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Abstract. Several new transformations for q-binomial coefficients are found,

which have the special feature that the kernel is a polynomial with nonneg-
ative coefficients. By studying the group-like properties of these positivity

preserving transformations, as well as their connection with the Bailey lemma,

many new summation and transformation formulas for basic hypergeometric
series are found. The new q-binomial transformations are also applied to ob-

tain multisum Rogers–Ramanujan identities, to find new representations for

the Rogers–Szegö polynomials, and to make some progress on Bressoud’s gen-
eralized Borwein conjecture. For the original Borwein conjecture we formulate

a refinement based on a new triple sum representations of the Borwein poly-
nomials.

1. Introduction

1.1. q-Binomial transformations. In the literature on q-series one finds numer-
ous transformations of the type

(1.1)
L∑

r=0
r≡j (2)

q
1
4 r2

(q; q)L

(q; q) 1
2 (L−r)(q; q)r

[
r

1
2 (r − j)

]
= q

1
4 j2

[
L

1
2 (L− j)

]

and

(1.2)
L∑

r=0
r≡j (2)

q
1
8 r2

(q; q)L

(q,−q
1
2 (r+1); q) 1

2 (L−r)(q; q)r

[
r

1
2 (r − j)

]
= q

1
8 j2

[
L

1
2 (L− j)

]
,

where j and L are integers such that j ≡ L (mod 2). (Throughout this paper the
notation a ≡ b (c) instead of a ≡ b (mod c) will be used in equations for brevity).
Here [

L

a

]
q

=
[
L

a

]
=


(q; q)L

(q; q)a(q; q)L−a
for a ∈ {0, . . . , L}

0 otherwise
is a q-binomial coefficient,

(a; q)n =
n−1∏
j=0

(1− aqj)
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is a q-shifted factorial, and

(a1, . . . , ak; q)n =
k∏

j=1

(aj ; q)n.

Important features of (1.1) and (1.2) are (i) the sum over a q-binomial coefficient
multipied by a simple factor again yields a q-binomial coefficient, (ii) only the lower
entries of the q-binomial coefficients and a simple exponential factor on the right
depend on j, (iii) they can readily be iterated.

As an example of this last point let us consider the simple q-binomial identity

(1.3)
L∑

j=−L

(−1)jq(
j
2)

[
2L

L− j

]
= δL,0,

which is a special case of the finite form of Jacobi’s triple product identity [3, Ch.
3, Example 1] (see also (7.7)). Replacing L by r, multiplying both sides by

qr2
(q; q)2L

(q; q)L−r(q; q)2r

and summing over r using (1.1) with L → 2L, j → 2j and r → 2r, yields

(1.4)
L∑

j=−L

(−1)jqj2+(j
2)

[
2L

L− j

]
= (qL+1; q)L.

This bounded version of Euler’s pentagonal number theorem [42] is of the same form
as (1.3) and we may repeat the above procedure to find the well-known bounded
analogue of the first Rogers–Ramanujan identity [2, 58]

(1.5)
L∑

j=−L

(−1)jq2j2+(j
2)

[
2L

L− j

]
= (qL+1; q)L

L∑
r=0

qr2
[
L

r

]
.

Some known q-binomial transformations similar to (1.1) and (1.2), but in which
the base of the q-binomial coefficient is changed from q to q2 or q3, are given by

(1.6)
L∑

r=0
r≡j (2)

q
1
4 r2

(q; q)L

(q2; q2) 1
2 (L−r)(q; q)r

[
r

1
2 (r − j)

]
= q

1
4 j2

[
L

1
2 (L− j)

]
q2

,

(1.7)
L∑

r=0
r≡j (2)

q
1
8 r2

(q
1
2 (r+1); q)L−r(q; q)L

(q2, qr+1; q2) 1
2 (L−r)(q; q)r

[
r

1
2 (r − j)

]
= q

1
8 j2

[
L

1
2 (L− j)

]
q2

,

and

(1.8)
L∑

r=0
r≡j (2)

q
1
4 r2

(q; q) 1
2 (3L−r)

(q3; q3) 1
2 (L−r)(q; q)r

[
r

1
2 (r − j)

]
= q

1
4 j2

[
L

1
2 (L− j)

]
q3

,

assuming once again that j ≡ L (mod 2).
All of the above transformations are of the form

(1.9)
L∑

r=0
r≡j (2)

q
1
8 γr2

fL,r(q)
[

r
1
2 (r − j)

]
= q

1
8 γj2

[
L

1
2 (L− j)

]
qk
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with fL,r(q) a polynomial in q or q1/2, which for 0 ≤ r < L has both positive and
negative coefficients.

The issue of positivity of coefficients in polynomial expressions of the type given
by the left-hand sides of (1.3), (1.4) and (1.5) has recently received considerable
attention in relation to conjectures of Borwein [8] and Bressoud [19]. For this
reason it is important to find q-binomial transformations a là (1.9) with fL,r(q) a
polynomial with nonnegative coefficients. We will refer to such transformations as
positivity preserving. Indeed, applying a positivity preserving transformation to an
identity like (1.3) — with on the right a polynomial with nonnegative coefficients —
results in a new identity which again has a polynomial with nonnegative coefficients
on the right.

1.2. Outline. In the next section five new, positivity preserving q-binomial trans-
formations plus two related, rational transformations are proved. In order to es-
tablish the positivity of one of our results we generalize nonnegativity theorems of
Andrews for q-binomial coefficients and of Haiman for principally specialized Schur
functions.

Group-like relations among our q-binomial transformations and those listed in
the introduction are investigated in Section 3. This will give rise to numerous new
transformation formulas for balanced and ‘almost’ balanced basic hypergeometric
series.

The inverses of the transformations for q-binomial coefficients are established in
Section 4. Again this will lead to several elegant new summation formulas.

The relation between our q-binomial transformations and the Bailey lemma is
the subject of Sections 5 and 6. The reader may indeed have recognized (1.1) and
(1.2) as special cases of the ordinary Bailey lemma in its version due to Andrews
[6] and Paule [41], and (1.6)–(1.8) as special cases of base-changing extensions of
the Bailey lemma discovered by Bressoud, Ismail and Stanton [20]. In Section 5 we
show that our new transformations correspond to new types of base-changing Bailey
lemmas. In Section 6 this is exploited to yield some new (and old) transformations
for basic hypergeometric series.

The Sections 7 and 8 deal with simple applications of the q-binomial trans-
formations of section 2. In Section 7 new single and multisum identities of the
Rogers–Ramanujan identities are proved and in Section 8 we obtain a remarkable
new representation of the Rogers–Szegö polynomials.

Finally, in Section 9, we use the positivity preserving nature of our results to
make some progress on Bressoud’s generalized Borwein conjecture. In the last sec-
tion we also prove new triple-sum representation for the Borwein polynomials and
use this to formulate a new conjecture that implies the original Borwein conjecture.

2. Positivity preserving q-binomial transformations

The reason that none of the transformations of the previous section preserves
positivity is not a very deep one. Setting q = 1 in (1.9) yields

L∑
r=0

r≡j (2)

fL,r(1)
(

r
1
2 (r − j)

)
=

(
L

1
2 (L− j)

)
,

which has the unique solution fL,r(1) = δL,r. Hence the only polynomial solution to
(1.9) that preserves positivity is the less-than-exciting fL,r(q) = δL,r for k = 1 and
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γ = 0. To get around this problem we need to modify (1.9), and in the following
we look for polynomials fL,r(q) with nonnegative coefficients that satisfy

(2.1)
L∑

r=0
r≡j (2)

q
1
4 γr2

fL,r(q)
[

r
1
2 (r − j)

]
qk

= q
1
4 γj2

[
2L

L− j

]
, k ≥ 1

or small variations hereof (see (2.18) below).
To see that from a positivity point of view (2.1) is indeed more promising than

(1.9), let us again set q = 1. Multiplying both sides by x2j and summing over j
using the binomial theorem gives

L∑
r=0

fL,r(1)(x2 + x−2)r = (x + x−1)2L.

This is readily solved to yield

(2.2) fL,r(1) = 2L−r

(
L

r

)
,

a solution that may well have q-analogues free of minus signs.
In the remainder of the paper we will make extensive use of basic hypergeometric

series, and before presenting our solutions to (2.1) we need to introduce some further
notation [30]. First,

rφs

[
a1, . . . , ar

b1, . . . , bs
; q, z

]
= rφs(a1, . . . , ar; b1, . . . , br; q, z)

=
∞∑

k=0

(a1, . . . , ar; q)k

(q, b1, . . . , bs; q)k

[
(−1)kq(

k
2)

]s−r+1

zk.

Here it is assumed that the bi are such that none of the factors in the denominator is
zero, q 6= 0 if r > s + 1 and |q| < 1 whenever the rφs is nonterminating. Moreover,
if the series does not terminate then r ≤ s + 1 with |z| < 1 if r = s + 1. If it
does however terminate one can reverse the order of summation as discussed in [30,
Exercise 1.4]. An r+1φr series is called balanced if z = q and a1 · · · ar+1q = b1 . . . br,
well-poised if qa1 = a2b1 = · · · = ar+1br and very-well-poised if it is well-poised
and a2 = −a3 = a

1/2
1 q. We will always abbreviate such very-well-poised series

by r+1Wr(a1; a4, . . . , ar+1; q, z). Whenever one of the numerator parameters in a
q-hypergeometric series is q−n we assume n to be a nonnegative integer. (Hence,
provided the base of the series is q (or q1/2, q1/3 etc.), the series will terminate).
After these definitions we return to (2.1). For k = 1 it is not hard to see that
there are no factorizable solutions (two non-factorizable or non-q-hypergeometric
solutions are given in Section 9), and all our results will involve a change of base.
There is of course ample precedent for base-changing transformations see, e.g.,
[1, 13, 20, 28, 29, 30, 52, 53, 56].

Our first result is of a quadratic nature assuming k = γ = 2.

Lemma 2.1. For L and j integers there holds

(2.3)
L∑

r=0
r≡j (2)

q
1
2 r2

(−q; q)L−r

[
L

r

]
q2

[
r

1
2 (r − j)

]
q2

= q
1
2 j2

[
2L

L− j

]
.
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This corresponds to

(2.4) fL,r(q) = (−q; q)L−r

[
L

r

]
q2

,

which is about the simplest imaginable q-analogue of (2.2). Since the q-binomial
coefficient on the right is a polynomial with nonnegative coefficients [3] so is fL,r(q).

By the substitution q → 1/q and the simple identities[
L

a

]
q−1

= q−a(L−a)

[
L

a

]
q

and (a; q−1)n = (−1)nanq−(n
2)(a−1; q)n

we obtain the following corollary of Lemma 2.1.

Corollary 2.1. For L and j integers there holds

(2.5)
L∑

r=0
r≡j (2)

q(
L−r

2 )(−q; q)L−r

[
L

r

]
q2

[
r

1
2 (r − j)

]
q2

=
[

2L

L− j

]
.

This corresponds to (2.1) with k = 2 and γ = 0.

Proof of Lemma 2.1. Without loss of generality we may assume that 0 ≤ j ≤ L.
After shifting r → 2r + j the identity (2.3) correspond to

(2.6) 2φ1(q−n, q1−n; aq; q2, aq2n) =
(a; q2)n

(a; q)n

with (a, n) → (q2j+1, L − j). (Throughout this paper we denote the simultaneous
variable changes a1 → b1, . . . , ak → bk by (a1, . . . , ak) → (b1, . . . , bk).) Equation
(2.6) readily follows from the q-Gauss sum [30, Eq. (II.8)]

�(2.7) 2φ1(a, b; c; q, c/ab) =
(c/a, c/b; q)∞
(c, c/ab; q)∞

.

Our next result is a somewhat more complicated quadratic transformation, in
accordance with (2.1) for k = 2 and γ = 1.

Lemma 2.2. For L and j integers there holds

(2.8) (1 + qL)
L∑

r=0
r≡j (2)

q
1
4 r2

(−qr+2; q2)L−r−1

[
L

r

][
r

1
2 (r − j)

]
q2

= q
1
4 j2

[
2L

L− j

]
.

To make sense of the above lemma we need to extend our earlier definition of
the q-shifted factorial, and for nonnegative n we set (a; q)−n = 1/(aq−n; q)n. Note
that this implies that 1/(q)−n = 0. With this definition it is once again clear that
the corresponding polynomial fL,r(q) has nonnegative coefficients.

Before proving (2.8) we state a variation that is not of the form (2.1).

Lemma 2.3. For L and j integers there holds

(2.9)
L∑

r=0
r≡j (2)

q
1
4 r(r+2)

1 + qr
(−qr+1; q2)L−r

[
L

r

][
r

1
2 (r − j)

]
q2

=
q

1
4 j(j+2)

1 + qj

[
2L

L− j

]
.
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Proof of Lemmas (2.2) and (2.3). Without loss of generality we may assume that
0 ≤ j ≤ L. Shifting r → 2r + j the summations (2.8) and (2.9) correspond to

(2.10) 3φ2

[
a/b, q−n, q1−n

aq, q2−2n/b
; q2, q2

]
=

(b; q)n(a; q2)n

(a; q)n(b; q2)n

with (a, b, n) → (q2j+1,−qj , L−j) and (a, b, n) → (q2j+1,−qj+1, L−j), respectively.
Equation (2.10) follows from the q → q2 case of the q-Pfaff–Saalschütz sum [30,
Eq. (II.24)] written in the form

(2.11) 3φ2

[
a, b, c

d, abcq/d
; q, q

]
=

(q/d, abq/d, acq/d, bcq/d; q)∞
(aq/d, bq/d, cq/d, abcq/d; q)∞

,

provided the 3φ2 terminates. �

Our final solution to (2.1) provides a positivity preserving transformation of a
quartic nature.

Lemma 2.4. For L and j integers there holds

(2.12)
L∑

r=0
r≡j (2)

qL−r(−q−1; q2)L−r

[
L

r

]
q2

[
r

1
2 (r − j)

]
q4

=
[

2L

L− j

]
.

Once again we state a variation that is not of the form (2.1).

Lemma 2.5. For L and j integers there holds

(2.13)
L∑

r=0
r≡j (2)

qr

1 + q2r
(−q; q2)L−r

[
L

r

]
q2

[
r

1
2 (r − j)

]
q4

=
qj

1 + q2j

[
2L

L− j

]
.

Proof of Lemma 2.4. Without loss of generality we may assume that 0 ≤ j ≤ L.
After shifting r → 2r + j the identity (2.12) corresponds to

(2.14) 4φ3

[
aq, aq3, q−2n, q2−2n

a2q2,−q3−2n,−q5−2n
; q4, q4

]
= q−n (−q; q)n(−a; q2)n

(−q−1; q2)n(−a; q)n

with (a, n) → (−q2j+1, L− j). The above equation follows from [20, Eq. (2.1)] by
the substitution (C,D,m, q) → (−q1−2n, aq, bn/2c, q2). Unfortunately, the proof of
[20, Eq. (2.1)] as stated in [20] appears to be incomplete and below we provide the
full details of the derivation of (2.14).

First recall Sears’ 4φ3 transformation [30, Eq. (III.15)], which we write in the
form

(2.15) 4φ3

[
a, b, c, d

e, f, abcdq/ef
; q, q

]
=

(q/f, abq/f, acdq/ef, bcdq/ef ; q)∞
(aq/f, bq/f, cdq/ef, abcdq/ef ; q)∞

4φ3

[
a, b, e/c, e/d

e, abq/f, ef/cd
; q, q

]
,

provided both series terminate. Letting

(a, b, c, d, e, f, q) → (q−2n, q2−2n, aq, aq3, a2q2,−q3−2n, q4)

(2.14) can be written as

(2.16) 4φ3

[
aq−1, aq, q−2n, q2−2n

a2q2,−q1−2n,−q3−2n
; q4, q4

]
=

(−q; q)n(−a; q2)n

(−q; q2)n(−a; q)n
.
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At first sight it may appear that little progress has been made, but upon closer
inspection one may note that the parameters in this new 4φ3 series are tuned to
allow the application of Singh’s quadratic transformation [30, Eq. (III.21)]

(2.17) 4φ3

[
a2, b2, c, d

abq1/2,−abq1/2,−cd
; q, q

]
= 4φ3

[
a2, b2, c2, d2

a2b2q,−cd,−cdq
; q2, q2

]
,

true provided both series terminate. Indeed, utilizing this transform with

(a, b, c, d, q) → ((a/q)1/2, (aq)1/2, q−n, q1−n, q2)

we arrive at (2.10) with (a, b) → (−a,−q).
Equation (2.16) may also be derived from the summation [1, Eq. (4.3) with

b = 1] (rediscovered in [20, Eq. (2.2)]) by making the substitutions (a, b, w, m, q) →
(aq−1, 1,−aq2b(n+1)/2c, bn/2c, q2). �

Proof of Lemma 2.5. Without loss of generality we may assume that 0 ≤ j ≤
L. Afer shifting r → 2r + j the sum (2.13) correspond to (2.16) with (a, n) →
(−q2j+1, L− j). �

Our final transformation for q-binomial coefficients takes a form that is slightly
different from (2.1).

Lemma 2.6. For L and j integers such that j ≡ L (mod 2) there holds

(2.18)
bL/3c∑
r=0

r≡j (2)

q
3
4 r2

(q3; q3) 1
2 (L−r−2)(1− qL)

(q3; q3)r(q; q) 1
2 (L−3r)

[
r

1
2 (r − j)

]
q3

= q
3
4 j2

[
L

1
2 (L− 3j)

]
.

When r = L = 0 the factor multiplying the q-binomial coefficient in the sum-
mand on the left should be taken to be 1.

Proof of Lemma 2.6. Shifting r → 2r + j and defining n = (L− 3j)/2 we arrive at
the (a, b, c, d, q) → (q−n, q1−n, q2−n, q3j+3, q3) instance of (2.11). �

Again an important question is whether the polynomial

(2.19) fL,r(q) =
(q3; q3) 1

2 (L−r−2)(1− qL)

(q3; q3)r(q; q) 1
2 (L−3r)

for 0 ≤ 3r ≤ L and r ≡ L (mod 2) has nonnegative coefficients. To answer this is
not entirely trivial and we need a generalization of a result of Andrews [10] that
arose in connection with a monotonicity conjecture of Friedman, Joichi and Stanton
[26].

Theorem 2.1. Let k and n be positive integers, j ∈ {0, . . . , n} and g = gcd(n, j).
Then

An,j,k(q) =
1− qk

1− qn

[
n

j

]
is a reciprocal polynomial of degree j(n− j) + k− n with nonnegative coefficients if
k ≡ 0 (mod g).

For k = 1 this is Andrews’ result [10, Thm. 2].
Assuming the theorem it is not difficult to show that fL,r(q) given by (2.19) is a

polynomial with nonnegative coefficients. First we note that for r = 0 or 3r = L this
is obvious; f3r,r(q) = 1 and f2L,0(q) = (1+ qL)(q3; q3)L−1/(q; q)L−1 (L > 0), where
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the positivity of the second polynomial follows from (1− q3)/(1− q) = 1 + q + q2.
In the following we may therefore assume 0 < 3r < L, which implies that k :=
gcd((L− r)/2, r) ≤ (L− 3r)/2 as follows. There holds r = uk and (L− r)/2 = vk
with v > u and gcd(u, v) = 1. Hence (L− 3r)/2 = (v−u)k so that k ≤ (L− 3r)/2.
Next we observe the decomposition

fL,r(q) =
(1− qk)(q3; q3)(L−3r)/2

(1− q3k)(q; q)(L−3r)/2
× 1− qL

1− qk
×A(L−r)/2,r,k(q3),

where all three factors on the right are polynomials with nonnegative coefficients.
The first term because k ≤ (L− 3r)/2 so that

(1− qk)(q3; q3)(L−3r)/2

(1− q3k)(q; q)(L−3r)/2
=

(L−3r)/2∏
j=1
j 6=k

(1 + qj + q2j),

the second term because k | L, and the last term because of Theorem 2.1 with
k = g.

