i<j≤n θ(x̂i/x̂j , x̂ix̂j ; q)

×
∑
r∈Zn

∆C(x̂qr)

n∏
i=1

(−1)ri x̂κri−i+1
i q

1
2
κr2i−nri ,

where now x̂ = (q1/2, x2, . . . , xn). Again we are at the point where we can
specialise, letting

(3.30) q 7→ q2n−1, xi 7→ qn−i+1/2 =: x̂i (1 ≤ i ≤ n).

This is consistent, since x1 = q1/2 7→ qn−1/2. By

(q2n−1; q2n−1)n∞

n∏
i=1

θ(−q2n−i; q2n−1)θ(q2n−2i+1; q4n−2)

×
∏

1≤i<j≤n
θ(qj−i, q2n−i−j+1; q2n−1) = 2(q)n∞

this gives rise to ∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−1

)
=

M

2(q)n∞
,

where

M :=
∑
r∈Zn

∆C(x̂q(2n−1)r)
n∏
i=1

(−1)ri x̂κri−i+1
i q

1
2

(2n−1)κr2i−(2n−1)nri .
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Expressing M in determinantal form using (3.10) yields

M = det
1≤i,j≤n

(∑
r∈Z

(−1)rx̂κr−i+1
i q

1
2

(2n−1)κr2−(2n−1)nr

×
(

(x̂iq
(2n−1)r)j−1 − (x̂iq

(2n−1)r)2n−j+1
))

.

We now replace (i, j) 7→ (j, i) and, viewing the resulting determinant as of
the form det

(∑
r uij;r −

∑
r vij;r

)
, we change the summation index r 7→ −r

in the sum over uij;r. The expression for M we obtain is exactly (3.23)

except that (−1)i−jqbij is replaced by qcij and yi is given by qn−i+1 instead

of q(κ+1)/2−i. Following the previous proof results in (1.3b).

To interpret (1.3b) in terms of A
(2)
2n , we note that by [8, Lemma 2.2] the

right-hand side of (3.29) in which x̂ is interpreted as

x̂i = −q1/2 eα0+···+αi−1 (1 ≤ i ≤ n)

(and q again as (3.26)) corresponds to the A
(2)
2n character

e−2mΛ0 chV (2mΛ0).

The specialisation (3.30) is then again consistent with (3.27). From (3.28)
with λ = (mn+1) the first product-form on the right of (1.3b) immediately
follows.

By level-rank duality we can also identify (1.3b) as a specialisation of the

A
(2)
2m character e−2nΛ0 chV (2nΛ0).

3.5. Proof of (1.5). Our final proof is the most complicated of the four.
Once again we iterate (3.6), but now both xn−1 and xn remain unpaired:

lim
y1→x−1

1

. . . lim
yn−2→x−1

n−2

L(0)
m (x1, y1, . . . , xn−2, yn−2, xn−1, xn)

= L(n−2)
m (x1, . . . , xn).

Accordingly, if we replace x 7→ (x1, y1, . . . , xn−2, yn−2, xn−1, xn) in (3.3)
(thereby changing the rank from n to 2n − 2) and take the yi → x−1

i limit
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for 1 ≤ i ≤ n− 2, we obtain∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, xn−1, xn; q

)
=

1

(q)n−2
∞ (qx2

n−1, qxn−1xn, qx2
n)∞

× 1∏n−2
i=1 (qx±2

i , qx±i xn−1, qx
±
i xn)∞

∏
1≤i<j≤n−2(qx±i x

±
j )∞

×
∑
r∈Zn

∆C(xqr)

∆C(x)

n∏
i=1

(
xκi

xn−1xn

)ri
q

1
2
κr2i−(n−1)ri

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

,

where κ = 2m + 2n. It is important to note that the summand vanishes
unless rn−1 and rn are both nonnegative. Next we let (xn−1, xn) tend to

(q1/2, 1) using

lim
(xn−1,xn)→(q1/2,1)

∆C(xqr)

∆C(x)

n∏
i=1

(xixn−1, xixn)ri
(qxi/xn−1, qxi/xn)ri

= φrn
∆B(x̂qr)

∆B(x̂)
,

with φr as in (3.19) and x̂ := (−x1, . . . ,−xn−2,−q1/2,−1). Hence∑
λ

λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q3/2; q1/2)∞

∏n−2
i=1 (qx±i ; q1/2)∞(qx±2

i )∞
∏

1≤i<j≤n−2(qx±i x
±
j )∞

×
∞∑

r1,...,rn−2=−∞

∞∑
rn−1,rn=0

φrn
∆B(x̂qr)

∆B(x̂)

n∏
i=1

x̂κrii q
1
2
κr2i−

1
2

(2n−1)ri .