It is possible to arrive at Theorem 2.1 by modifying Andrews’ proof for k = 1.
Instead, however, we will establish a more general theorem generalizing results
of Haiman [33, §2.5] that he used to show polynomiality and nonnegativity of a
conjectured expression for a specialization of the Frobenius series F(q, t) of ‘diagonal
harmonics’. For most of the terminology and notation used below we refer to
[40, 49].

Let sλ be the Schur function labelled by the partition λ and define

Bλ,d,k(q) =
1− qk

1− qd
sλ(1, q, . . . , qd−1).

Theorem 2.2. Let d and k be positive integers and λ a partition such that l(λ) ≤ d.
Set g = gcd(d, |λ|). Then Bλ,d,k(q) is a reciprocal polynomial of degree k − d +∑l(λ)

i=1(d− i)λi with nonnegative coefficients for every λ if k ≡ 0 (mod g).

For k = 1 this is due to Haiman.
Before proving the theorem let us show that it includes the previous theorem

as special case. For notational convenience we set qδ = (qd−1, . . . , q, 1) (δ = (d −
1, . . . , 1, 0)) so that for f a symmetric function f(1, q, . . . , qd−1) may be written as
f(qδ). Now we choose λ = (j) and use that [40, Ch. 1.3, Example 1], [49, Prop.
2.19.12]

s(j)(qδ) =
[
j + d− 1

j

]
.

Therefore

B(j),n−j,k(q) =
1− qk

1− qn−j

[
n− 1

j

]
=

1− qk

1− qn

[
n

j

]
= An,j,k(q).

By Theorem 2.2 the statement of Theorem 2.1 now follows, be it that j ∈ {0, . . . , n−
1} and g = gcd(j, n− j). Since gcd(n− j, j) = gcd(n, j) and since Theorem 2.1 is
trivially true for j = n this completes our derivation.
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Proof of Theorem 2.2. Let λ′ be the conjugate of the partition λ = (λ1, . . . , λd).
Then we have [40, Ch. 1.3, Example 1], [49, Thm. 7.21.2]

(2.20) sλ(qδ) = qn(λ)
∏
x∈λ

1− qd+c(x)

1− qh(x)
.

Here for each x = (i, j) ∈ λ (a partition and its diagram are identified) the hook-
length and content of x are given by h(x) = λi + λ′j − i − j + 1 and c(x) = j − i,
respectively, and n(λ) =

∑d
i=1(i− 1)λi. To proceed further we need the following

lemma, communicated to us by Richard Stanley.

Lemma 2.7. Let i | d, and let ωi be an ith primitive root of unity. Then for
l(λ) ≤ d, sλ(ωδ

i ) = 0 iff λ has a non-empty i-core.

To prove this we note that i | d and (2.20) imply that sλ(ωδ
i ) = 0 iff the number

of hook-lengths h(x) divisible by i is strictly less than the number of contents c(x)
divisible by i. Next we recall that the i-core of λ is obtained from λ by repeated
removal of border strips of length i from the diagram of λ until no further strips
of length i can be removed [40, Ch. 1.1, Example 8(c)], [49, Exercise 7.59.d]. It is
straightforward to verify that each time a border strip is removed, the number of
hook-lengths and the number of contents divisible by i is decreased by one. When
we finally reach the i-core of λ the number of hook-lengths divisible by i becomes
zero. On the other hand, unless the i-core is empty, there will still be a content
divisible by i, for example, c(1, 1) = 0. This completes the proof of the lemma.

Remark 2.1. If i - |λ| then λ has a non-empty i-core. If i | |λ| and either λ or λ′

consists of a single row, then λ has an empty i-core. However, in general, the i-core
of λ is not necessarily empty when i | |λ|.

Next, since sλ(qδ) is a polynomial, the only potential poles of Bλ,d,k(q) are poles
of Rk,d(q) := (1 − qk)/(1 − qd). Clearly, Rk,d(q) has first order poles at each ith
primitive root of unity ωi, provided i > 1, i | d, but i - k. Now, if k ≡ 0 (mod g),
then i - |λ| and, as a result, the i-core of λ is not empty. Hence, by Lemma 2.7,
sλ(ωδ

i ) = 0. Thus, if k ≡ 0 (mod g), every pole of Rk,d(q) is cancelled by a zero of
sλ(qδ), and consequently Bλ,d,k(q) is polynomial if k ≡ 0 (mod g).

In the remainder we assume that k ≡ 0 (mod g).
The degree of Bλ,d,k(q) immediately follows from the degree of sλ(qδ) given in

[40, Ch. 1.3, Example 1]. To show that the polynomial Bλ,d,k(q) has nonnegative
coefficients and is reciprocal we use that sλ(qδ) is a reciprocal, unimodal polynomial
with nonnegative coefficients [40, Ch. 1.3, Example 1, Ch. 1.8, Example 4], [49,
Exercise 7.75.c]. This immediately implies the reciprocality of Bλ,d,k(q). To see that
it also implies nonnegativity we denote the degree of sλ(qδ) by D and note that it
suffices to show positivity for k = g thanks to 1− qk = (1− qg)(1+ qg + · · ·+ qk−g)
for k = mg. Now, by the unimodality and nonnegativity of sλ(qδ), it follows that
(1 − q)sλ(qδ) is a polynomial of degree D + 1 with nonnegative coefficients up to
the coefficient of qb(D+1)/2c. Hence

Bλ,d,g(q) =
1 + q + · · ·+ qg−1

1− qd
(1− q)sλ(qδ)

is a polynomial of degree D+g−d with nonnegative coefficients up to the coefficient
of qb(D+1)/2c. But by its reciprocality and by the fact that b(D + 1)/2c ≥ b(D +
g − d)/2c it follows that all its coefficients must be nonnegative. �
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We conclude this section with the following remarks.

Remark 2.2. Lemma 2.7 is closely related to [40, Ch. 1.3, Example 17(a)]. It is
also a straightforward corollary of [51, Lem. 2].

Remark 2.3. It is important to realize that Bλ,d,k(q) can be a polynomial in q
for k 6≡ 0 (mod g). Indeed, the argument given above suggests that Bλ,d,k(q) is a
polynomial as long as the i-core of λ is not empty for any i that divides d but not
k. For example, consider the 5-core partition µ = (5, 2, 2, 1). Then

Bµ,d,k(q) = q9 1− q5

1− q

1− q7

1− q

1− qk

1− q

1− q4

1− q2

1− q9

1− q3

is a polynomial for any positive k. Note, however, that when λ = (j), λ cannot have
a non-empty i-core if i | j, i > 1. Hence, B(j),d,k(q) = Ad+j,j,k(q) is a polynomial
in q iff k ≡ 0 (mod g). For k = 1 this is due to Andrews [10, Thm. 2].

3. Group-like relations

3.1. Preliminaries. Not all of the q-binomial transformations of the previous two
sections are independent, and many relations of various degree of complexity can
be found. Such relations are important because they often imply new summation
or transformation formulas. For the results of Section 1 the ocurrence of relations
was first investigated by Bressoud et al. [20] and later studied in more detail by
Stanton [50] who introduced the notion of the Bailey–Rogers–Ramanujan group.

For notational reasons we write q
1
8 γr2

fL,r(q) in (1.9) as FL,r(q) and add as a
superscript the relevant equation number. For example,

F
(1.1)
L,r (q) =

q
1
4 r2

(q; q)L

(q; q)(L−r)/2(q; q)r
.

Likewise we write q
1
4 γr2

fL,r(q) in (2.1) as FL,r(q) and again add equation numbers,
and we write F

(2.18)
L,r (q) for the kernel of (2.18). For instance,

F
(2.3)
L,r (q) = q

1
2 r2

(−q; q)L−r

[
L

r

]
q2

.

With this notation we quote from [20, 50]:

L∑
s=r

s≡r (2)

F
(1.2)
L,s (q)F (1.2)

s,r (q) = F
(1.1)
L,r (q),(3.1a)

L∑
s=r

s≡r (2)

F
(1.7)
L,s (q)F (1.2)

s,r (q) = F
(1.6)
L,r (q),(3.1b)

and the more complicated

(3.2a)
L∑

s=r
s≡r (2)

F
(1.1)
L,s (q)F (1.2)

s,r (q) =
L∑

s=r
s≡r (2)

F
(1.2)
L,s (q)F (1.1)

s,r (q),
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L∑
s=r

s≡r (2)

F
(1.7)
L,s (q)F (1.1)

s,r (q) =
L∑

s=r
s≡r (2)

F
(1.6)
L,s (q)F (1.2)

s,r (q)(3.2b)

=
L∑

s=r
s≡r (2)

F
(1.2)
L,s (q2)F (1.7)

s,r (q),

(3.2c)
L∑

s=r
s≡r (2)

F
(1.6)
L,s (q)F (1.1)

s,r (q) =
L∑

s=r
s≡r (2)

F
(1.2)
L,s (q2)F (1.6)

s,r (q),

(3.2d)
L∑

s=r
s≡r (2)

F
(1.7)
L,s (q3)F (1.8)

s,r (q) =
L∑

s=r
s≡r (2)

F
(1.8)
L,s (q2)F (1.7)

s,r (q).

(It seems that (3.2a), (3.2b) and (3.2d) are actually missing in [20, 50].) The
relations in equation (3.1) correspond to summations and the relations in (3.2)
to transformations for basic hypergeometric series. For example, after shifting
s → 2s + r and replacing (L − r)/2 by n, then using a polynomial argument to
replace q(r+1)/2 by the indeterminate a, and finally using a polynomial argument
to replace q−n by b, (3.2d) becomes the balanced transformation

(3.3) 5φ4

[
a, aq, b2, b2ω, b2ω2

a2,−a2,−a2q, b6q2/a4
; q2, q2

]
=

(a4/b6; q2)∞(a3; q3)∞(a6q3; q6)∞
(a4; q2)∞(a3/b6; q3)∞(a6q3/b6; q6)∞

× 5φ4

[
a2, a2q, a2q2, b3,−b3

a3, a3q3/2,−a3q3/2, b6q3/a3
; q3, q3

]
,

provided both series terminate, i.e., provided a or b is of the form q−n. Here
ω = exp(2πi/3). For a simple proof of (3.1) and (3.2), and hence for a proof of the
above new transformation we refer to the next (sub)section.

In the following we extend the analysis of [20, 50] and present two sets of relations,
one of the type

∑
FF = F as in (3.1) and one of the type

∑
FF =

∑
FF as in

(3.2). Especially the transformations implied by the second set are interesting as
many appear to be new.

3.2. Relations of the type
∑

FF = F . Our first set of results, which should be
read as five different ways to decompose F

(2.3)
L,r (q), is given by

F
(2.3)
L,r (q2) =

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q2)F (1.6)

s,r (q4) =
L∑

s=r

F
(1.6)
2L,2s(q)F

(2.12)
s,r (q)(3.4)

=
L∑

s=r
s≡r (2)

F
(2.5)
L,s (q2)F (1.1)

s,r (q4) =
L∑

s=r
s≡r (2)

F
(2.8)
L,s (q2)F (1.2)

s,r (q4)

=
L∑

s=r

F
(1.2)
2L,2s(q

2)F (2.5)
s,r (q2).
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Similarly, there are three different decompositions of F
(2.8)
L,r (q),

F
(2.8)
L,r (q2) =

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q2)F (1.7)

s,r (q4) =
L∑

s=r

F
(1.7)
2L,2s(q)F

(2.12)
s,r (q)(3.5)

=
L∑

s=r
s≡r (2)

F
(2.5)
L,s (q2)F (1.2)

s,r (q4).

Proof. Since all of the above eight results (and those of Sections 3.1 and 3.3) arise
in similar fashion we only show how to prove the very first relation.

First take (1.6) and make the substitution (L, q) → (s, q2). Then multiply this
by F

(2.12)
L,s (q) and sum over s to arrive at

L∑
s=0

s≡j (2)

s∑
r=0

r≡j (2)

F
(2.12)
L,s (q)F (1.6)

s,r (q2)
[

r
1
2 (r − j)

]
q2

= q
1
2 j2

L∑
s=0

s≡j (2)

F
(2.12)
L,s (q)

[
s

1
2 (s− j)

]
q4

.

Now change the order of summation on the left and apply (2.12) on the right to
get

L∑
r=0

r≡j (2)

[
r

1
2 (r − j)

]
q2

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q)F (1.6)

s,r (q2) = q
1
2 j2

[
2L

L− j

]
.

Comparing this with (2.3) yields

(3.6)
L∑

r=0
r≡j (2)

[
r

1
2 (r − j)

]
q2

L∑
s=r

s≡r (2)

[
F

(2.12)
L,s (q)F (1.6)

s,r (q2)− F
(2.3)
L,r (q)

]
= 0,

which should hold for all integers L and j such that 0 ≤ |j| ≤ L.
The above equation is of the form

L∑
r=0

r≡j (2)

[
r

1
2 (r − j)

]
hL,r(q) = 0,

where, without loss of generality, it may be assumed that 0 ≤ j ≤ L. Hence the
lower bound on the sum may be replaced by j. Recursively it can be seen that
hL,r(q) = 0 is the unique solution. Indeed, by taking j = L and j = L − 1 it
follows that hL,L(q) = hL,L−1(q) = 0. Next taking j = L − 2 and j = L − 3 it in
turn follows that hL,L−2(q) = hL,L−3(q) = 0. Repeatedly decreasing j by 2 it thus
follows after bL/2c+ 1 steps that all hL,r(q) for 0 ≤ r ≤ L must vanish. Applying
this reasoning to (3.6) yields the desired F

(2.12)
L,s (q)F (1.6)

s,r (q2)− F
(2.3)
L,r (q) = 0. �

Like (3.1), the relations of (3.4) and (3.5) (which should all be read as the left-
hand side being equal to one of the right-hand side expressions) imply summation
formulas. The only one of these that is possibly new corresponds to the second
relation of (3.5). After the replacement (qr+1/2, L − r) → (a, n) this sum can be
stated as

(3.7) 4φ3

[
iq−1/2,−iq−1/2, q−n,−q−n

−q, a, q1−2n/a
; q, q2

]
=

1 + a2q2n−1

1 + a2q−1

(−a2q−1; q4)n

(a; q)2n
.
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Presumably this follows by contiguity from the b = iq1/2 case of the easily estab-
lished

4φ3

[
b, q/b, q−n,−q−n

−q, a, q1−2n/a
; q, q

]
=

(ab, aq/b; q2)n

(a; q)2n

or from (3.17) on page 16 with bq = −1. In Section 6.1 we rederive (3.7) from the
more general transformation formula (6.7).

3.3. Relations of the type
∑

FF =
∑

FF . This time there are rather a large
number of results, all of which can be proved using the method detailed in Sec-
tion 3.2. Those relations that imply base-changing transformations from q to qk

for fixed k have been grouped together. Here k will be an element of the set
{1, 4/3, 3/2, 2, 4, 6, 9, 12}.

3.3.1. Linear transformations. There are just two linear relations
bL/2c∑
s=r

F
(2.5)
L,2s (q)F (2.3)

s,r (q2) =
bL/2c∑
s=r

F
(2.8)
L,2s (q)F (2.5)

s,r (q2),(3.8a)

bL/2c∑
s=r

F
(2.3)
L,2s (q)F (2.5)

s,r (q2) =
bL/2c∑
s=r

F
(2.8)
L,2s (q)F (2.3)

s,r (q2),(3.8b)

which are dual in the sense of q ↔ 1/q. The corresponding q-hypergeometric
transformations are nothing but specializations of the identity obtained by equating
the right-hand sides of the Jackson transformations [30, Eq. (III.4)] and [30, Eq.
(III.5)].

3.3.2. Transformations from q to q4/3. Much more interesting than (3.8) are the
generalized commutation relations

bL/3c∑
s=r

F
(2.18)
2L,2s (q)F (2.13)

s,r (q3) =
L∑

s=3r
s≡r (2)

F
(2.13)
L,s (q)F (2.18)

s,r (q4),

bL/3c∑
s=r

F
(2.18)
2L,2s (q)F (2.12)

s,r (q3) =
L∑

s=3r
s≡r (2)

F
(2.12)
L,s (q)F (2.18)

s,r (q4).

Making the variable change s → s + r on the left and s → 2s + 3r on the right and
then substituting (q6r, L−3r) → (a, n), the above relations imply the balanced and
‘almost’ balanced formulas

5φ4

[
iq3/2,−iq3/2, q−n, q1−n, q2−n

−q3, a1/2q3/2,−a1/2q3/2, q3−3n/a
; q3, q3

]
=

(−q, a; q2)n

(−q; q)n(a; q3)n
5φ4

[
a2/3, a2/3ω, a2/3ω2, q−2n, q2−2n

a, aq2,−q1−2n,−q3−2n
; q4, q4

]
and

5φ4

[
iq−3/2,−iq−3/2, q−n, q1−n, q2−n

−q3, a1/2q3/2,−a1/2q3/2, q3−3n/a
; q3, q6

]
= qn (−q−1, a; q2)n

(−q; q)n(a; q3)n
6φ5

[
a2/3, a2/3ω, a2/3ω2,−aq4, q−2n, q2−2n

a,−a, aq2,−q3−2n,−q5−2n
; q4, q4

]
,
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respectively. To the best of our knowledge these are the first examples of a trans-
formations relating base q3 and q4.

3.3.3. Transformations from q to q3/2. Again there are two results, not dissimilar
to the previous pair;

bL/3c∑
s=r

F
(2.18)
2L,2s (q)F (2.8)

s,r (q3) =
L∑

s=3r
s≡r (2)

F
(2.8)
L,s (q)F (2.18)

s,r (q2),

bL/3c∑
s=r

F
(2.18)
2L,2s (q)F (2.9)

s,r (q3) =
L∑

s=3r
s≡r (2)

F
(2.9)
L,s (q)F (2.18)

s,r (q2).

Making the same variable change as above and then substituting (−q3r, L− 3r) →
(a, n), this yields

5φ4

[
a2/3, a2/3ω, a2/3ω2, q−n, q1−n

a,−a,−aq, q2−2n/a
; q2, q2

]
=

(a2; q3)n

(a; q2)n(−a; q)n
5φ4

[
a1/2,−a1/2, q−n, q1−n, q2−n

a, aq3/2,−aq3/2, q3−3n/a2
; q3, q3

]
and

5φ4

[
a2/3, a2/3ω, a2/3ω2, q−n, q1−n

aq,−aq,−a, q1−2n/a
; q2, q2

]
=

1− a2q2n

1− a2

(a2; q3)n

(aq; q2)n(−aq; q)n

× 5φ4

[
a1/2q3/2,−a1/2q3/2, q−n, q1−n, q2−n

aq3, aq3/2,−aq3/2, q3−3n/a2
; q3, q3

]
.

Both these results should be compared with (3.3).

3.3.4. Quadratic transformations. There are quite a number of different relations
of a quadratic nature. First,

L∑
s=r

F
(1.1)
2L,2s(q)F

(2.5)
s,r (q) =

L∑
s=r

F
(1.2)
2L,2s(q)F

(2.3)
s,r (q)(3.9a)

=
L∑

s=r
s≡r (2)

F
(2.3)
L,s (q)F (1.1)

s,r (q2),

L∑
s=r

F
(1.2)
2L,2s(q)F

(2.8)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.8)
L,s (q)F (1.1)

s,r (q2)(3.9b)

=
L∑

s=r
s≡r (2)

F
(2.3)
L,s (q)F (1.2)

s,r (q2).
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The first equality in (3.9a) corresponds to a specialization of the transformation [30,
Eq. (III.4)], and the second equality implies the (a, b, c, n) → (qr+1/2,∞, 0, L − r)
specialization of

(3.10) 4φ3

[
b, c,−c, q−n

a, c2,−bq1−n/a
; q, q

]
=

(a2/b; q)n(c2; q2)n

(a, c2,−a/b; q)n
4φ3

[
a2/b2, a2/c2, q−n, q1−n

a2/b, a2q/b, q2−2n/c2
; q2, q2

]
,

proved in Section 6.2. Similarly, the second equality in (3.9b) corresponds to a
specialization of the transformation [30, Eq. (III.12)], and the first equality implies
the (a, b, c, n) → (qr+1/2,∞, iqr/2, L− r) specialization of (3.10).

Next are the four closely related results

(3.11a)
bL/2c∑
s=r

F
(2.3)
L,2s (q)F (2.13)

s,r (q2) =
bL/2c∑
s=r

F
(2.13)
L,2s (q)F (2.3)

s,r (q4),

(3.11b)
bL/2c∑
s=r

F
(2.5)
L,2s (q)F (2.13)

s,r (q2) =
bL/2c∑
s=r

F
(2.13)
L,2s (q)F (2.5)

s,r (q4),

(3.11c)
bL/2c∑
s=r

F
(2.3)
L,2s (q)F (2.12)

s,r (q2) =
bL/2c∑
s=r

F
(2.12)
L,2s (q)F (2.3)

s,r (q4),

(3.11d)
bL/2c∑
s=r

F
(2.5)
L,2s (q)F (2.12)

s,r (q2) =
bL/2c∑
s=r

F
(2.12)
L,2s (q)F (2.5)

s,r (q4),

The first as well as the last two relations are dual in the sense of q ↔ 1/q. After
the substitution (q4r+2, L− 2r) → (a, n) equation (3.11a) implies

4φ3

[
iq,−iq, q−n, q1−n

−q2, a1/2,−a1/2
; q2, aq2n−1

]
=

(−q; q2)n

(−q; q)n
4φ3

[
0,−aq−2, q−2n, q2−2n

a,−q1−2n,−q3−2n
; q4, q4

]
and equation (3.11c) implies

4φ3

[
iq−1,−iq−1, q−n, q1−n

−q2, a1/2,−a1/2
; q2, aq2n+1

]
= qn (−q−1; q2)n

(−q; q)n
4φ3

[
0,−aq2, q−2n, q2−2n

a,−q3−2n,−q5−2n
; q4, q4

]
.

Finally there holds

bL/2c∑
s=r

F
(2.8)
L,2s (q)F (2.13)

s,r (q2) =
bL/2c∑
s=r

F
(2.13)
L,2s (q)F (2.8)

s,r (q4),(3.12a)

bL/2c∑
s=r

F
(2.8)
L,2s (q)F (2.12)

s,r (q2) =
bL/2c∑
s=r

F
(2.12)
L,2s (q)F (2.8)

s,r (q4).(3.12b)
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After the replacement (q2r, L− 2r) → (a, n) these yield

(3.13) 4φ3

[
iq,−iq, q−n, q1−n

−q2, aq,−q2−2n/a
; q2, q2

]
=

(−a; q)n(−q; q2)n

(−q; q)n(−a; q2)n
4φ3

[
ia,−ia, q−2n, q2−2n

a2q2,−q1−2n,−q3−2n
; q4, q4

]
and

(3.14) 4φ3

[
iq−1,−iq−1, q−n, q1−n

−q2, aq,−q2−2n/a
; q2, q4

]
= qn (−q−1; q2)n(−a; q)n

(−q; q)n(−a; q2)n
5φ4

[
ia,−ia,−a2q4, q−2n, q2−2n

−a2, a2q2,−q3−2n,−q5−2n
; q4, q4

]
,

respectively. It is not hard to see that (3.13) is a special case of

(3.15) 4φ3

[
b, q2/b, q−n, q1−n

−q2, aq,−q2−2n/a
; q2, q2

]
=

(−a; q)n(−q; q2)n

(−q; q)n(−a; q2)n
4φ3

[
aq/b, ab/q, q−2n, q2−2n

a2q2,−q1−2n,−q3−2n
; q4, q4

]
,

which generalizes (2.16) and follows by first applying Singh’s quadratic transfor-
mation (2.17) to the right-side and then using Sears’ 4φ3 transformation (2.15).
(Equation (3.15) also follows from [1, Eq. (4.3)] by a single use of Sears’ trans-
form.) Because of the 5φ4 series on the right, it is unclear whether (3.14) admits a
similar kind of generalization.

3.3.5. Quartic transformations. Our list of quartic relations begins with

L∑
s=r

F
(1.6)
2L,2s(q)F

(2.5)
s,r (q) =

L∑
s=r

F
(1.7)
2L,2s(q)F

(2.3)
s,r (q)(3.16a)

=
L∑

s=r
s≡r (2)

F
(2.8)
L,s (q2)F (1.6)

s,r (q2),

(3.16b)
L∑

s=r

F
(1.7)
2L,2s(q)F

(2.8)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.8)
L,s (q2)F (1.7)

s,r (q2).

The first equality in (3.16a) once again corresponds to a specialization of [30, Eq.
(III.12)]. More interesting are the second equality in (3.16a) and the generalized
commutation relation (3.16b). These prove the (a, b, n) → (qr+1/2, 0, L − r), re-
spectively, (a, b, n) → (qr+1/2,−qr, L− r) case of

(3.17) 4φ3

[
b1/2,−b1/2, q−n,−q−n

a, b, q1−2n/a
; q, q

]
=

1 + a2q2n−1

1 + a2q−1

(−a2q−1; q4)n

(a; q)2n
4φ3

[
−bq,−bq3, q−2n, q2−2n

−a2q3, b2q2,−q5−4n/a2
; q4, q4

]
,
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established in Section 6.2. As a variation on the above there also holds

L∑
s=r

F
(1.6)
2L,2s(q)F

(2.3)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.3)
L,s (q2)F (1.6)

s,r (q2),(3.18a)

L∑
s=r

F
(1.6)
2L,2s(q)F

(2.8)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.3)
L,s (q2)F (1.7)

s,r (q2).(3.18b)

Here (3.18a), respectively, (3.18b) imply the (a, b, n) → (qr+1/2, 0, L − r) and
(a, b, n) → (qr+1/2,−qr, L− r) instances of

(3.19) 4φ3

[
b1/2,−b1/2, q−n,−q−n

a,−a, b
; q,−a2q2n

]
=

(−a2q; q2)n

(a2; q2)n
4φ3

[
−bq,−bq3, q−2n, q2−2n

−a2q,−a2q3, b2q2
; q4, a4q4n

]
.

Once again this is proved in Section 6.2. By making the substitution (qr+1/2, L −
r) → (a, n) the relation

(3.20)
L∑

s=r

F
(1.7)
2L,2s(q)F

(2.5)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.5)
L,s (q2)F (1.6)

s,r (q2),

yields the b →∞ limit of the quartic transformation

(3.21) 4φ3

[
b1/2,−b1/2, q−n,−q−n

a, b, q1−2n/a
; q, q

]
=

(−a2q; q2)n(b2; q4)n

(a; q)2n(b2; q2)n
4φ3

[
a2/b, a2q2/b, q−2n, q2−2n

−a2q,−a2q3, q4−4n/b2
; q4, q4

]
.

It is not hard to prove this identity by applying Sears’ 4φ3 transformation (2.15)
with

(a, b, c, d, e, f, q) → (q−2n, q2−2n,−bq,−bq3,−a2q3, b2q2, q4)

to the right-hand side of (3.17).
Next is the pair

L∑
s=r

F
(1.2)
2L,2s(q)F

(2.13)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.13)
L,s (q)F (1.2)

s,r (q4),

L∑
s=r

F
(1.2)
2L,2s(q)F

(2.12)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q)F (1.2)

s,r (q4).

After the substitutions (qr+1/2, L− r) → (a, n) these lead to
(3.22)

3φ2

[
iq1/2,−iq1/2, q−n

−q, a
; q,−aqn

]
=

(−q; q2)n

(−q, a; q)n
3φ2

[
−a2q−1, q−2n, q2−2n

−q1−2n,−q3−2n
; q4, q4

]
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and

(3.23) 3φ2

[
iq−1/2,−iq−1/2, q−n

−q, a
; q,−aqn+1

]
= qn (−q−1; q2)n

(−q, a; q)n
3φ2

[
−a2q3, q−2n, q2−2n

−q3−2n,−q5−2n
; q4, q4

]
,

which we failed to generalize to the level of 4φ3 (or 5φ4) series. It is however not
hard to see that by applying Singh’s transformation (2.17) to the right-hand side,
(3.22) becomes the (b, c) → (∞, iq1/2) limit of (3.10). It is also possible to arrive at
(3.22) and (3.23) (with A replaced by a) by taking the a, b →∞ limit in (3.25) and
(3.26) such that A = −bq1−n/a is fixed, and by then transforming the resulting 3φ2

series on the right using [30, Eq. (III.13)].
Our last two quartic commutation relations are rather interesting,

L∑
s=r

F
(1.1)
2L,2s(q)F

(2.13)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.13)
L,s (q)F (1.1)

s,r (q4),(3.24a)

L∑
s=r

F
(1.1)
2L,2s(q)F

(2.12)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q)F (1.1)

s,r (q4).(3.24b)

Equation (3.24a) implies the (a, b, n) → (q2r+1,∞, L− r) instance of

(3.25) 5φ4

[
iq1/2,−iq1/2, b1/2,−b1/2, q−n

−q, a1/2,−a1/2,−bq1−n/a
; q, q

]
=

(−q, a2/b; q2)n

(−q,−a/b; q)n(a; q2)n
5φ4

[
a2/b2,−aq−1,−aq, q−2n, q2−2n

a2/b, a2q2/b,−q1−2n,−q3−2n
; q4, q4

]
.

This result, which will be proved in Section 6.2, simplifies to (2.16) for b = 1.
Similarly, (3.24b) corresponds to the (a, b, n) → (q2r+1,∞, L− r) case of

(3.26) 5φ4

[
iq−1/2,−iq−1/2, b1/2,−b1/2, q−n

−q, a1/2,−a1/2,−bq1−n/a
; q, q2

]
= qn (−q−1, a2/b; q2)n

(−q,−a/b; q)n(a; q2)n
5φ4

[
a2/b2,−aq,−aq3, q−2n, q2−2n

a2/b, a2q2/b,−q3−2n,−q5−2n
; q4, q4

]
.

When b = 1 this simplifies to (2.14) and when aq = −1 (and b → b2) to

(3.27) 3φ2(b,−b, q−n;−q, b2q2−n; q, q2) = qn (q−2/b2; q2)n

(−q, q−1/b2; q)n

needed shortly. The proof of (3.26) can again be found in Section 6.2.
Both (3.25) and (3.26) may be further manipulated into new quadratic trans-

formations as follows. The left-hand side of (3.25) simplifies to a 3φ2 series by the
(b, x, y) → (i(bq/a)1/2, (a/b)1/2, i(a/q)1/2) case of [30, Eq (3.5.2); a → q−n]
(3.28)

5φ4

[
bx,−bx, by,−by, q−n

−q, bxy,−bxy, b2q−n
; q, q

]
=

(q2/b2; q2)n

(−q, q/b2; q)n
3φ2

[
x2, y2, q−2n

b2x2y2, b2q−2n
; q2, b2q3

]
.
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After the further substitution (a, b, q) → (aq, aq/b,−q) this leads to
(3.29)

5φ4

[
a, aq2, b2, q−2n, q2−2n

abq, abq3, q1−2n, q3−2n
; q4, q4

]
=

(aq, bq; q2)n

(q, abq; q2)n
3φ2

[
a, b, q−2n

aq, q1−2n/b
; q2,−q2

b

]
.

When (b, q) → (−aq,−q) the left is summable by (2.16) and we infer the further
identity

(3.30) 2φ1(a, q−2n; q−2n/a; q2, q/a) =
(−q, aq; q)n

(aq2; q2)n
,

which also follows from [30, Exercise 1.8]. By the usual polynomial argument
equation (3.29) may also be stated as

5φ4

[
a, aq2, b2, c, cq2

abq, abq3, cq, cq3
; q4, q4

]
=

(q, cq/a, cq/b, q/ab; q2)∞
(cq, q/a, q/b, cq/ab; q2)∞

3φ2

[
a, b, c

aq, cq/b
; q2,−q2

b

]
,

provided both series terminate. For c = aq the 3φ2 series on the right becomes a
2φ1 which precisely takes the form of the sum side of the Bailey-Daum summation
[30, Eq. (II.9)].

Remark 3.1. When a = q2j with j ≥ 1, equation (3.30) may be put in the form

(3.31)
n∑

k=0

qk

[
k + j − 1

k

]
q2

[
n− k + j

j

]
q2

=
[
n + 2j

n

]
.

This has the following elegant partition theoretic interpretation. The expression

qk

[
k + j − 1

k

]
q2

is the generating function of partitions of exactly k parts, with all parts being odd
and no parts exceeding 2j − 1. The expression[

n− k + j

j

]
q2

is the generating function of partitions of at most n− k parts, with all parts being
even and no parts exceeding 2j. Hence the summand on the left of (3.31) is the
generating function of partitions of at most n parts, with no parts exceeding 2j and
exactly k odd parts. When summed over the number of odd parts this gives the
generating function of partitions of at most n parts with no parts exceeding 2j, in
accordance with the right-hand side of (3.31).

To also rewrite (3.26) as a quadratic transformation requires a bit more work.
Indeed, in order to trade the 5φ4 on the left for a 3φ2 we need to prove the following
companion to (3.28):

(3.32) 5φ4

[
bx,−bx, by,−by, q−n

−q, bxy,−bxy, b2q2−n
; q, q2

]
= qn (q−2/b2; q2)n

(−q, q−1/b2; q)n
3φ2

[
x2, y2, q−2n

b2x2y2, b2q4−2n
; q2, b2q3

]
.
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Using this with (b, x, y) → (i(b/aq)1/2, (a/b)1/2, i(aq)1/2) and making the further
substitution (a, b, q) → (aq−1, aq−1/b,−q) yields

(3.33) 5φ4

[
a, aq2, b2, q−2n, q2−2n

abq−1, abq, q3−2n, q5−2n
; q4, q4

]
=

(aq−1, bq−1; q2)n

(q−1, abq−1; q2)n
3φ2

[
a, b, q−2n

aq−1, q3−2n/b
; q2,−q2

b

]
.

When (a, b, q) → (aq,−a,−q) the sum on the left can be carried out by (2.14)
leading to

(3.34) 2φ1(aq, q−2n; q3−2n/a; q2, q2/a) = q−n (−q, a; q)n

(a/q; q2)n
.

This sum, which is in fact (3.30) with order of summation reversed, will be needed
in Section 8. Again we may replace q−2n in (3.33) by c to find

5φ4

[
a, aq2, b2, c, cq2

abq−1, abq, cq3, cq5
; q4, q4

]
=

(q3, cq3/a, cq3/b, q3/ab; q2)∞
(cq3, q3/a, q3/b, cq3/ab; q2)∞

3φ2

[
a, b, c

aq−1, cq3/b
; q2,−q2

b

]
,

provided both series terminate.
To the best of our knowledge (3.29) and (3.33) are new, and the result closest

to these transformations that we were able to obtain using just elementary results
from [30] is

4φ3

[
a, aq, q−n, q1−n

b2q,−aq1−n/b,−aq2−n/b
; q2, q2

]
=

(b2; q2)n

(b2,−b/a; q)n
2φ1

[
b, q−n

q1−n/b
; q,

q

a

]
.

This generalizes [30, Exercise 1.6 (i)] obtained when a tends to 0, and follows from
[30, Exercise 3.4] and [30, Eq, (III.8)].

Proof of (3.32). Take (3.27) and let j be the summation variable in the 3φ2 series.
Replace n by n− k, shift j → j − k and multiply both sides by

(x2, y2; q2)k

(q2, b2x2y2; q2)k

(q−n; q)k

(b2q2−n; q)k
(bq)2k.

Next sum k from 0 to n and interchange the order of the sums over j and k on
the left. This gives, after some tedious but elementary manipulations involving
q-shifted factorials,

n∑
j=0

3φ2

[
x2, y2, q−2j

b2x2y2, q2−2j/b2
; q2, q2

]
(b2; q2)j(q−n; q)j

(q2; q2)j(b2q2−n; q)j
q2j

= qn (q−2/b2; q2)n

(−q, q−1/b2; q)n
3φ2

[
x2, y2, q−2n

b2x2y2, b2q4−2n
; q2, b2q3

]
.

The 3φ2 can be summed by (2.11) resulting in (3.32). �
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3.3.6. Sextic transformations. Both our results take the form of generalized com-
mutation relations. First,

L∑
s=r

F
(1.8)
2L,2s(q)F

(2.8)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.8)
L,s (q3)F (1.8)

s,r (q2),

which, by the substitution (−qr, L− r) → (a, n), yields

5φ4

[
a1/2,−a1/2, q−n, ωq−n, ω2q−n

a, aq1/2,−aq1/2, q−3n/a2
; q, q

]
=

1− a3q3n

1− a3

(a3; q6)n(−a3q3; q3)n

(a2q; q)3n

× 5φ4

[
a2q2, a2q4, a2q6, q−3n, q3−3n

−a3q3, a3q6,−a3q6, q6−6n/a3
; q6, q6

]
.

Second,
bL/3c∑
s=r

s≡r (2)

F
(2.18)
L,s (q2)F (1.7)

s,r (q3) =
L∑

s=3r
s≡r (2)

F
(1.7)
L,s (q)F (2.18)

s,r (q),

which, by the substitution (q3r, (L− 3r)/2) → (a2, n), yields

5φ4

[
a2/3, a2/3ω, a2/3ω2, q−n,−q−n

a,−a, aq1/2, q1/2−2n/a
; q, q

]
=

1− a4q6n

1− a4

(aq1/2; q)2n(a2q2; q2)n

(a4; q6)n

× 5φ4

[
aq3/2, aq9/2, q−2n, q2−2n, q4−2n

a2q3,−a2q3,−a2q6, q6−6n/a4
; q6, q6

]
.

3.3.7. Transformation from q to q9. As our second-last last relation there holds

L∑
s=3r

s≡r (2)

F
(1.8)
L,s (q)F (2.18)

s,r (q) =
bL/3c∑
s=r

s≡r (2)

F
(2.18)
L,s (q3)F (1.8)

s,r (q3).

After replacing (q3r, (L− 3r)/2) → (a2, n) this becomes

6φ5

[
a2/3, a2/3ω, a2/3ω2, q−n, ωq−n, ω2q−n

a,−a, aq1/2,−aq1/2, q−3n/a2
; q, q

]
=

1− a6q6n

1− a6

(a6; q6)n

(a2q; q)3n
6φ5

[
a2q3, a2q6, a2q9, q−3n, q3−3n, q6−3n

a3q9/2,−a3q9/2, a3q9,−a3q9, q9−9n/a6
; q9, q9

]
.

To the best of our knowledge this is the first transformation between the bases q
and q9.

3.3.8. Transformation from q to q12. Also our very last relation is an isolated result
because F (2.13) commutes with all but F (1.8);

L∑
s=r

F
(1.8)
2L,2s(q)F

(2.12)
s,r (q) =

L∑
s=r

s≡r (2)

F
(2.12)
L,s (q3)F (1.8)

s,r (q4).