Since the summand (without the factor φrn) is invariant under the variable
change rn 7→ −rn as well as the change rn−1 7→ −rn−1 − 1, we can rewrite
this as∑

λ
λ1≤m

q|λ|P ′2λ
(
x±1 , . . . , x

±
n−2, q

1/2, 1; q
)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j , x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)
n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri ,

where, once again, we have used (3.20) to clean up the infinite products. Be-
fore we can carry out the usual specialisation we need to relabel x1, . . . , xn−2

as x2, . . . , xn−1 and, accordingly, we redefine x̂ as (−q1/2,−x2, . . . ,−xn−1,−1).
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Then ∑
λ

λ1≤m

q|λ|P ′2λ
(
q1/2, x±2 , . . . , x

±
n−1, 1; q

)
(3.31)

=
1

(q)n−1
∞ (q1/2; q1/2)∞

∏n
i=1 θ(x̂i; q

1/2)
∏

1≤i<j≤n θ(x̂i/x̂j , x̂ix̂j)

×
∑
r∈Zn

∆B(x̂qr)

n∏
i=1

x̂κri−i+1
i q

1
2
κr2i−

1
2

(2n−1)ri ,

for n ≥ 2. We are now ready to make the substitutions

q 7→ q2n−2, xi 7→ qn−i (2 ≤ i ≤ n− 1),

so that x̂i := −qn−i for 1 ≤ i ≤ n. By

(q2n−2; q2n−2)n−1
∞ (qn−1; qn−1)∞

n∏
i=1

θ(−qn−i; qn−1)

×
∏

1≤i<j≤n
θ(qj−i, q2n−i−j ; q2n−2) = 4(q2; q2)∞(q)n−1

∞

and (2.3) this results in∑
λ

λ1≤m

q2|λ|P2λ

(
1, q, q2, . . . ; q2n−3

)
=

M

4(q2; q2)∞(q)n−1
∞

,

with M given by

M :=
∑
r∈Zn

∆B(x̂q2(n−1)r)
n∏
i=1

x̂κri−i+1
i q(n−1)κr2i−(n−1)(2n−1)ri .

By the Bn determinant (3.13),

M = det
1≤i,j≤n

(∑
r∈Z

x̂κr−i+1
i q(n−1)κr2−(n−1)(2n−1)r

×
((
x̂iq

2(n−1)r
)j−1 −

(
x̂iq

2(n−1)r
)2n−j))

.

By the same substitutions that transformed (3.11) into (3.12) we obtain

M = det
1≤i,j≤n

(
(−1)i−jqbij

∑
r∈Z

y
2(n−1)r−i+1
i q2(n−1)κ(r2)

×
((
yiq

κr
)j−1

+
(
yiq

κr
)2n−j−1

))
,
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where yi and bij are as in (3.24). Recalling the Weyl denominator formula
for Dn [29]

1

2
det

1≤i,j≤n

(
xj−1
i + x2n−j−1

i

)
=

∏
1≤i<j≤n

(xi − xj)(xixj − 1) =: ∆D(x)

we can rewrite M in the form

M = 2
∑
r∈Zn

∆D(xqr)
n∏
i=1

y
2(n−1)ri−i+1
i q2(n−1)κ(ri2 ).

Taking the a1, . . . , a2n−2 → 0, a2n−1 → 1 and a2n → −1 limit in Gustafson’s

multiple 6ψ6 summation for the affine root system A
(2)
2n−1 [22] leads to the

following variant of the D
(1)
n Macdonald identity3

∑
r∈Zn

∆D(xqr)
n∏
i=1

x
2(n−1)ri−i+1
i q2(n−1)(ri2 ) = 2(q)n∞

∏
1≤i<j≤n

θ(xi/xj , xixj ; q).

This implies the claimed product form for M and completes our proof.

Again (1.5) has a simple representation-theoretic interpretation. Accord-
ing to [8, Lemma 2.4] the right-hand side of (3.31) in which x̂ is interpreted

not as x̂ = (−q1/2,−x1, . . . ,−xn−1,−1) but as

x̂i = e−αi−···−αn (1 ≤ i ≤ n)

and q as

q = e−2α0−···−2αn

yields the D
(2)
n+1 character

e−2mΛ0 chV (2mΛ0).

The specialisation (3.5) then corresponds to

eα0 , eαn 7→ −1 and eαi 7→ q (2 ≤ i ≤ n− 1).

Denoting this by F , we have

F
(

e−Λ chV (Λ)
)

=
(qκ; qκ)n∞

(q2; q2)∞(q)n−1
∞

×
∏

1≤i<j≤n
θ
(
qλi−λj−i+j , qλi+λj−i−j+2n+1; qκ

)
,

where κ = 2n+ 2λ0 and

Λ = 2(λ0 − λ1)Λ0 + (λ1 − λ2)Λ1 + · · ·+ (λn−1 − λn)Λn−1 + 2λnΛn,

for λ = (λ0, λ1, . . . , λn) a partition or half-partition (i.e., all λi ∈ Z + 1/2).
For λ = (m, 0n) this agrees with (1.5).