22 ALEXANDER BERKOVICH AND S. OLE WARNAAR

Making the replacement (q2r+1, L− r) → (a, n) this corresponds to

5φ4

[
iq−1/2,−iq−1/2, q−n, ωq−n, ω2q−n

−q, a1/2,−a1/2, q1−3n/a
; q, q2

]
= q3n (−q−3, a3q3; q6)n

(−q3; q3)n(a; q)3n
5φ4

[
a2q2, a2q6, a2q10, q−6n, q6−6n

a3q3, a3q9,−q9−6n,−q15−6n
; q12, q12

]
.

We believe this to be the first example of a transformation relating base q to base
q12.

4. Inverse transformations

4.1. Main results. When iterating any of the transformations of Section 2 it is
often important to start with an as simple as possible q-binomial identity as seed.
One possible way to determine whether a potential seed can actually be reduced is
by applying the inverses of the transformations of Lemmas 2.1–2.6.

For a transformation of the type (2.1) we consider a formula of the form

q−
1
4 γL2

L∑
r=0

f̃L,r(q)
[

2r

r − j

]
= q−

1
4 γj2

[
L

1
2 (L− j)

]
qk

χ(L ≡ j (2))

as its inverse. Here χ is the truth function; χ(true) = 1 and χ(false) = 0. Indeed,
replacing (L, r) → (r, s) in (2.1) and then using this to eliminate the q-binomial
coefficient in the above summand yields

L∑
s=0

s≡j (2)

q
1
4 γ(s2−L2)

[
s

1
2 (s− j)

]
qk

L∑
r=s

f̃L,r(q)fr,s(q) =
[

L
1
2 (L− j)

]
qk

χ(L ≡ j (2)).

This is obviously satisfied if the inverse relations
L∑

r=s

f̃L,r(q)fr,s(q) = δL,s,(4.1a)

L∑
r=s

fL,r(q)f̃r,s(q) = δL,s(4.1b)

hold. Here the second equation follows from the first and the fact that fL,r(q)
is nonzero if and only if 0 ≤ r ≤ L. Inverse relations like (4.1) have been much
studied in the theory of basic hypergeometric series. Most importantly, they are
related to the Bailey transform [5, 9, 13, 17, 18, 54], the problem of q-Lagrange
inversion [31, 32] and summations and transformations of q-hypergeometric series
[1, 22, 23, 24, 27, 38, 44].

The first inverse is that of Lemma 2.1.

Lemma 4.1. For L and j integers there holds

q−
1
2 L2

L∑
r=0

(−1)r+Lq(
L−r

2 )(−q; q)L−r

[
L

r

]
q2

[
2r

r − j

]
= q−

1
2 j2

[
L

1
2 (L− j)

]
q2

χ(L ≡ j (2)).
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Proof. All we need to do is show that

f̃L,r(q) = (−1)r+Lq(
L−r

2 )(−q; q)L−r

[
L

r

]
q2

and fL,r(q) as given by (2.4) satisfy (4.1a). Shifting r → r + s this becomes the
n → L − s case of 1φ0(q−n;—; q, q) = δn,0, which follows from the q-binomial
theorem [30, Eq. (II.4)]

(4.2) 1φ0(q−n;—; q, z) = (zq−n; q)n.

Alternatively we can prove Lemma 4.1 without resorting to inverse relations.
Assuming 0 ≤ j ≤ L and shifting r → r + j the identity of the lemma becomes the
(a, c, n) → (0, qj+1/2, L− j) instance of [30, Eq. (II.17)]

(4.3) 4φ3

[
a2q, c,−c, q−n

c2, aq1−n/2,−aq1−n/2
; q, q

]
=

(q, c2/a2; q2)n/2

(c2q, 1/a2; q2)n/2
χ(n ≡ 0 (2))

due to Andrews [4]. �

Next is the inverse of Lemma 2.2.

Lemma 4.2. For L and j integers there holds

q−
1
4 L2

L∑
r=0

(−1)r+Lq(
L−r

2 )(−q2r−L+2; q2)L−r

[
L

r

][
2r

r − j

]
= q−

1
4 j2

[
L

1
2 (L− j)

]
q2

χ(L ≡ j (2)).

Proof. Using that (4.1) remains unchanged if we multiply fL,r(q) by xr(q)yL(q)
and divide f̃L,r(q) by xL(q)yr(q) (xr(q) 6= 0, yL(q) 6= 0) we this time need to show
that

fL,r(q) = (1 + qL)
(−qr+2; q2)L−r−1

(q; q)L−r
,

f̃L,r(q) = (−1)r+Lq(
L−r

2 ) (−q2r−L+2; q2)L−r

(q; q)L−r

satisfies (4.1a). Shifting r → r+s this is (4.3) with c = a and (a2, n) → (−qs, L−s).
Alternatively, we may assume 0 ≤ j ≤ L and shift r → r + j to find that

Lemma 4.2 is (4.3) with (a2, c, n) → (−qj , qj+1/2, L− j). �

The following lemma, corresponding to the inverse of (2.9) is (literally) the odd
one out as the sum on the left does not vanish when L− j is odd.

Lemma 4.3. For L and j integers such that j ≡ L (mod 2) there holds

q−
1
4 L(L+2)(1 + qL)

L∑
r=0

(−1)r+Lq(
L−r

2 )(−q2r−L+3; q2)L−r

[
L

r

][
2r

r − j

]
= q−

1
4 j(j+2)(1 + qj)

[
L

1
2 (L− j)

]
q2

.
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Proof. The difference with the previous two cases is that the pair

fL,r(q) =
(−qr+1; q2)L−r

(q; q)L−r
,

f̃L,r(q) = (−1)r+Lq(
L−r

2 ) (−q2r−L+3; q2)L−r

(q; q)L−r

only satisfies (4.1) for s ≡ L (mod 2). Indeed, shifting r → r + s and substituting
the above, (4.1a) becomes

(4.4) 5φ4

[
a2, bq, c,−c, q−n

c2, b, aq1−n/2,−aq1−n/2
; q, q

]

=


1− a2

1− a2qn

1− bqn

1− b

(q, c2/a2; q2)n/2

(c2q, 1/a2; q2)n/2
if n is even,

1− qn

1− a2qn

a2 − b

1− b

(q, c2q/a2; q2)(n−1)/2

(c2q, q/a2; q2)(n−1)/2
if n is odd,

with c = a, b = 0 and (a2, n) → (−qs+1, L − s(≡ 0 (2))). Note in particular that
for this choice of a, b and c the right side of (4.4) only trivializes to δn,0 for even
values of n, explaining why L− s must be even. The proof of (4.4) is given in the
next subsection.

Also the direct proof of the lemma relies on a special case of (4.4). Assum-
ing 0 ≤ j ≤ L and shifting r → r + j Lemma 4.3 is (4.4) with (a2, b, c, n) →
(−qj+1, 0, qj+1/2, L− j (∈ 2Z)). �

The inverses of the two quartics transforms (2.12) and (2.13) are as follows.

Lemma 4.4. For L and j integers there holds
L∑

r=0

(−1)r+L(−q; q2)L−r

[
L

r

]
q2

[
2r

r − j

]
=

[
L

1
2 (L− j)

]
q4

χ(L ≡ j (2)).

Lemma 4.5. For L and j integers there holds

(1 + q2L)
L∑

r=0

(−1)r+Lq−r(−q−1; q2)L−r

[
L

r

]
q2

[
2r

r − j

]
= q−j(1 + q2j)

[
L

1
2 (L− j)

]
q4

χ(L ≡ j (2)).

Proof. The Lemmas 4.4 and 4.5 follow from (2.12) and (2.13) and the a = −q−1

and a = −q instances of the inverse pair

fL,r(q) = ar (a; q2)L−r

(q2; q2)L−r
,(4.5a)

f̃L,r(q) = (1/a)r (1/a; q2)L−r

(q2; q2)L−r
.(4.5b)

Shifting r → r + s in equation (4.1) this follows from the n → L− s case of

(4.6) 2φ1(a, q−2n; aq2−2n; q2, q2) = δn,0,

which is a specialization of (2.7).
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The direct proof of Lemmas 4.4 and 4.5 is only interesting for the latter. Namely,
if we assume that 0 ≤ j ≤ L and shift r → r + j then Lemma 4.4 is equation (4.3)
with (a2, c, n) → (−qj−L−1, qj+1/2, L− j), but Lemma 4.5 is

(4.7) 5φ4

[
c,−c, bq, q−n,−q−n

c2q, b, iq3/2−n,−iq3/2−n
; q, q2

]

=


(q2; q4)n/2(−c2q−1; q2)n

(c4q2; q4)n/2(−q−1; q2)n
if n is even,

1− q

1− c2q

c2 − b

1− b

(q6; q4)(n−1)/2(−c2q; q2)n−1

(c4q6; q4)(n−1)/2(−q; q2)n−1
if n is odd,

with b = c2 and (c, n) → (qj+1/2, L − j). The identity (4.7) will be proven in
Section 4.2. �

Remark 4.1. By (2.7) it can also be shown that (4.1) with (4.5) (normalized)
is the b = 1/a case of M(a)M(b) = M(ab), with M(a) the infinite-dimensional,
lower-triangular matrix M(a) = (Mi,j(a))i,j≥0 whose entries are given by

Mi,j(a) = aj(a; q2)i−j

[
i

j

]
q2

.

Finally we state the ‘inverse’ of the cubic transformation of Lemma 2.6.

Lemma 4.6. For L and j integers such that j ≡ L (mod 2) there holds

q−
3
4 L2

3L∑
r=L

r≡j (2)

(−1)
1
2 (r+L)q(

1
2 (3L−r)

2 ) (q
3
2 (r−L+2); q3) 1

2 (3L−r)

(q; q) 1
2 (3L−r)

[
r

1
2 (r − 3j)

]

= q−
3
4 j2

[
L

1
2 (L− j)

]
q3

.

Proof. This case is quite different from the previous ones in that fL,r(q) corre-
sponding to (2.18) is nonzero if and only if 0 ≤ 3r ≤ L. As a consequence only a
left-inverse exists, and we claim that

fL,r(q) =
(aq3; q3) 1

2 (L−r−2)(1− aqL)

(aq3; q3)r(q; q) 1
2 (L−3r)

f̃L,r(q) = (−1)
1
2 (r+L)q(

1
2 (3L−r)

2 ) (aq
3
2 (r−L+2); q3) 1

2 (3L−r)

(q; q) 1
2 (3L−r)

with r ≡ L (mod 2) satisfies

(4.8)
3L∑

r=3s
r≡0 (2)

f̃L,r(q)fr,s(q) = δL,s

for s ≡ L (mod 2). Note that this suffices to conclude Lemma 4.6 from (2.18) by
taking a = 1. To prove that (4.8) indeed holds we repace r → 2r + 3s to arrive at
the (b, n) → (aq3s, 3(L− s)/2(≡ 0 (3))) case of

(4.9)
n∑

r=0

1− bq2r

1− b

(b; q3)r(q−n; q)rq
r

(q; q)r(bq3−n; q3)r
= δn,0,
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which is [30, Eq. (3.6.17); p → q3, a → 0] due to Bressoud [18], Gasper [27] and
Krattenthaler [38].

For a direct proof of the lemma we shift r → 2r + j to obtain the ‘singular case’
(c, n) → (q3j+1, 3(L− j)/2(≡ 0 (3))) of

(4.10)
n∑

r=0

(c; q)2r(q−n; q)rq
r

(q, c; q)r(cq2−n; q3)r
=

(q, q2; q3) 1
3 n

(q/c, cq2; q3) 1
3 n

χ(n ≡ 0 (3)),

which is [31, Eq. (4.32); k → n− k, A → q1−2n/c] of Gessel and Stanton. �

4.2. Proofs of (4.4) and (4.7). Before proving the what-we-believe-to-be new
balanced 5φ4 sum (4.4) we note that Andrews’ identity (4.3) arises as the case b = a2

(or b = q−n). Since (4.3) provides a q-analogue of Watson’s 3F2 summation, (4.4)
also provides a generalization of Watson’s sum. Specifically, replacing (a, b, c) →
(qa/2, qb, qc) in (4.4) and then letting q tend to one we find
(4.11)

4F3

[
a, b + 1, c,−n

2c, b, 1
2 (a− n + 2)

; 1
]

=


a(b + n)
b(a + n)

( 1
2 , c− 1

2a)n/2

(c + 1
2 ,− 1

2a)n/2

if n is even,

n(b− a)
b(a + n)

( 1
2 , c− 1

2a + 1
2 )(n−1)/2

(c + 1
2 , 1

2 −
1
2a)(n−1)/2

if n is odd,

where we employ standard notation for hypergeometric series [11, 30, 48]. For b = a
this yields Watson’s (terminating) 3F2 sum. (Whipple extended Watson’s result to
nonterminating series, but at the 4F3 level this no longer appears to be possible.)
At the end of this section another extension of Watson’s sum is be given.

Proof of (4.4). It is not hard to establish (4.4) by application of the contiguous
relation [37, Eq. (3.8)]

(4.12) rφs

[
aq, b, c, (A)

(B)
; q, z

]
=

(1− b)(a− c)
(1− a)(b− c) rφs

[
a, bq, c, (A)

(B)
; q, z

]
− (1− c)(a− b)

(1− a)(b− c) rφs

[
a, b, cq, (Aq)

(B)
; q, z

]
.

Here (A), (B) and (Aq) are shorthand notations for a1, . . . , ar−3 and b1, . . . , bs and
a1q, . . . , ar−3q, respectively. Utilizing (4.12) with (a, b, c) → (b, a2, q−n), the left-
hand side of (4.4) transforms into the sum of two b-independent 4φ3 series. Both
are summable by (4.3) to yield the desired right-hand side. �

Proof of (4.7). To show (4.7) we split its left-hand side by (4.12) with (a, b, c) →
(b,−q−n, q−n) so that

LHS(4.7) =
(1 + qn)(1− bqn)

2qn(1− b) 4φ3

[
c,−c, q−n,−q1−n

c2q, iq3/2−n,−iq3/2−n
; q, q2

]
− (1− qn)(1 + bqn)

2qn(1− b) 4φ3

[
c,−c, q1−n,−q−n

c2q, iq3/2−n,−iq3/2−n
; q, q2

]
.
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Both the 4φ3 series on the right are summable by

(4.13) 4φ3

[
a2, c,−c, q−n

c2q, aq1−n/2,−aq1−n/2
; q, q2

]

=


c2 − a2qn

1− a2qn

(q; q2)n/2(c2q2/a2; q2)n/2−1

(c2q; q2)n/2(q2/a2; q2)n/2−1
if n is even,

1− a2c2qn

1− a2qn

(q; q2)(n+1)/2(c2q/a2; q2)(n−1)/2

(c2q; q2)(n+1)/2(q/a2; q2)(n−1)/2
if n is odd,

leading to the right side of (4.7). To complete the proof we need to deal with (4.13).
By [37, Eq. (2.3)]

r+1φr

[
(A)

aq, (B)
; q, z

]
= r+1φr

[
(A)

a, (B)
; q, z

]
− az

(1− a)(1− aq)

∏r+1
i=1 (1−Ai)∏r−1
i=1 (1−Bi)

r+1φr

[
(Aq)

aq2, (B)
; q, z

]
with a → c2q the left side of (4.13) can be written as the sum of two 4φ3 series,
both of which can be summed by the b →∞ limit of (4.4). This results in the right
side of (4.13). �

To conclude this section we wish to point out that (4.4) is certainly not the
only generalization of (4.3) that may be obtained using contiguous relations. For
example, by (4.3) and [37, Eq. (3.3)]

r+1φr

[
a, (A)
b, (B)

; q, z
]

= r+1φr

[
a/q, (A)
b/q, (B)

; q, z
]

+
z(a− b)

(q − b)(1− b)

∏r
i=1(1−Ai)∏r−1
i=1 (1−Bi)

r+1φr

[
a, (Aq)
bq, (Bq)

; q, z
]

with (a, b, (A), (B)) → (bq, c2q, (a2q, c,−c, q−n), (b, aq1−n/2,−aq1−n/2)) it follows
that

(4.14) 5φ4

[
a2q, bq, c,−c, q−n

c2q, b, aq1−n/2,−aq1−n/2
; q, q

]

=


(q, c2/a2; q2)n/2

(c2q, 1/a2; q2)n/2
if n is even,

c2 − b

1− b

1− a2q

c2 − a2q

(q, c2q−1/a2; q2)(n+1)/2

(c2q, q−1/a2; q2)(n+1)/2
if n is odd.

For b = c2 this simplifies to (4.3) and for (a, b, c) → (qa/2−1/2, qb, qc) together with
q → 1 it yields

4F3

[
a, b + 1, c,−n

2c + 1, b, 1
2 (a− n + 1)

; 1
]

=


( 1
2 , c− 1

2a + 1
2 )n/2

(c + 1
2 , 1

2 −
1
2a)n/2

if n is even,

a(b− 2c)
b(a− 2c)

( 1
2 , c− 1

2a)(n+1)/2

(c + 1
2 ,− 1

2a)(n+1)/2

if n is odd.

This is to be compared with (4.11). For b = 2c this is again Watson’s 3F2 sum.
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Finally we remark that other balanced 4φ3 summations than (4.3) follow from
(4.4) and (4.14). Taking b = c2/q in (4.4) and b = a2q in (4.14) leads to two more
such results. Especially the latter is appealing as some factors on the left of (4.14)
nicely cancel leading to

4φ3

[
a2, c,−c, q−n

c2q, aq−n/2,−aq−n/2
; q, q

]
=


(q, c2q2/a2; q2)n/2

(c2q, q2/a2; q2)n/2
if n is even,

(q, c2q/a2; q2)(n+1)/2

(c2q, q/a2; q2)(n+1)/2
if n is odd,

where we have also replaced a by a/q.

5. The Bailey lemma

As alluded to in the introduction, the q-binomial transformations of the first two
sections are closely related to Bailey’s lemma. Presently we will make this more
precise and restate our results in terms of transformations on Bailey pairs.

First we recall the definition of a Bailey pair [16]. If α(a; q) = {αL(a; q)}L≥0 and
β(a; q) = {βL(a; q)}L≥0 are sequences such that

βL(a; q) =
L∑

r=0

αr(a; q)
(q; q)L−r(aq; q)L+r

,

then (α(a; q), β(a; q)) is called a Bailey pair relative to a and q. The Bailey lemma is
the following powerful mechanism for generating new Bailey pairs [6, 7, 9, 13, 41, 54].

Lemma 5.1. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′L(a; q) =
(b, c; q)L(aq/bc)L

(aq/b, aq/c; q)L
αL(a; q),(5.1a)

β′L(a; q) =
(aq/bc; q)L

(q, aq/b, aq/c; q)L

L∑
r=0

(b, c, q−L; q)rq
r

(bcq−L/a; q)r
βr(a; q).(5.1b)

For (b, c) → (∞,∞) and (b, c) → (∞,−(aq)1/2) this is equivalent to (1.1) and
(1.2), respectively.

Before we state similar such results arising from the transformations of section 2
we recall the base-changing Bailey-pair transformations of Bressoud et al. [20]. The
first result is (equivalent to) [20, Thm. 2.2].

Lemma 5.2. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a2; q2), β′(a2; q2)) given by

α′L(a2; q2) =
(b; q)L

(aq/b; q)L

(aq

b

)L

(−1)Lq(
L
2)αL(a; q),(5.2a)

β′L(a2; q2) =
(−aq/b; q)2L

(−aq; q)2L(q2, a2q2/b2; q2)L

L∑
r=0

(b; q)r(q−2L; q2)rq
r

(−bq−2L/a; q)r
βr(a; q)(5.2b)

forms a Bailey pair relative to a2 and q2.

For b → 0, b → ∞ and b → −(aq)1/2 this yields the equations (E1), (E2) and
Eq. (E3) of [50]. By some simple variable changes, (E2) and (E3) can be seen to
be equivalent to (1.6) and (1.7).
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The next result is (equivalent to) [20, Thm. 2.3], [50, Eq. (T1)] and (1.8).

Lemma 5.3. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a3; q3), β′(a3; q3)) given by

α′L(a3; q3) = aLqL2
αL(a; q),(5.3a)

β′L(a3; q3) =
(aq; q)3L

(q3; q3)L(a3q3; q3)2L

L∑
r=0

(q−3L; q3)rq
r

(q−3L/a; q)r
βr(a; q)(5.3b)

forms a Bailey pair relative to a3 and q3.

To the above three lemmas we now add several new base-changing Bailey lemmas.
First is a Bailey-type lemma of a quadratic nature.

Lemma 5.4. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′2L(a; q) = (−1)LbLqL2 (aq/b; q2)L

(bq; q2)L
αL(a; q2), α′2L+1(a; q) = 0,(5.4a)

β′L(a; q) =
(b; q2)L

(q, b; q)L(aq; q2)L

bL/2c∑
r=0

(aq/b; q2)r(q−L; q)2rq
2r

(q2−2L/b; q2)r
βr(a; q2).(5.4b)

For b → 0, b → ∞, b → −a1/2 and b → −a1/2q this corresponds to the even j
case of (2.3), (2.5), (2.8) and (2.9).

Proof. Writing the nontrivial part of (5.4) as

α′2L(a; q) = hL(a, b)αL(a; q2),

β′L(a; q) =
bL/2c∑
r=0

fL,r(a, b)βr(a; q2),

the claim of the lemma boils down to showing that
bL/2c∑
r=s

fL,r(a, b)
(q2; q2)r−s(aq2; q2)r+s

=
hs(a, b)

(q; q)L−2s(aq; q)L+2s
.

After shifting r → r + s this follows from (2.10) with (a, b, n) → (aq4s+1, bq2s, L−
2s). �

Next, (2.12) and (2.13) for even j correspond to the following two quartic Bailey
lemmas.

Lemma 5.5. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′2L(a; q) = αL(a2; q4), α′2L+1(a; q) = 0,(5.5a)

β′L(a; q) =
qL(−q−1; q2)L

(q2, aq; q2)L

bL/2c∑
r=0

(−aq2, q−2L; q2)2rq
4r

(−q3−2L; q2)2r
βr(a2; q4).(5.5b)

Proof. Copying the proof of Lemma 5.4 this follows from (2.14) with (a, n) →
(−aq4s+1, L− 2s). �
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Lemma 5.6. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′2L(a; q) = q2L 1 + a

1 + aq4L
αL(a2; q4), α′2L+1(a; q) = 0,(5.6a)

β′L(a; q) =
(−q; q2)L

(q2, aq; q2)L

bL/2c∑
r=0

(−a, q−2L; q2)2rq
4r

(−q1−2L; q2)2r
βr(a2; q4).(5.6b)

Proof. This follows from (2.16) with (a, n) → (−aq4s+1, L− 2s). �

Finally there is cubic Bailey lemma corresponding to the even j case of the
transformation (2.18).

Lemma 5.7. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′3L(a; q) = aLq3L2
αL(a; q3), α′3L±1(a; q) = 0,(5.7a)

β′L(a; q) =
(a; q3)L

(q; q)L(a; q)2L

bL/3c∑
r=0

(q−L; q)3rq
3r

(q3−3L/a; q3)r
βr(a; q3).(5.7b)

Proof. Writing the nontrivial part of (5.7) as

α′3L(a; q) = hL(a, b)αL(a; q3),

β′L(a; q) =
bL/3c∑
r=0

fL,r(a, b)βr(a; q3),

we need to show that
bL/3c∑
r=s

fL,r(a, b)
(q3; q3)r−s(aq3; q3)r+s

=
hs(a, b)

(q; q)L−3s(aq; q)L+3s
.

Replacing r → r + s and defining n = L − 3s, this follows from (2.11) with
(a, b, c, d, q) → (q−n, q1−n, q2−n, aq6s+3, q3). �

Remark 5.1. The Lemmas 5.4–5.7 correspond to the even j instances of the q-
binomial transformations of Section 2. Equally well can one find Bailey-type lem-
mas corresponding to j being odd. Since we will not use these in the remainder of
the paper we only state the result related to the odd case of (2.3), (2.5), (2.8) and
(2.9).

Lemma 5.8. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then so is
(α′(a; q), β′(a; q)) given by

α′2L+1(a; q) = (−1)LbLqL2 (aq3/b; q2)L

(bq; q2)L
αL(aq2; q2), α′2L(a; q) = 0,

β′L+1(a; q) =
(b; q2)L

(q, b; q)L(aq3; q2)L

bL/2c∑
r=0

(aq3/b; q2)r(q−L; q)2rq
2r

(aq; q)2(q2−2L/b; q2)r
βr(aq2; q2).
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Again it is important to also find the inverses of the transformations (5.4)–(5.7).
Since all are of the form

α′nL(a; q) = gL(a, q)αL(ak; ql), α′nL+m(a; q) = 0,

β′L(a; q) =
bL/nc∑
r=0

fL,r(a, q)βr(ak; ql),

with n ∈ {2, 3} and m ∈ {1, . . . , n− 1} we can only find left-inverses, defined as

α′L(ak; ql) =
αnL(a; q)
gL(a, q)

,

β′L(ak; ql) =
nL∑
r=0

f̃L,r(a, q)βr(a; q),

with f̃L,r(a, q) given by

(5.8)
nL∑

r=ns

f̃L,r(a, q)fr,s(a, q) = δL,s.

Such an f̃L,r(a, q) is obviously not unique, but guided by our inverse relations of
the previous section it is not hard to find an f̃L,r(a, q) that can be expressed in
simple closed form.

First we state a left-inverse of (5.4).

Lemma 5.9. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a; q2), β′(a; q2)) given by

α′L(a; q2) = (−1)Lb−Lq−L2 (bq; q2)L

(aq/b; q2)L
α2L(a; q),(5.9a)

β′L(a; q2) =
(1/b; q2)L

(q; q)2L(aq/b; q2)L

2L∑
r=0

(aq; q2)r(bq, q−2L; q)rq
r

(bq2−2L; q2)r
βr(a; q)(5.9b)

yields a Bailey pair relative to a and q2.

Proof. Reading off fL,r(a, q) and f̃L,r(a, q) from (5.4b) and (5.9b), respectively,
the inverse relation (5.8) (with n = 2) can be verified by (4.3) with c = a and
(a, n) → (b1/2qs, 2L− 2s). �

Next we have left-inverses of the two quartic transformations (5.5) and (5.6).

Lemma 5.10. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a2; q4), β′(a2; q4)) given by

α′L(a2; q4) = α2L(a; q),(5.10a)

β′L(a2; q4) =
(−q; q2)2L

(q2,−aq2; q2)2L

2L∑
r=0

(aq, q−4L; q2)rq
r

(−q1−4L; q2)r
βr(a; q)(5.10b)

yields a Bailey pair relative to a2 and q4.

Proof. Reading off fL,r(a, q) and f̃L,r(a, q) from (5.5b) and (5.10b), equation (5.8)
(with n = 2) follows from (4.6) with (a, n) → (−q, 2L− 2s). �
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Lemma 5.11. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a2; q4), β′(a2; q4)) given by

α′L(a2; q4) = q−2L 1 + aq4L

1 + a
α2L(a; q),(5.11a)

β′L(a2; q4) =
(−q−1; q2)2L

(q2,−a; q2)2L

2L∑
r=0

(aq, q−4L; q2)rq
2r

(−q3−4L; q2)r
βr(a; q).(5.11b)

yields a Bailey pair relative to a2 and q4.

Proof. Reading off fL,r(a, q) and f̃L,r(a, q) from (5.6b) and (5.11b), equation (5.8)
(with n = 2) is (4.6) with (a, n) → (−q−1, 2L− 2s). �

Finally we give a left-inverse of (5.7).

Lemma 5.12. If (α(a; q), β(a; q)) is a Bailey pair relative to a and q, then the pair
(α′(a; q3), β′(a; q3)) given by

α′L(a; q3) = a−Lq−3L2
α3L(a; q),(5.12a)

β′L(a; q3) =
(1/a; q3)L

(q; q)3L

3L∑
r=0

(aq; q)2r(q−3L; q)rq
r

(aq3−3L; q3)r
βr(a; q)(5.12b)

yields a Bailey pair relative to a and q3.

Proof. Reading off fL,r(a, q) and f̃L,r(a, q) from (5.7b) and (5.12b), equation (5.8)
(with n = 3) follows from (4.9) with (b, n) → (aq6s, 3L− 3s). �

6. q-Hypergeometric transformations

6.1. Applications of base-changing Bailey lemmas. In the following we have
compiled a list of quadratic, cubic and quartic transformation formulas obtained
by twice iterating the unit Bailey pair [6]

(6.1) αL = (−1)Lq(
L
2) 1− aq2L

1− a

(a; q)L

(q; q)L
, βL = δL,0

using the Lemmas 5.1–5.7. Before stating the resulting transformations two remarks
are in order.

First we note that (5.6) applied to the unit Bailey pair yields

α′2L(a; q) = (−1)Lq2L2 1− aq4L

1− a

(a2; q4)L

(q4; q4)L
, β′L(a; q) =

(−q; q2)L

(q2, aq; q2)L
,

whereas (5.4) applied to the unit Bailey pair leads to

α′2L(a; q) = bLq2L2−1 1− aq4L

1− a

(a, aq/b; q2)L

(q2, bq; q2)L
, β′L(a; q) =

(b; q2)L

(q, b; q)L(aq; q2)L
,

where in both cases α′2L+1(a; q) = 0. Since the second result includes the first as the
special case b = −q, we need not consider those identities obtain by first applying
(5.6) to the unit Bailey pair.

A second remark is that taking the unit Bailey pair and applying the transforma-
tion (5.i) followed by (5.1) and then using a standard polynomial argument yields
a result that implies the identity obtained by applying (5.i) followed by (5.k). Here
i ∈ {1, . . . , 7} and k ∈ {2, 3, 4, 7}. So, for example, we will not consider the identity
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obtained by successive application of (5.3) and (5.7) because, modulo a polynomial
argument, it is implied by the application of (5.3) followed by (5.1).

Taking both of the above comments into account we will derive 18 different
results, obtained by first applying (5.i) with i ∈ {1, 2, 3, 4, 5, 7} and then (5.k) with
k ∈ {1, 5, 6}. Five of the six identities that arise by application of (5.i) followed
by (5.1) are not new. We nevertheless have chosen to state these known results as
they will be needed later to prove several of the claims made in Section 3.3.

6.1.1. Transformation (5.i) followed by (5.1). Applying (5.1) twice to the unit Bai-
ley pair and replacing q−n by f we find Watson’s transformation [30, Eq. (III.17)]

(6.2) 8W7(a; b, c, d, e, f ; q, a2q2/bcdef)

=
(aq, aq/de, aq/df, aq/ef ; q)∞

(aq/d, aq/e, aq/f, aq/def ; q)∞
4φ3

[
aq/bc, d, e, f

aq/b, aq/c, def/a
; q, q

]
,

provided both series terminate. (Watson’s transformation actually holds under
slightly weaker conditions, but these do not follow from the above derivation.) The
derivation of (6.2) using Bailey’s lemma is of course well-known, see e.g., [6].

Applying (5.2) and then (5.1) to the unit Bailey pair and replacing q−2n by e
we obtain a quadratic transformation due to Verma and Jain [52, Eq. (1.3)];

(6.3) 10W9(a; b, c1/2,−c1/2, d1/2,−d1/2, e1/2,−e1/2; q,−a3q3/bcde)

=
(a2q2, a2q2/cd, a2q2/ce, a2q2/de; q2)∞
(a2q2/c, a2q2/d, a2q2/e, a2q2/cde; q2)∞

× 5φ4

[
−aq/b,−aq2/b, c, d, e

−aq,−aq2, a2q2/b2, cde/a2
; q2, q2

]
,

provided both series terminate. We remark that Verma and Jain stated the above
identity for e = q−2n only. In the calculations of Section 6.2, the above, slightly
more general form, will however be crucial. Similar remarks apply to all the subse-
quent identities of Verma and Jain.

Applying (5.3) and then (5.1) to the unit Bailey pair and replacing q−3n by d
we obtain the following cubic transformation of Verma and Jain [52, Eq. (1.5)]:

(6.4)

12W11(a; b1/3, b1/3ω, b1/3ω2, c1/3, c1/3ω, c1/3ω2, d1/3, d1/3ω, d1/3ω2; q, a4q4/bcd)

=
(a3q3, a3q3/bc, a3q3/bd, a3q3/cd; q3)∞
(a3q3/b, a3q3/c, a3q3/d, a3q3/bcd; q3)∞

× 6φ5

[
aq, aq2, aq3, b, c, d

(aq)3/2,−(aq)3/2, a3/2q3,−a3/2q3, bcd/a3
; q3, q3

]
,

provided both series terminate.
Applying (5.4) and then (5.1) to the unit Bailey pair and replacing q−n by e we

find a second quadratic transformation of Verma and Jain [52, Eq. (1.4)];

(6.5) 10W9(a; aq/b, c, cq, d, dq, e, eq; q2, a2bq2/c2d2e2)

=
(aq, aq/cd, aq/ce, aq/de; q)∞
(aq/c, aq/d, aq/e, aq/cde; q)∞

5φ4

[
b1/2,−b1/2, c, d, e

(aq)1/2,−(aq)1/2, b, cde/a
; q, q

]
,

provided that both series terminate.



34 ALEXANDER BERKOVICH AND S. OLE WARNAAR

Next, (5.7) followed by (5.1) yields a second cubic transformation of Verma and
Jain [52, Eq. (1.6)];

(6.6) 12W11(a; b, bq, bq2, c, cq, cq2, d, dq, dq2; q3, a4q3/b3c3d3)

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

× 6φ5

[
a1/3, a1/3ω, a1/3ω2, b, c, d

a1/2,−a1/2, (aq)1/2,−(aq)1/2, bcd/a
; q, q

]
,

provided both series terminate.
Finally, the identity obtained from (5.5) followed by (5.1) appears to be new;

(6.7)
∞∑

k=0

1− a2q8k

1− a2

(a2; q4)k

(q4; q4)k

(b, c, d; q)2k

(aq/b, aq/c, aq/d; q)2k

(
− a2q

b2c2d2

)k

=
(aq, aq/bc, aq/bd, aq/cd; q)∞
(aq/b, aq/c, aq/d, aq/bcd; q)∞

5φ4

[
iq−1/2,−iq−1/2, b, c, d

−q, (aq)1/2,−(aq)1/2, bcd/a
; q, q2

]
,

provided both series terminate.
Interesting summations occur by making ‘singular’ specializations in the above

six identities. To illustrate the idea, consider (6.2) and put the prefactor of the 4φ3

series to the left-hand side. If k is the summation variable of the 8W7 series, then
the summand on the left contains

(aq/e; q)∞(f ; q)k

(aq/e; q)k
= (aqk+1/e; q)∞(f ; q)k

as a factor. By taking e = aqn and f = q−n, this becomes

(qk−n+1; q)∞(q−n; q)k

which vanishes unless k = n. The resulting identity is the q-Pfaff–Saalschütz for-
mula (2.11) with (a, b, c, d) → (aq/bc, aqn, q−n, aq/b). Similarly, by taking d =
a2q2n and e = q−2n in (6.3) and then negating a we find [20, Eq. (2.1)]

4φ3

[
aq/b, aq2/b, a2q2n, q−2n

aq, aq2, a2q2/b2
; q2, q2

]
=

(aq

b

)n 1− a

1− aq2n

(−q, b; q)n

(a,−aq/b; q)n
,

and by taking c = a3q3n and d = q−3n in (6.4) we get

5φ4

[
aq, aq2, aq3, a3q3n, q−3n

(aq)3/2,−(aq)3/2, a3/2q3,−a3/2q3
; q3, q3

]
= (aq)n 1− aq2n

1− a3q6n

(q3; q3)n(aq; q)n−1

(q; q)n(a3q3; q3)n−1
.

Next consider (6.5) and (6.7) and again put the prefactor of the 5φ4 series to the
other side to obtain the factor

(aq2k+1/c; q)∞(d; q)2k

in the summand on the left. By specializing c = aqn and d = q−n this vanishes
unless 2k = n. The two ensuing identities are (4.3) and, after the change a →
a2q1−n,

4φ3

[
iq−1/2,−iq−1/2, a2q, q−n

−q, aq1−n/2,−aq1−n/2
; q, q2

]
=

1 + a2qn+1

a2q + qn

(q,−q/a2; q2)n/2

(−q2, 1/a2; q2)n/2
χ(n ≡ 0 (2)),
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respectively. Finally, removing the prefactor on the right and specializing c = q−n

and d = aqn in (6.6), the summand on the left will contain the factor

(q3k−n+1; q)∞(q−n; q)3k

so that the only nonvanishing contribution comes from 3k = n. The resulting
identity is (4.10) with order of summation reversed.

Equation (6.7) has another noteworthy specialization. Taking b = −(aq)1/2 and
c = −d = q−n the left simplifies to 5W4(a2; q−2n, q2−2n; q4,−aq4n) which sums
to (a2q2; q2)n(−a; q4)n/((a2q2; q4)n(−a; q2)n) by Rogers’ q-Dougall sum [30, Eq.
(II.20)]. The resulting identity is (3.7) with a → (aq)1/2.

6.1.2. Transformation (5.i) followed by (5.5) or (5.6). Applying (5.1) and then
(5.5) leads to

(6.8)
bn/2c∑
k=0

1− a2q8k

1− a2

(a2, b, c; q4)k

(q4, a2q4/b, a2q4/c; q4)k

(q−n; q)2k

(aqn+1; q)2k

(
−a2q2n+3

bc

)k

= qn (−q−1; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
a2q4/bc,−aq2,−aq4, q−2n, q2−2n

a2q4/b, a2q4/c,−q3−2n,−q5−2n
; q4, q4

]
.

For b = 1 this simplifies to (2.14). Likewise, applying (5.1) and then (5.6) general-
izes (2.16);

(6.9) 10W9(a;−a, b1/2,−b1/2, c1/2,−c1/2, q−n, q1−n; q2,−a2q2n+5/bc)

=
(−q; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
a2q4/bc,−a,−aq2, q−2n, q2−2n

a2q4/b, a2q4/c,−q1−2n,−q3−2n
; q4, q4

]
.

This transformation seems to be a hybrid of (6.3) and (6.5).
From (5.2) followed by (5.5) we obtain a 6φ5 to 4φ3 transformation. Summing

the 6φ5 by [30, Eq. (II.20)] we recover (2.14). A similar kind of situation, but with
a much happier outcome, arises if we apply (5.2) followed by (5.6). In first instance
this yields

8W7(a; ia1/2,−ia1/2, b, q−n, q1−n; q2, aq2n+3/b)

=
(−q; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
−a,−aq2/b,−aq4/b, q−2n, q2−2n

a2q4/b2,−aq4,−q1−2n,−q3−2n
; q4, q4

]
,

but thanks to (6.2) the left-hand side may be simplified to a 4φ3 series. After also
replacing a by −a2 this gives

4φ3

[
q2, b, q−n, q1−n

aq2,−aq2,−bq1−2n/a2
; q2, q2

]
=

(−q; q2)n(−a2q/b; q)n

(−q; q)n(−a2q/b; q2)n
5φ4

[
a2, a2q2/b, a2q4/b, q−2n, q2−2n

a2q4, a4q4/b2,−q1−2n,−q3−2n
; q4, q4

]
.