3As in the B
(1)
n case, the actual D

(1)
n Macdonald identity contains the restriction |r| ≡ 0

(mod 2) on the sum over r.
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4. Proof of Theorem 1.5

For k and m integers such that 0 ≤ k ≤ m we write the near-rectangular
partition (m, . . . ,m︸ ︷︷ ︸

r times

, k) as (mr, k).

Theorem 4.1 (A
(1)
n−1 RR and AG identities). Let m and n be positive inte-

gers and k a nonnegative integer not exceeding m. Then

(4.1) lim
r→∞

q−m(r2)−krQ(mr,k)(1, q, q
2, . . . ; qn)

=
(qn; qn)∞(qκ; qκ)n−1

∞
(q)n∞

n−1∏
i=1

θ(qi+k; qκ)
∏

1≤i<j≤n−1

θ(qj−i; qκ),

where κ = m+ n.

For k = 0 (or k = m) this yields Theorem 1.5. Before we give a proof of
the above theorem we remark that by a similar calculation it also follos that

lim
r→∞

q−m(r+1
2 )Q(k,mr)(1, q, q

2, . . . ; qn)

=

[
k −m+ n− 1

n− 1

]
q

(qn; qn)∞(qκ; qκ)n−1
∞

(q)n∞

∏
1≤i<j≤n

θ(qj−i; qκ),

for k ≥ m.

Proof of Theorem 4.1. The following identity for the modified Hall–Littlewood
polynomials indexed by near-rectangular partitions is a special case of [8,
Corollary 3.2]:

Q′(mr,k)(x; q) = (q)r(q)1

∑
u∈Zn+
|u|=r+1

∑
v∈Zn+
|v|=r

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

×
n∏

i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj

(qxi/xj)vi
.

It suffices to compute the limit on the left-hand side of (4.1) for r a multiple
of n. Hence we replace r by nr in the above expression, and then shift
ui 7→ ui + r and vi 7→ vi + r for all 1 ≤ i ≤ n, to obtain

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr(q)1

×
∑
u∈Zn
|u|=1

∑
v∈Zn
|v|=0

n∏
i=1

x
kui+(m−k)vi
i qk(

ui
2 )+(m−k)(vi2 )

×
n∏

i,j=1

(qxi/xj)ui−uj
(qxi/xj)ui−vj

·
(qxi/xj)vi−vj
(qxi/xj)r+vi

.
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Since the summand vanishes unless ui ≥ vi for all i and |u| = |v| + 1 it
follows that u = v + ε`, for some ` = 1, . . . , n, where (ε`)i = δ`i. Hence

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

n∏
i=1

xmvii qm(vi2 )
n∏

i,j=1

(qxi/xj)vi−vj
(qxi/xj)r+vi

×
n∑
`=1

(
x`q

v`
)k n∏

i=1
i 6=k

1

1− qvi−v`xi/x`
.

Next we use
n∏

i,j=1

(qxi/xj)vi−vj =
∆(xqv)

∆(x)
(−1)(n−1)|v|q−(|v|2 )

n∏
i=1

x
nvi−|v|
i qn(

vi
2 )+(i−1)vi ,

where ∆(x) :=
∏

1≤i<j≤n(1− xi/xj), and

n∑
`=1

xk`

n∏
i=1
i 6=k

1

1− xi/x`
=

∑
1≤i1≤i2≤···≤ik≤n

xi1xi2 · · ·xik = hk(x) = s(k)(x),

where hk and sλ are the complete symmetric and Schur function, respec-
tively. Thus

Q′(mnr,k)(x; q) = (x1 · · ·xn)mrqmn(
r
2)+kr(q)nr

×
∑
v∈Zn
|v|=0

s(k)(xq
v)

∆(xqv)

∆(x)

n∏
i=1

xκvii q
1
2
κv2i+ivi

n∏
i,j=1

1

(qxi/xj)r+vi
,

where κ := m + n. Note that the summand vanishes unless vi ≥ −r for all
i. This implies the limit

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr

=
1

(q)n−1
∞

∏
1≤i<j≤n θ(xi/xj ; q)

∑
v∈Zn
|v|=0

s(k)(xq
v)∆(xqv)

n∏
i=1

xκvii q
1
2
κv2i+ivi .

The expression on the right is exactly the Weyl–Kac formula for the level-m

A
(1)
n−1 character [26]

e−Λ chV (Λ), Λ = (m− k)Λ0 + kΛ1,

provided we identify

q = e−α0−α1−···−αn−1 and xi/xi+1 = e−αi (1 ≤ i ≤ n− 1).
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Hence

lim
r→∞

q−mn(
r
2)−kr

Q′(mnr,k)(x; q)

(x1 · · ·xn)mr
= e−Λ chV (Λ),

with Λ as above. For m = 1 and k = 0 this was obtained in [28] by more
elementary means. The simultaneous substitutions q 7→ qn and xi 7→ qn−i

correspond to the principal specialisation (3.15). From (3.16) we can then
read off the product form claimed in (4.1). �
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