This result, which for b = 1 this reduces to (2.16), should be compared with (3.15).
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Next, (5.3) followed by (5.5) yields

bn/2c∑
k=0

1− a2q8k

1− a2

(a2; q4)k

(q4; q4)k

(q−3n; q3)2k

(a3q3n+3; q3)2k
(−a2q6n+1)k

= q3n (−q−3; q6)n(a3q3; q3)n

(−q3; q3)n(a3q3; q6)n
5φ4

[
a2q4, a2q8, a2q12, q−6n, q6−6n

a3q6, a3q12,−q9−6n,−q15−6n
; q12, q12

]
and (5.3) followed by (5.6) yields

bn/2c∑
k=0

1− a2q8k

1− a2

(a2; q4)k

(q4; q4)k

(−a3; q12)k

(−a3q12; q12)k

(q−3n; q3)2k

(a3q3n+3; q3)2k
(−a2q6n+7)k

=
(−q3; q6)n(a3q3; q3)n

(−q3; q3)n(a3q3; q6)n
6φ5

[
−a3, a2q4, a2q8, a2q12, q−6n, q6−6n

a3q6, a3q12,−a3q12,−q3−6n,−q9−6n
; q12, q12

]
.

From (5.4) followed by (5.5) we obtain yet another generalization of (2.14) (ob-
tained by setting b = a2q4);

bn/4c∑
k=0

1− a2q16k

1− a2

(a2, a2q4/b; q8)k

(q8, bq4; q8)k

(q−n; q)4k

(aqn+1; q)4k
(bq4n−2)k

= qn (−q−1; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
b1/2,−b1/2,−aq4, q−2n, q2−2n

b, aq2,−q3−2n,−q5−2n
; q4, q4

]
,

and from (5.4) followed by (5.6) we obtain our last generalization of (2.16);

10W9(a;−a, aq2/b1/2,−aq2/b1/2, q−n, q1−n, q2−n, q3−n; q4, bq4n+2)

=
(−q; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
b1/2,−b1/2,−a, q−2n, q2−2n

b, aq2,−q1−2n,−q3−2n
; q4, q4

]
.

Applying (5.7) and then (5.5) or (5.6) gives

bn/6c∑
k=0

1− a2q24k

1− a2

(a2; q12)k

(q12; q12)k

(q−n; q)6k

(aqn+1; q)6k
(−a2q6n−3)k

= qn (−q−1; q2)n(aq; q)n

(−q; q)n(aq; q2)n
6φ5

[
a2/3, a2/3ω, a2/3ω2,−aq4, q−2n, q2−2n

a,−a, aq2,−q3−2n,−q5−2n
; q4, q4

]
.

and

10W9(a;−a, q−n, q1−n, q2−n, q3−n, q4−n, q5−n; q6,−a2q6n+3)

=
(−q; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
a2/3, a2/3ω, a2/3ω2, q−2n, q2−2n

a, aq2,−q1−2n,−q3−2n
; q4, q4

]
,

respectively.
Finally, applying (5.5) twice leads to

bn/4c∑
k=0

1− a4q32k

1− a4

(a4; q16)k

(q16; q16)k

(q−n; q)4k

(aqn+1; q)4k
(−q4n−6)k

= qn (−q−1; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
iq−2,−iq−2,−aq4, q−2n, q2−2n

−q4, aq2, q3−2n, q5−2n
; q4, q8

]
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whereas (5.5) followed by (5.6) yields

bn/4c∑
k=0

1− a4q32k

1− a4

(a4; q16)k

(q16; q16)k

(−a; q8)k

(−aq8; q8)k

(q−n; q)4k

(aqn+1; q)4k
(−q4n−2)k

=
(−q; q2)n(aq; q)n

(−q; q)n(aq; q2)n
5φ4

[
iq−2,−iq−2,−a, q−2n, q2−2n

−q4, aq2, q1−2n, q3−2n
; q4, q8

]
.

6.2. Generalized
∑

FF =
∑

FF identities. Many of the results of Section 6.1
may be further exploited to yield base-changing transformations between balanced
or ‘almost’ balanced series. The idea is to take two of the transformations from
the previous section and to specialize the respective left-hand sides such that they
coincide. As a result the corresponding right-hand sides may be equated leading to
a new transformation. This way one can for example rederive all of the transfor-
mations implied by the

∑
FF =

∑
FF relations of Section 3.3. Instead, however,

we will only prove those identities of Section 3.3 that generalize
∑

FF =
∑

FF
transformations.

As a first example we consider Watson’s transformation (6.2) and transformation
(6.5) of Verma and Jain. The respective left-hand sides are given by

8W7(a; b, c, d, e, f ; q, a2q2/bcdef)

and
10W9(a; aq/b, c, cq, d, dq, e, eq; q2, a2bq2/c2d2e2).

By the substitution (b, d, e, f, q) → (cq, aq/b, q−n, q1−n, q2) in the first and (d, e) →
(−(aq)1/2, q−n) in the second expression, both become

8W7(a; aq/b, c, cq, q−n, q1−n; q2, abq2n+1/c2).

Hence under these substitutions the respective right-hand sides may be equated,
resulting in the quadratic transformation

4φ3

[
b1/2,−b1/2, c, q−n

(aq)1/2, b,−cq1−n/(aq)1/2
; q, q

]
=

(aq/c; q)n(b; q2)n

((aq)1/2, b,−(aq)1/2/c; q)n
4φ3

[
aq/c2, aq/b, q−n, q1−n

aq/c, aq2/c, q2−2n/b
; q2, q2

]
.

By the variable change (a, b, c) → (a2/q, c2, b) this becomes (3.10).
Next consider the pair of identities (6.3) and (6.5). If in (6.3) we let (b, c, d, e, q) →

(aq/b,−aq2, q−2n, q2−2n, q2) and in (6.5) we let (c, d, e) → (−(aq)1/2, q−n,−q−n)
then both left-hand sides become

(6.10) 8W7(a; aq/b, q−n,−q−n, q1−n,−q1−n; q2, abq4n+1).

Again we conclude that under the above substitutions the right-hand sides of (6.3)
and (6.5) may be equated. The resulting transformation is (3.17) with a replaced
by (aq)1/2. Equation (3.21) is found by noting that (6.10) also arises from (6.3) by
letting (b, c, d, e, q) → (−bq, a2q2/b2, q−2n, q2−2n, q2).

In our following example we again equate appropriately specialized right-hand
sides of (6.3) and (6.5), but this time (b, c, d, e, q) → (aq/b,∞, q−2n, q2−2n, q2) in
(6.3) and (c, d, e) → (∞, q−n,−q−n) in (6.5). Since both the left sides become

8φ9

[
a, a1/2q2,−a1/2q2, aq/b, q−n,−q−n, q1−n,−q1−n

a1/2,−a1/2, bq, aqn+1,−aqn+1, aqn+2,−aqn+2, 0, 0
; q2, a2bq4n+3

]
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we may again equate the right sides leading to (3.19) with a → (aq)1/2.
Next we equate (6.5) with (6.9). In order to do so we need to choose (b, c, d, e) →

(−q, b1/2,−b1/2, q−n) in the former and c → bq2 in the latter. Both left-hand sides
then simplify to

10W9(a;−a, b1/2,−b1/2, b1/2q,−b1/2q, q−n, q1−n; q2,−a2q2n+3/b2).

The corresponding identity obtained by equating the respective right-hand sides is
(3.25) with a → aq.

Finally we treat the pair of identities (6.7) and (6.8). In the first we let (b, c, d) →
(b1/2,−b1/2, q−n) and in the second we let c → bq2. Then both the left sides become

∞∑
k=0

1− a2q8k

1− a2

(a2; q4)k

(q4; q4)k

(b; q2)2k

(a2q2/b; q2)2k

(q−n; q)2k

(aqn+1; q)2k

(
−a2q2n+1

b2

)k

.

Accordingly, we may equate right-hand sides to find (3.26) with a → aq.

7. Rogers–Ramanujan type identities

In this section the transformations of Section 2 are applied to yield identities of
the Rogers–Ramanujan type.

A first remark is that most of the single-sum Rogers–Ramanujan identities that
result when applying our new q-binomial transformations are well-known and can
nearly all be found in Slater’s compendium of 130 such identities [47]. This should
come as no surprise since in the large L limit most of our transformations reduce
to sums implied by the ordinary Bailey lemma (5.1). In view of recent work on a
polynomial analogue of the Slater list by Sills [45], we note that our transformations
give rise to rather natural polynomial versions of many of the single-sum identities,
different from those in [45]. For example, all of the Rogers–Ramanujan identities
in Slater’s list that have a product side of the form

(±qa,±qb−a, qb; qb)∞
(q2; q2)∞

or (−q; q2)∞
(±qa,±qb−a, qb; qb)∞

(q2; q2)∞

can be given a polynomial analogue by using the transformations (2.3) and (2.8),
respectively. To give just one example of this we take (1.3) as starting point and first
apply the quadratic transformation (1.6) to get a polynomial identity equivalent to
G(1) in Slater’s list of Bailey pairs [46]. Then applying (2.3) or (2.8) we obtain

L∑
j=−L

(−1)jqj(7j+1)/2

[
2L

L− 2j

]
=

∞∑
n=0

q2n2
(q2; q2)L(−q; q)L−2n

(q2; q2)n(−q; q)2n(q2; q2)L−2n

and
L∑

j=−L

(−1)jqj(5j+1)/2

[
2L

L− 2j

]
= (1 + qL)

∞∑
n=0

qn2
(q; q)L(−q2; q2)L−n−1

(q4; q4)n(q; q)L−2n
.

Assuming |q| < 1, taking the large L limit and using the Jacobi triple product
identity [30, Eq. (II.28)]

(7.1)
∞∑

k=−∞

(−1)kakq(
k
2) = (a, q/a, q; q)∞,
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we find the Rogers–Selberg identity

(7.2)
∞∑

n=0

q2n2

(q2; q2)n(−q; q)2n
=

(q3, q4, q7; q7)∞
(q2; q2)∞

and Rogers’
∞∑

n=0

qn2

(q4; q4)n
= (−q; q2)∞

(q2, q3, q5; q5)∞
(q2; q2)∞

,

labelled (33) and (20) in Slater’s list, respectively.
To actually find results that are new one has to work a little harder. One

particularly nice example of a result that appears to be new is a the following
‘perfect’ Rogers–Ramanujan identity involving the bases q, q2, q3 and q6:

(7.3)
∞∑

n=0

qn(n+1)/2(q3; q3)n

(q; q)2n(q3; q2)n
=

(q6; q6)∞
(q; q)∞(q3; q2)∞

.

To prove this we take two polynomial identities equivalent to the Bailey pairs pairs
J(1) and J(1)−J(2) [47]

(7.4)
∞∑

j=−∞
(−1)jq3j(3j+1)/2

[
2L

L− 3j

]
=

1 L = 0,

(1 + qL)
(q3; q3)L−1

(q; q)L−1
L > 0

and

(7.5)
∞∑

j=−∞
(−1)jq9j(j+1)/2

[
2L

L− 3j − 1

]
= qL−1 (q3; q3)L−1

(q; q)L−1
χ(L > 0),

and calculate the sum (7.4) + qL+1(7.5) to get
∞∑

j=−∞
(−1)jq3j(3j+1)/2

[
2L + 1
L− 3j

]
=

(q3; q3)L

(q; q)L
.

Replacing q → q2 and then applying the quadratic transformation (2.8) gives
∞∑

j=−∞
(−1)jq6j(3j+1)

[
2L

L− 6j − 1

]

= (1 + qL)(q; q)L

∞∑
n=0

qn(n+1)(q6; q6)n(−q; q2)L−n−1

(q2; q2)2n(q2; q4)n+1(q; q)L−2n−1
.

By (7.1) this yields (7.3) with q → q2 in the large L limit.
An identity similar to (7.3) that is in Slater’s list as item (78) results if we

apply (2.9) to (7.4). We include its derivation here to demonstrate that also trans-
formations of the type (2.9) and (2.13) may be successfully exploited to derive
Rogers–Ramanujan identities, despite the factor 1 + qaj in the denominator on the
right. First, by (2.9) and (7.4)

2
∞∑

j=−∞

(−1)jq6j(3j+1)

1 + q6j

[
2L

L− 6j

]

= (−q; q2)L + 2
∞∑

n=1

qn(n+1)(q6; q6)n−1(−q; q2)L−n

(−q; q2)n(q2; q2)n−1

[
L

2n

]
.
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By negating j it follows that the term 1 + q6j on the left cancels the prefactor 2.
Then taking the large L limit and replacing q2 by q yields

(7.6) 1 + 2
∞∑

n=1

qn(n+1)/2(q3; q3)n−1

(q; q)n(q; q2)n(q; q)n−1
=

(q9; q9)∞(q9; q18)∞
(q; q)∞(q; q2)∞

.

For our final single-sum Rogers–Ramanujan result we first establish the truth of
a family of polynomial identities obtained previously by Andrews [8, Eq. (4.5)] for
k = 3.

Proposition 7.1. For integers L ≥ 0, k ≥ 2 and i ∈ {1, . . . , k − 1} there holds

∞∑
j=−∞

(−1)jqj(3kj−k+2i)/2

[
2L

L− 3j

]
qk/3

=
bL/3c∑
n=0

qkn2
(qi, qk−i; qk)n(1− q2kL/3)(qk; qk)L−n−1

(qk; qk)2n(qk/3; qk/3)L−3n
.

Proof. According to the finite form of Jacobi’s triple product identity [3, Ch. 3,
Example 1]

(7.7)
L∑

j=−L

(−1)jajq(
j
2)

[
2L

L− j

]
= (a, q/a; q)L.

Replacing q → qk, applying the cubic transformation (2.18) with q → qk/3, and
specializing a = qi yields the claimed proposition. �

In the above, (2.18) was used for even values of L and j even. Needed for the
odd case is the polynomial identity

L∑
j=−L

(−1)jajq(
j+1
2 )

[
2L + 1
L− j

]
= (1− qL/a)(1/a, q/a; q)L

which easily follows from (7.7). Mimicing the earlier proof and then taking a = q−i

results in the odd version of Proposition 7.1.

Proposition 7.2. For integers L ≥ 0, k ≥ 2 and i ∈ {1, . . . , k − 1} there holds

∞∑
j=−∞

(−1)jqj(3kj+3k−2i)/2

[
2L + 1

L− 3j − 1

]
qk/3

=
b(L−1)/3c∑

n=0

qkn(n+1)(1− qkn+i)(qi, qk−i; qk)n(1− q2kL/3+k/3)(qk; qk)L−n−1

(qk; qk)2n+1(qk/3; qk/3)L−3n−1
.

Letting L tend to infinity and using the Jacobi triple product identity (7.1) gives
Rogers–Ramanujan-type identities for modulus 3k.

Corollary 7.1. For k ≥ 2 and i ∈ {1, . . . , k − 1},

(7.8)
∞∑

n=0

qkn2
(qi, qk−i; qk)n

(qk; qk)2n
=

(qk+i, q2k−i, q3k; q3k)∞
(qk; qk)∞



POSITIVITY PRESERVING TRANSFORMATIONS 41

and
∞∑

n=0

qkn(n+1)(1− qkn+i)(qi, qk−i; qk)n

(qk; qk)2n+1
=

(qi, q3k−i, q3k; q3k)∞
(qk; qk)∞

.

For k = 3 this yields three modulus 9 identities due to Bailey [15, Eqs. (1.6)–
(1.8)].

Another natural choice for a in all of the above would have been a = −qi. This
would for example give the following companion to (7.8):

∞∑
n=0

qkn2
(−qi,−qk−i; qk)n

(qk; qk)2n
=

(−qk+i,−q2k−i, q3k; q3k)∞
(qk; qk)∞

.

The power of the transformations of Section 2 in deriving new Rogers–Ramanu-
jan-type identities becomes fully clear when considering multisum identities. Be-
cause of the iterative nature of the Lemmas 2.1–2.6 a sheer endless number of elegant
new multisum identities may be obtained. In particular, by combining the results
(1.1), (1.2), (1.6)–(1.8) with (2.3), (2.8) and (2.18), each seed (initial q-binomial
identity) becomes the root of a octonary tree (modulo redundancies implied by the
relations of Section 3) of polynomial Rogers–Ramanujan identities. As such roots
one can take the identities implied by the A–M families of Bailey pairs as tabu-
lated by Slater [46, 47] with the provision that only ‘independent’ or ‘irreducible’
Bailey pairs should be employed. For example, the root (1.3) has among its sons or
successors (polynomial identities equivalent to) the pairs B(1) (by (1.1)), H(2) (by
(1.2)), G(1) (by (1.6)), L(2) (by (1.7)), C(1) (by (2.3)), I(7)+I(8) (by (2.9)) and
J(1) of (7.4) (by (2.18)). Moreover, depending on the fine-details of the polyno-
mial identity associated with a particular node of the tree, one may also invoke the
Lemmas 2.3 and 2.5 (and of course Lemma 2.4). Indeed, as we have already seen in
the derivation of (7.6), the undesirable (from a Rogers–Ramanujan identities point
of view) denominator terms 1 + qaj may actually cancel, permitting the use of the
Jacobi triple product identity in the large L limit. Also, a polynomial identity may
arise that is well-suited for further iteration. For example, if we once again take
(1.3) as starting point an apply (2.9) we get after simplification

∞∑
j=−∞

(−1)jq2j2
[

2L

L− 2j

]
= (−q; q2)L.

which is a companion to the Bailey pair I(12). This same identity also follows by
applying (2.13) to (1.3). Lastly we note that the tree can be further enhanced by
noting that the polynomial identities obtained by application of (1.1), (1.2), (1.6)
and (2.3) are not ‘self-dual’. That is, by replacing q → 1/q a different identity
results that yet again may be further iterated. In the case of (2.3) this is equivalent
to also using its companion (2.5). This way it can for example be seen that also
the Bailey pairs H(4) (dual to B(1)), G(4) (dual to G(1)) and C(4) (dual to C(1))
become part of the tree rooted in (1.3).

Below we shall only give a representative sample of the multisum identities con-
tained in the tree with (1.3) as root, and we encourage the reader to exploit their
own favourite combination of transformations. In all our Rogers–Ramanujan series
we assume |q| < 1. Furthermore, unless stated otherwise we adopt the convention
that n0 := L and nk := 0.
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Theorem 7.1. For k ≥ 2 there holds

∑
n1,...,nk−1≥0

qn2
1+2n2

2+···+2k−2n2
k−1

(q; q)2n1

k∏
j=2

(−q2j−2
; q2j−2

)nj−1−2nj

[
nj−1

2nj

]
q2j−1

=
(q

1
2 (4k−2k), q

1
2 ·4

k

, q4k−2k−1
; q4k−2k−1

)∞
(q; q)∞

.

For k = 2 this is item (61) of Slaters list.

Proof. Let

(7.9) G(L;α, β, K; q) = G(L;α, β, K) =
∞∑

j=−∞
(−1)jqKj((α+β)j+α−β)/2

[
2L

L−Kj

]
.

A k-fold application of (2.3) to (1.3) yields the polynomial identity

G(L; 2k − 1, 2k, 2k) =
∑

n1,...,nk−1≥0

k∏
j=1

q2jn2
j (−q2j−1

; q2j−1
)nj−1−2nj

[
nj−1

2nj

]
q2j

.

For k = 1 this is the Bailey pair identity C(1). Taking the large L limit and replacing
q2 by q yields the theorem thanks to Jacobi’s triple product identity (7.1). �

Theorem 7.2. For k ≥ 2 there holds

∑
n1,...,nk−1≥0

qn2
1+2n2

2+···+2k−2n2
k−1

2(q; q)2n1(−q2; q2)n1−1

k∏
j=2

(−q2jnj ; q2j

)nj−1−2nj

[
nj−1

2nj

]
q2j−1

=
(q

1
2 (4k−2k), q

1
2 (4k+2k), q4k

; q4k

)∞
(q; q2)∞(q4; q4)∞

For k = 2 this is item (71) of Slater’s list.

Proof. A k-fold application of (2.8) to (1.3) yields the polynomial identity

(7.10) G(L; 1
2 (2k − 1), 1

2 (2k + 1), 2k)

= 1
2 (1 + qL)

∑
n1,...,nk−1≥0

k∏
j=1

q2j−1n2
j (−q2jnj ; q2j

)nj−1−2nj

[
nj−1

2nj

]
q2j−1

.

The large L limit yields the desired theorem. �

Theorem 7.3. For k ≥ 2 there holds

∑
n1,...,nk−1≥0

qn2
1+3n2

2+···+3k−2n2
k−1

(q; q)2n1

k∏
j=2

(q3j−1
; q3j−1

)nj−1−nj−1(1− q2.3j−2nj−1)
(q3j−2 ; q3j−2)nj−1−3nj

(q3j−1 ; q3j−1)2nj

=
(q

1
6 (9k−3k), q

1
6 (9k+3k), q

1
3 ·9

k

; q
1
3 ·9

k

)∞
(q; q)∞

.

For k = 2 this is item (93) of Slater’s list.
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Proof. A k-fold application of (2.18) to (1.3) yields

G(L; 1
2 (3k − 1), 1

2 (3k + 1), 3k)

=
∑

n1,...,nk−1≥0

k∏
j=1

q3jn2
j (q3j

; q3j

)nj−1−nj−1(1− q2.3j−1nj−1)
(q3j−1 ; q3j−1)nj−1−3nj

(q3j ; q3j )2nj

.

For k = 1 this is (7.4). Taking the limit and replacing q3 → q completes the
proof. �

So far we have only presented Rogers–Ramanujan identities obtained by iterating
one and the same transformation. Finally we state eight more theorems that arise
when alternating (1.6) and (2.3), or (1.1) and (2.3). Eight and not two families of
identities result because it not only matters with which transformation one starts,
but also whether an even or odd number of iterations is carried out.

The first four theorems occur by alternating (1.6) and (2.3).

Theorem 7.4. For k an odd integer such that k ≥ 3 there holds

(7.11) ∑
n1,...,nk−1≥0

qn2
1

(q; q2)2n1

k−1∏
j=2

j≡0 (2)

q2n2
j+n2

j+1

(q; q)nj−1−2nj (−q; q)2nj (q2; q2)nj−nj+1(q; q2)nj+1

=
(q2k−1, q2k

, q2k+1−1; q2k+1−1)∞
(q; q)∞

.

Proof. Take (1.3), and in alternating fashion apply (1.6) (k + 1)/2 times and (2.3)
(k − 1)/2 times, starting with (1.6). This yields an identity for G(L; 2(k−1)/2(1 −
2−k), 2(k−1)/2, 2(k−1)/2; q2) which implies the theorem in the large L limit. �

To concisely state the next theorem we depart from our earlier convention that
n0 = L and below the term (q; q)nj−1−2nj

for j = 1 should be interpreted as 1.

Theorem 7.5. For k an even integer such that k ≥ 2 there holds

∑
n1,...,nk−1≥0

k−1∏
j=1

j≡1 (2)

q2n2
j+n2

j+1

(q; q)nj−1−2nj
(−q; q)2nj

(q2; q2)nj−nj+1(q; q2)nj+1

=
(q2k−1, q2k

, q2k+1−1; q2k+1−1)∞
(q2; q2)∞

.

For k = 2 this is (7.2).

Proof. Take (1.3), and in alternating fashion apply (1.6) and (2.3) each k/2 times
starting with (1.6). This yields an identity for G(L; 2k/2(1−2−k), 2k/2, 2k/2) which
implies the theorem in the large L limit. �
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Theorem 7.6. For k an odd integer such that k ≥ 3 there holds

∑
n1,...,nk−1≥0

q2n2
1

(−q; q)2n1

k−1∏
j=2

j≡0 (2)

qn2
j+2n2

j+1

(q2; q2)nj−1−nj
(q; q2)nj

(q; q)nj−2nj+1(−q; q)2nj+1

=
(q2k+1−2, q2k+1

, q2k+2−2; q2k+2−2)∞
(q2; q2)∞

.

We note that if we replace q2 → q then the right-hand side equals the right-hand
side of (7.11).

Proof. Take (1.3), and in alternating fashion apply (2.3) (k + 1)/2 times and (1.6)
(k − 1)/2 times, starting with (2.3). This yields an identity for G(L; 2(k+1)/2(1 −
2−k), 2(k+1)/2, 2(k+1)/2) which implies the theorem in the large L limit. �

In the next theorem (q2; q2)n0−n1 = 1.

Theorem 7.7. For k an even integer such that k ≥ 2 there holds

∑
n1,...,nk−1≥0

k−1∏
j=1

j≡1 (2)

qn2
j+2n2

j+1

(q2; q2)nj−1−nj (q; q2)nj (q; q)nj−2nj+1(−q; q)2nj+1

=
(q2k+1−2, q2k+1

, q2k+2−2; q2k+2−2)∞
(q; q)∞

.

For k = 2 this coincides with and Theorem 7.1.

Proof. Take (1.3), and in alternating fashion apply (2.3) and (1.6) each k/2 times
starting with (2.3). This yields an identity for G(L; 2k/2(1 − 2−k), 2k/2, 2k/2; q2)
which implies the theorem in the large L limit. �

The next four results are obtained by alternating (1.1) and (2.3).

Theorem 7.8. For k an odd integer such that k ≥ 3 there holds

∑
n1,...,nk−1≥0

qn2
1

(q; q2)n1

×
k−1∏
j=2

j≡0 (2)

q2j/2(n2
j+n2

j+1)

(q2j/2−1 ; q2j/2−1)nj−1−2nj (q2j/2 ; q2j/2)nj−nj+1(q2j/2 ; q2j/2+1)nj+1

=
(q3·2k−1−2(k+1)/2

, q3·2k−1−2(k−1)/2
, q3·2k−3.2(k−1)/2

; q3·2k−3.2(k−1)/2
)∞

(q; q)∞
.

Proof. Take (1.3), and in alternating fashion apply (1.1) (k + 1)/2 times and (2.3)
(k − 1)/2 times, starting with (1.1). This yields an identity for G(L; 3 · 2(k−1)/2 −
2, 3 · 2(k−1)/2 − 1, 2(k−1)/2; q) which implies the theorem in the large L limit. �

Below, (q1/2; q1/2)n0−2n1 = 1.
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Theorem 7.9. For k an even integer such that k ≥ 2 there holds∑
n1,...,nk−1≥0

k−2∏
j=0

j≡0 (2)

q2j/2(n2
j+1+n2

j+2)

(q2j/2−1 ; q2j/2−1)nj−2nj+1(q2j/2 ; q2j/2)nj+1−nj+2(q2j/2 ; q2j/2+1)nj+2

=
(q2k−2k/2

, q2k−2k/2−1
, q2k+1−3·2k/2−1

; q2k+1−3·2k/2−1
)∞

(q; q)∞
.

For k = 2 this is the first Rogers–Ramanujan identity.

Proof. Take (1.3), and in alternating fashion apply (1.1) and (2.3) each k/2 times
starting with (1.1). This yields an identity for G(L; 2k/2+1 − 2, 2k/2+1 − 1, 2k/2)
which implies the theorem with q → q2 in the large L limit. �

Theorem 7.10. For k an odd integer such that k ≥ 3 there holds∑
n1,...,nk−1≥0

qn2
1

×
k−3∏
j=0

j≡0 (2)

q2j/2(n2
j+2+2n2

j+3)

(q2j/2 ; q2j/2)nj+1−nj+2(q2j/2 ; q2j/2+1)nj+2(q2j/2 ; q2j/2)nj+2−2nj+3

=
(q2k+1−3·2(k−1)/2

, q2k+1−2(k+1)/2
, q2k+2−5·2(k−1)/2

; q2k+2−5·2(k−1)/2
)∞

(q; q)∞
.

Proof. Take (1.3), and in alternating fashion apply (2.3) (k + 1)/2 times and (1.1)
(k − 1)/2 times, starting with (2.3). This yields an identity for G(L; 2(k+3)/2 −
3, 2(k+3)/2 − 2, 2(k+1)/2) which implies the theorem with q → q2 in the large L
limit. �

Below, (q; q)n0−n1 = 1.

Theorem 7.11. For k an even integer such that k ≥ 2 there holds

∑
n1,...,nk−1≥0

k−2∏
j=0

j≡0 (2)

q2j/2(n2
j+1+2n2

j+2)

(q2j/2 ; q2j/2)nj−nj+1(q2j/2 ; q2j/2+1)nj+1(q2j/2 ; q2j/2)nj+1−2nj+2

=
(q3(2k−2k/2), q3·2k−2k/2+1

, q3·2k+1−5·2k/2
; q3·2k+1−5·2k/2

)∞
(q; q)∞

.

For k = 2 this is identity (61) of Slater.

Proof. Take (1.3), and in alternating fashion apply (2.3) and (1.1) each k/2 times
starting with (2.3). This yields an identity for G(L; 3(2k/2 − 1), 3 · 2k/2 − 2, 2k/2)
which implies the theorem in the large L limit. �
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8. Rogers–Szegö polynomials

For nonnegative integers n the Rogers–Szegö (RS) polynomials are defined as [3,
Ch. 3, Examples 3–9]

(8.1) Hn(t; q) = Hn(t) =
n∑

j=0

tj
[
n

j

]
.

By the replacements q → q4 and j → (n − j)/2 in Hn(q1/2) = (−q1/2; q1/2)n [3,
Ch. 3, Example 5] we find

(8.2)
n∑

j=−n
j≡n (2)

qj

[
n

1
2 (n− j)

]
q4

= q−n(−q2; q2)n.

Hence, by the quartic transformation (2.12),
n∑

j=−n

qj

[
2n

n− j

]
=

n∑
r=0

qn−2r(−q2; q2)r(−q−1; q2)n−r

[
n

r

]
q2

,

and by its cousin (2.13),
n∑

j=−n

q2j

1 + q2j

[
2n

n− j

]
=

1
2

n∑
r=0

(−1; q2)r(−q; q2)n−r

[
n

r

]
q2

.

By negating j it follows that the left-hand side of this last identity simplifies to

1
2

n∑
j=−n

[
2n

n− j

]
.

If we then replace j by n− j in both formulas and r → n− r in the second formula,
we get

H2n(q−1) =
n∑

r=0

q−2r(−q2; q2)r(−q−1; q2)n−r

[
n

r

]
q2

and

H2n(1) =
n∑

r=0

(−q; q2)r(−1; q2)n−r

[
n

r

]
q2

.

This suggests the following more general result.

Theorem 8.1. The Rogers–Szegö polynomials can be expressed as

(8.3) Hn(t) =
bn/2c∑
r=0

t2r(−q/t; q2)r(−t; q2)b(n+1)/2c−r

[
bn/2c

r

]
q2

.

This new representation for the RS polynomials manifests the well-known facts
that H2n(−1) = (q; q2)n, H2n+1(−1) = 0 and Hn(−q) = (q; q2)b(n+1)/2c, which are
not immediately clear from the standard definition (8.1). For recent new represen-
tations of the generating function of the Rogers–Szegö polynomials, see [34].

In the following we will give two proofs of (8.3). In the first we show that (8.3)
satisfies the recurrence [3, Ch 3. Example 6]

(8.4) Hn+1(t) = (1 + t)Hn(t)− (1− qn)tHn−1(t)



POSITIVITY PRESERVING TRANSFORMATIONS 47

which determines the RS polynomials together with the initial conditions H0(t) = 1
and H1(t) = 1 + t. In the second more complicated and interesting proof, we es-
tablish equality between (8.1) and (8.3) using basic hypergeometric series manipu-
lations.

First proof of (8.3). Take (8.4), replace n by 2n and substitute (8.3). Then use
(−t; q2)n−r+1 = (−t; q2)n−r(1 + tq2n−2r) on the left and

(1− q2n)
[
n− 1

r

]
q2

= (1− q2n−2r)
[
n

r

]
q2

on the right. All terms now pairwise cancel.
Next take (8.4), replace n by 2n− 1 and substitute (8.3). Then use

(8.5)
[
n

r

]
q2

=
[
n− 1

r

]
q2

+ q2n−2r

[
n− 1
r − 1

]
q2

and cancel one of the two terms on the left with one of the terms on the right. To
proceed use (−t; q2)n−r = (−t; q2)n−r−1(1 + tq2n−2r−2) on the right and replace r
by r + 1 on the left. All resulting terms again pairwise cancel.

The final checking of the initial conditions H0(t) = 1 and H1(t) = 1 + t is left to
the reader. �

Second proof of (8.3). As a first step we twice use the q-binomial theorem (4.2) to
expand the q-shifted factorials on the right. After this one can extract coefficients
of tj on both sides leading to the double sum

bn/2c∑
r=0

b(n+1)/2c−r∑
k=0

q(2r+k−j)2+k(k−1)

×
[

r

2r + k − j

]
q2

[
b(n + 1)/2c − r

k

]
q2

[
bn/2c

r

]
q2

=
[
n

j

]
.

Now introduce two new summation variables r′ and k′ by r′ = 2r + k − j and
k′ = j−k− r. Eliminating k and r in favour of their primed counterparts and then
dropping the primes yields

bj/2c∑
k=0

q(j−2k)(j−2k−1)

[
b(n + 1)/2c − k

j − 2k

]
q2

[
bn/2c

k

]
q2

× 2φ2

[
q−2(bn/2c−k), q−2(j−2k)

q−2(b(n+1)/2c−k), 0
; q2, q3−2σ

]
=

[
n

j

]
,

where σ ∈ {0, 1} is fixed by n + σ ≡ 0 (mod 2). We note that the lower bound on
k may be optimized to max(0, j − b(n + 1)/2c).

When n is even the 2φ2 series becomes a 1φ1 which sums to q−(j−2k
2 )(−q; q)j−2k

by the a →∞ limit of (3.34) or by (8.2) with q2 → 1/q and j → L− 2j. When n
is odd the 2φ2 sums to

q−(j−2k
2 ) 1− qn−j+1

1− qn−2k+1
(−q; q)j−2k

by the a →∞ limit of

(8.6) 3φ2(a, bq2, q−2n; b, q2−2n/a; q2, q/a) = q−n 1− bqn

1− b

(−q, a; q)n

(a; q2)n
.
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For even n we are thus left with (after replacing n by 2n)

(8.7)
bj/2c∑
k=0

q(
j−2k

2 )(−q; q)j−2k

[
n− k

j − 2k

]
q2

[
n

k

]
q2

=
[
2n

j

]
and for odd n (after replacing n by 2n + 1) with

bj/2c∑
k=0

q(
j−2k

2 )(−q; q)j−2k
1− q2n−j+2

1− q2n−2k+2

[
n− k + 1

j − 2k

]
q2

[
n

k

]
q2

=
[
2n + 1

j

]
.

Multiplying both sides by (1 − q2n+2)/(1 − q2n−j+2) this can easily be seen to
correspond to (8.7) with n → n+1. Hence we only need to consider (8.7). But this
is nothing but (2.5) with (L, j, r) → (n, n− j, n− j + 2k).

It remains to prove (8.6), which for b = a reduces to (3.34) and for b = 0 yields
a companion thereof. Now by the contiguous relation [37, Eq. (3.2)]

r+1φr

[
a, bq, (A)

(B)
; q, z

]
= r+1φr

[
aq, b, (A)

(B)
; q, z

]
+ z(b− a)

∏r−1
i=1 (1−Ai)∏r
i=1(1−Bi)

r+1φr

[
aq, bq, (Aq)

(Bq)
; q, z

]
with (a, b, (A), (B), z, q) → (a, b, (q−2n), (b, q2−2n/a), q/a, q2) the 3φ2 series on the
left-hand side of (8.6) splits into two 2φ1 series, both of which are summable by
(3.34). After some simplifications this yields the claimed right-hand side. �

Note added. After submission of this paper to the Mathematics ArXiv, Alain
Lascoux pointed out to us that Theorem 8.1 implies that the Rogers–Szegö poly-
nomials satisfy the recurrences

H2n(t) =
n∑

i=0

q(
i
2)ti(−q; q)i

[
n

i

]
q2

Hn−i(t2; q2)(8.8a)

and

H2n+1(t) = (1 + t)
n∑

i=0

q(
i+1
2 )ti(−q; q)i

[
n

i

]
q2

Hn−i(t2; q2).(8.8b)

Indeed, from (8.3) it follows that
∞∑

n=0

xnH2n(t)
(q2; q2)n

=
∞∑

n=0

xn
n∑

r=0

t2r (−q/t; q2)r

(q2; q2)r

(−t; q2)n−r

(q2; q2)n−r
(8.9)

= 1φ0(−t;—; q2, x)1φ0(−q/t;—; q2, t2x) =
(−tx; q)∞

(x, t2x; q2)∞
,

where the second equality follows by an interchange of sums and the shift n → n+r,
and where the third equality follows from the q-binomial theorem [30, Eq. (II.3)]

(8.10) 1φ0(a;—; q, z) =
(az; q)∞
(z; q)∞

.

Mourad Ismail pointed out to us that the equality of the extremes in (8.9) has also
been obtained in his recent joint paper with Dennis Stanton [36, Eq. (3.5a)] using
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the Askey–Wilson integral. By [3, Ch. 3, Example 3]
∞∑

n=0

xnHn(t)
(q; q)n

=
1

(x, tx; q)∞
,

and (8.10) with a → −tx/z followed by z →∞ we thus find
∞∑

n=0

xnH2n(t)
(q2; q2)n

=
∞∑

i=0

q(
i
2)(tx)i

(q; q)i

∞∑
n=0

xnHn(t2; q2)
(q2; q2)n

=
∞∑

n=0

xn
n∑

i=0

q(
i
2)tiHn−i(t2; q2)

(q; q)i(q2; q2)n−i
.

Comparing coefficients of xn yields (8.8a). In much the same way one finds
∞∑

n=0

xnH2n+1(t)
(q2; q2)n

= (1 + t)
(−txq; q)∞
(x, t2x; q2)∞

(8.11)

= (1 + t)
∞∑

n=0

xn
n∑

i=0

q(
i+1
2 )tiHn−i(t2; q2)

(q; q)i(q2; q2)n−i
,

which implies (8.8b).
A more direct way of obtaining (8.8a) is by taking (2.5), multiplying both sides

by tL−j and then summing j over the integers from −L to L. After replacing L by
n and changing the order of summation on the left this gives

n∑
r=0

q(
n−r

2 )(−q; q)n−r

[
n

r

]
q2

r∑
j=−r

j≡r (2)

tn−j

[
r

1
2 (r − j)

]
q2

=
n∑

j=−n

tn−j

[
2n

n− j

]
.

Changing j → n− j on the right and j → r − 2j followed by r → n− r on the left
yields (8.8a).

Copying this latter derivation of (8.8a), but now taking (2.12) instead of (2.5)
as starting point, leads to yet another recurrence, namely

(8.12a) H2n(t) =
n∑

i=0

(tq)i(−1/q; q2)i

[
n

i

]
q2

Hn−i(t2; q4).

Once this has been found it is not hard to establish the odd counterpart

(8.12b) H2n+1(t) = (1 + t)
n∑

i=0

(tq)i(−q; q2)i

[
n

i

]
q2

Hn−i(t2; q4).

To prove this we first multiply (8.12a) by xn/(q2; q2)n and sum n over the nonneg-
ative integers. By (8.9) and (8.10) this yields

(8.13)
∞∑

n=0

xnHn(t2; q4)
(q2; q2)n

=
(−xt; q)∞

(x, t2x; q2)∞
(xtq; q2)∞
(−xt; q2)∞

=
(t2x2q2; q4)∞
(x, t2x; q2)∞

,

equivalent to [36, Eq. (3.5b)]. This result together with the first line of (8.11)
is equivalent to (8.12b). Specifically, taking (8.12b), multiplying both sides by
xn/(q2; q2)n and summing over n using (8.10), (8.11) and (8.13) yields

(1 + t)
(−txq; q)∞
(x, t2x; q2)∞

= (1 + t)
(−txq2; q2)∞
(txq; q2)∞

(t2x2q2; q)∞
(x, t2x; q2)∞

,

which is obviously true.
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Finally we note that by equating right-hand sides of (8.8b) and (8.12b) and by
extracting coefficients of tk we obtain the transformation

4φ3

[
a, aq2, q−2n, q2−2n

a2,−q1−2n,−q3−2n
; q4, 1

]
= q(

n
2) (−q; q)n

(−q; q2)n
2φ1

[
q−n, q1−n

−a
; q2, 1

]
.

This can also be obtained from (3.19) and [30, Exercise 3.2 (i)]. Equating right-hand
sides of (8.8a) and (8.12a) fails to produce anything new.

9. The generalized Borwein conjecture

9.1. The Borwein conjecture and Bressoud’s generalization. Some years
ago Peter Borwein conjectured [8] that the polynomials An(q), Bn(q) and Cn(q)
given by

An(q3)− qBn(q3)− q2Cn(q3) = (q, q2; q3)n

have nonnegative coefficients. Defining

G(N,M ;α, β, K; q) = G(N,M ;α, β, K)

=
∞∑

j=−∞
(−1)jqKj((α+β)j+α−β)/2

[
M + N

N −Kj

]
it follows from (7.7) that [8]

An(q) = G(n, n; 4/3, 5/3, 3)

Bn(q) = G(n + 1, n− 1; 2/3, 7/3, 3)

Cn(q) = G(n + 1, n− 1; 1/3, 8/3, 3).

This led Bressoud [19] to a more general conjecture concerning the nonnegativity
of the coefficients of G(N,M ;α, β, K; q). Since we will only be concerned with the
case N = M we write G(N ;α, β, K; q) instead of G(N,N ;α, β, K; q), in accordance
with (7.9). We also write P (q) ≥ 0 for P (q) a polynomial in q with nonnegative
coefficients. Then the N = M case of Bressoud’s generalized Borwein conjecture
can be stated as follows.

Conjecture 9.1. Let K, L, αK, βK be integers such that 0 ≤ α ≤ K, 0 ≤ β ≤ K
and 1 ≤ α + β ≤ 2K − 1. Then G(L;α, β, K; q) ≥ 0.

When α and β are integers the conjecture becomes [12, Thm. 1] of Andrews et
al. For fractional values of α and or β several cases of the conjecture have been
proven in [19, 35, 55, 57].

Without loss of generality one may in fact put stronger restrictions on the pa-
rameters α and β in Conjecture 9.1. By

G(L;α, β, K) = G(L;β, α, K)

we may assume that 0 ≤ α ≤ β ≤ K. Furthermore, by

G(L;α, β, K; 1/q) = q−L2
G(L;K − β, K − α, K; q)

we may also assume that 1 ≤ α + β ≤ K. Hence we obtain max(0, 1 − β) ≤ α ≤
min(β, K − β).
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Because of the positivity preserving nature of the q-binomial transformations of
Section 2 we can easily prove many cases of Conjecture 9.1. For example, iterating
(1.3) using (2.8) yields the polynomial identity (7.10), which implies that

(9.1) G(L; 1
2 (2k − 1), 1

2 (2k + 1), 2k) ≥ 0.

For k = 1 the polynomial identity (7.10) and the according nonnegativity of the
coefficients of G(L; 1/2, 3/2, 2) are due to Ismail et al. [35, Prop. 2 (3)].

A reformulation of the positivity preserving transformations of Section 2 in the
language of the generalized Borwein conjecture reads as follows.

Lemma 9.1. If G(L;α, β, K) ≥ 0 then G(L;α′, β′,K ′) ≥ 0 with

α′ = α + K, β′ = β + K, K ′ = 2K,(9.2a)

α′ = α, β′ = β, K ′ = 2K,(9.2b)

α′ = α + K/2, β′ = β + K/2, K ′ = 2K,(9.2c)

α′ = 2α, β′ = 2β, K ′ = 2K,(9.2d)

α′ = α + K, β′ = β + K, K ′ = 3K.(9.2e)

Proof. We will only prove (9.2a). All other cases proceed along similar lines, be it
that instead of (2.3) one needs to employ (2.5), (2.8), (2.12) and (2.18). Adopting
the notation of Section 3 and writing F

(2.3)
L,r (q) for qr2/2fL,r(q), with fL,r(q) given

by (2.4), we have by Lemma 2.1 and the assumption that G(L;α, β, K; q) ≥ 0,

0 ≤
∞∑

r=0

F
(2.3)
L,2r (q)G(r;α, β, K; q2)

=
∞∑

j=−∞
(−1)jqKj((α+β)j+α−β)

∞∑
r=0

F
(2.3)
L,2r (q)

[
2r

r −Kj

]
q2

=
∞∑

j=−∞
(−1)jqKj((2K+α+β)j+α−β)

[
2L

L− 2Kj

]
= G(L;K + α, K + β, 2K; q).

�

Lemma 9.1 may be complemented by two more results. First we remark that
the equation following Theorem 2.5 of [57] can be recast as the following lemma.

Lemma 9.2. For L and j integers there holds

L∑
r=0

r≡j (2)

q
1
2 r2

fL,r(q)
[

r
1
2 (r − j)

]
= q

1
2 j2

[
2L

L− j

]

with

fL,r(q) =
[
L

r

] L−r∑
n=0

qn(n+r)

[
L− r

n

]
.

By the substitution q → 1/q this implies a related result.
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Corollary 9.1. For L and j integers there holds

L∑
r=0

r≡j (2)

q
1
4 r2

fL,r(q)
[

r
1
2 (r − j)

]
= q

1
4 j2

[
2L

L− j

]

with

fL,r(q) =
[
L

r

] L−r∑
n=0

qLn

[
L− r

n

]
.

Note that these results correspond to (2.1) with k = 1 and γ = 2 or γ = 1, but
that, unlike the solutions to (2.1) presented in Section 2, fL,r(q) is non-factorizable.
From Lemma 9.2 and its corollary we get [57, Lemma 6.7].

Lemma 9.3. If G(L;α, β, K) ≥ 0 then G(L;α′, β′,K ′) ≥ 0 with

α′ = α/2 + K, β′ = β/2 + K, K ′ = 2K,(9.3a)

α′ = (α + K)/2, β′ = (β + K)/2, K ′ = 2K.(9.3b)

The results of Lemmas 9.1 and 9.3 can be iterated to yield a tree of conditional
nonnegativity results, subject to various internal relations. For example, applying
(9.2a) and then (9.2b) is equivalent to applying (9.2b) and then (9.2c) (this fact
corresponds to (3.8a) with r → 2r), but is also equivalent to application of (9.2d)
followed by (9.3b). Indeed in each case, starting with G(L;α, β, K) one obtains
G(L;α + K, β + K, 4K). Even when ignoring these degeneracies it is very compli-
cated to give a complete description of an arbitrary node of the tree, and for the
example of the subtree generated by Lemma 9.3, which requires the theory of con-
tinued fractions, we refer to [57, Prop. 6.8]. Instead of trying to achieve maximum
generality we take the easy way out and restrict ourselves to several easy to state
and prove examples.

Proposition 9.1. For K, α, β and k integers such that max(0, 1 − β) ≤ α ≤
min(β, K − β) and k ≥ 0,

G(L;α + 1
2 (2k − 1)K, β + 1

2 (2k − 1)K, 2kK) ≥ 0.

For α = 0, β = 1 and K = 1 this yields (9.1).

Proof. The proposition is true for k = 0 by the remark following Conjecture 9.1.
The rest follows from (9.2c) and induction. �

Proposition 9.2. For K, α, β and k integers such that max(0, 1 − β) ≤ α ≤
min(β, K − β) there holds G(L;α′, β′,K ′) ≥ 0 with

α′ = 2−k(α + 5
14 (8k − 1)K), β′ = 2−k(β + 5

14 (8k − 1)K), K ′ = 4kK

for k ≥ 0, and

α′ = 21−k(α + 1
28 (3 · 8k − 10)K), β′ = 21−k(β + 1

28 (3 · 8k − 10)K),

K ′ = 1
2 · 4

kK

for k ≥ 1.
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Proof. The first equation for k = 0 is true by the remark following Conjecture 9.1.
Thanks to 5

14 (8k − 1) + 23k−1 = 1
28 (3 · 8k − 10), applying (9.2c) to G(L;α′, β′,K ′)

with (α′, β′,K ′) given by the first equation gives G(L;α′, β′,K ′) with (α′, β′,K ′)
given by the second equation where k → k +1. Thanks to 1

28 (3 · 8k − 10)+23k−2 =
5
14 (8k − 1), applying (9.3b) to G(L;α′, β′,K ′) with (α′, β′,K ′) given by the second
equation gives G(L;α′, β′,K ′) with (α′, β′,K ′) given by the first equation. These
observations suffice to conclude the proposition by induction. �

Reversing the order of (9.2c) and (9.3b) in the above leads to the following
modification of Proposition 9.2

Proposition 9.3. For K, α, β and k integers such that max(0, 1 − β) ≤ α ≤
min(β, K − β) there holds G(L;α′, β′,K ′) ≥ 0 with

α′ = 2−k(α + 3
7 (8k − 1)K), β′ = 2−k(β + 3

7 (8k − 1)K), K ′ = 4kK

for k ≥ 0, and

α′ = 2−k(α + 1
28 (5 · 8k − 12)K), β′ = 2−k(β + 1

28 (5 · 8k − 12)K),

K ′ = 1
2 · 4

kK

for k ≥ 1.

Since we went through quite a bit of trouble to show that the coefficients of
the polynomial in (2.19) are positive we should at least include one example that
makes use of (9.2e). The next result is obtained by replacing (9.2c) in the proof of
Proposition 9.2 by (9.2e).

Proposition 9.4. For K, α, β and k integers such that max(0, 1 − β) ≤ α ≤
min(β, K − β) there holds G(L;α′, β′,K ′) ≥ 0 with

α′ = 2−k(α + 4
11 (12k − 1)K), β′ = 2−k(β + 4

11 (12k − 1)K), K ′ = 6kK

for k ≥ 0, and

α′ = 21−k(α + 1
44 (5 · 12k − 16)K), β′ = 21−k(β + 1

44 (5 · 12k − 16)K),

K ′ = 1
2 · 6

kK

for k ≥ 1.

We leave it to the reader to derive more examples of the above kind.
Our next examples use the result [55, Cor. 3.2].

Theorem 9.1. G(L; b−1/a, b, a) ≥ 0 for a, b coprime integers such that 0 < b < a.

First we note that (9.2a) and (9.2b) nicely combine to the following statement.

Lemma 9.4. Let k, i be integers such that 0 ≤ i < 2k. Then G(L;α, β, K) ≥ 0
implies that G(L;α + iK, β + iK, 2kK) ≥ 0.

Proof. For k = 0 the lemma is trivially true and for k = 1 it corresponds to (9.2a)
when i = 1 and to (9.2b) when i = 0. Induction now does the rest since application
of (9.2a) to (i, k) yields (k′, i′) with k′ = k + 1 and 2k ≤ i′ < 2k+1 = 2k′ and
application of (9.2b) to (i, k) yields (k′, i′) with k′ = k + 1 and 0 ≤ i′ < 2k. When
combined this results in (i′, k′) with k′ = k + 1 and 0 ≤ i′ < 2k′ . �
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In the same vein one can also show that (9.2b) and (9.2d) combine in a simple
manner.

Lemma 9.5. Let k, i be integers such that 0 ≤ i ≤ k. Then G(L;α, β, K) ≥ 0
implies that G(L; 2iα, 2iβ, 2kK) ≥ 0.

If we now invoke Theorem 9.1 we obtain the following two Theorems.

Theorem 9.2. G(L; b−1/a, b, 2ka) ≥ 0 for k a nonnegative integer and a, b coprime
integers such that 0 < b < 2ka.

Proof. Obviously, by Lemma 9.4 and Theorem 9.1, G(L; b+ia−1/a, b+ia, 2ka) ≥ 0
for a, b coprime integers such that 0 < b < a and k, i integers such that 0 ≤ i < 2k.
Replacing b+ ia by b this becomes G(L; b−1/a, b, 2ka) ≥ 0 for a, b coprime integers
such that ia < b < (i + 1)a and k, i integers such that 0 ≤ i < 2k. But since a and
b are coprime the condition ia < b < (i + 1)a with 0 ≤ i < 2k may be replaced by
0 < b < 2ka. �

Theorem 9.3. G(L; 2i(b − 1/a), 2ib, 2k+k′a) ≥ 0 for k a nonnegative integer, a, b

coprime integers such that 0 < b < 2ka and k′, i integers such that 0 ≤ i < 2k′ .

Note that this contains the previous theorem as special case.

Proof. Simply apply Lemma 9.5 with k → k′ to Theorem 9.2. �

Our final example arises by repeating the proof of Proposition 9.2 but with
Theorem 9.2 as seed.

Theorem 9.4. Let k′ a nonnegative integer and a, b a pair of coprime integers
such that 0 < b < 2k′a. Then G(L,α, β, K) ≥ 0 with

α = 2−k(b− 1/a + 5
14 (8k − 1)a), β = 2−k(b + 5

14 (8k − 1)a), K = 22k+k′a

for k ≥ 0, and

α = 21−k(b− 1/a + 1
28 (3 · 8k − 10)a), β = 21−k(b + 1

28 (3 · 8k − 10)a),

K = 22k+k′−1K

for k ≥ 1.

9.2. New representations of the Borwein polynomials. Unfortunately the
positivity preserving transformations of this paper are inadequate for proving the
original Borwein conjecture. Indeed, the only way to for example obtain AL(q) is
by applying the cubic transformation (2.18) to (7.7), as was done in the proof of
Proposition 7.1. But the resulting

AL(q) = (1− q2L)
bL/3c∑
n=0

q3n2
(q; q)3n(q3; q3)L−n−1

(q3; q3)2n(q3; q3)n(q; q)L−3n

which was first found by Andrews [8, Eq. (4.5)] is insufficient for proving that
AL(q) ≥ 0. Another representation follows from application of (1.8) to (7.4), [50,
Thm 2], but since (1.8) is not positivity preserving this again fails to prove that
AL(q) ≥ 0. To conclude we prove alternative representations for AL(q) and CL(q)
as triple sums, and use this to formulate a refinement of the Borwein conjecture.
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Theorem 9.5. Let L be a nonnegative integer and N1 = n1+n2+n3, N2 = n2+n3,
N3 = n3. Then

AL(q) =
∑

n1,n2,n3≥0
N1+N2+N3≤L

qN2
1+N2

2+N2
3 (q; q)L−N1(q; q)2L−N1−N2

(q; q)2L−2N1(q; q)L−N1−N2−N3(q; q)n1(q; q)n2(q; q)n3

.

Proof. Define

(9.4) B(L, M, a, b) =
[
L + M + a− b

L + a

][
L + M − a + b

L− a

]
.

Then, according to [14, Eq. (5.33)], the following doubly-bounded analogues of the
Rogers–Ramanujan identities hold:

(9.5)
∞∑

j=−∞
(−1)jqj(5j+2σ+1)/2B(L,M, j, j) =

∑
n≥0

qn(n+σ)(q; q)L+M

(q; q)L−n(q; q)M−n(q; q)n
,

where σ ∈ {0, 1}. Now for L,M, a, b integers such that not −L+ a ≤ −b ≤ L+ a <
b ≤ M or −L− a ≤ b ≤ L− a < −b ≤ M , there holds

(9.6)
M∑
i=0

qi2
[
2L + M − i

2L

]
B(L− i, i, a, b) = qb2B(L, M, a + b, b).

This result is known as the Burge transform [21, 25, 43] and can be applied to (9.5).
First let us show that the conditions on the parameters (for their origin see [43])
are harmless. From −L + a ≤ −b ≤ L + a < b ≤ M one can extract the three
conditions

(i) L ≥ 0, (ii) b > 0, (iii) L + a− b < 0
and from −L + a ≤ −b ≤ L + a < b ≤ M it follows that

(iv) L ≥ 0, (v) b < 0, (vi) L− a + b < 0.

Now in order to transform (9.5) by the Burge transform we need to take a = b = j.
Since the inequalities (i) and (iii), and also (iv) and (vi) become mutually exclusive
we can indeed utilize (9.6) to get

∞∑
j=−∞

(−1)jqj(7j+2σ+1)/2B(L,M, 2j, j)

=
∑

N1,N2≥0

qN2
1+N2

2+σN2(q; q)L

(q; q)L−N1−N2(q; q)N1−N2(q; q)N2

[
2L + M −N1

2L

]
.

Here i and n have been replaced by N1 and N2, respectively. We need to apply
(9.6) one more time. Since now a = 2j and b = j the inequalities (i)–(iii) become
L ≥ 0, j ≥ 0, and L+ j < 0 which cannot occur. Similarly, the inequalities (iv)–(v)
are now L ≥ 0, j < 0 and L− j < 0 which again is impossible. As a result we get

(9.7)
∞∑

j=−∞
(−1)jqj(9j+2σ+1)/2B(L, M, 3j, j) =

∑
n1,n2,n3≥0

N1+N2+N3≤L

qN2
1+N2

2+N2
3+σN3(q; q)L−N1

(q; q)L−N1−N2−N3(q; q)n2(q; q)n3

[
2L + M −N1

2L

][
2L−N1 −N2

2L− 2N1

]
,
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where we have replaced (i,N1, N2) → (N1, N2, N3) and have used n1 = N1 − N2,
n2 = N2 − N3 and n3 = N3. Letting M tend to infinity, the above identity
simplifies to the theorem when σ = 0 and to an identity for G(L; 1, 2, 3) = (1 +
qL)(q3; q3)L−1/(q; q)L−1 when σ = 1. �

By modifying the above proof using an asymmetric version of the Burge trans-
form the following companion to Theorem 9.5 can be shown to hold.

Theorem 9.6. Let L be a nonnegative integer and N1 = n1+n2+n3, N2 = n2+n3,
N3 = n3. Then

CL(q) =
∑

n1,n2,n3≥0
N1+N2+N3≤L−1

qN2
1+N2

2+N2
3+N1+N2+N3(q; q)L−N1−1(q; q)2L−N1−N2−1

(q; q)2L−2N1−1(q; q)L−N1−N2−N3−1(q; q)n1(q; q)n2(q; q)n3

.

Proof. We extend definition (9.4) to

Br,s(L,M, a, b) =
[
L + M + a− b

L + a

][
L + M − a + b + r + s

L− a + r

]
and wish to first show that

(9.8)
∞∑

j=−∞
(−1)jqj(5j+3)/2B0,1(L,M, j, j) =

∑
n≥0

qn(n+1)(q; q)L+M

(q; q)L−n(q; q)M−n(q; q)n
.

To do so we subtract (9.5) with σ = 1 to get
∞∑

j=−∞
(−1)jqj(5j+3)/2

[
L + M

L + j

]([
L + M + 1

L− j

]
−

[
L + M

L− j

])
= 0.

By (8.5) this becomes
∞∑

j=−∞
(−1)jq5j(j+1)/2

[
L + M

L + j

][
L + M

L− j − 1

]
= 0.

Since the expression on the left is negated after replacing the summation variable
j by −j − 1 this obviously is true.

Now that (9.8) has been established we apply the following asymmetric version of
the Burge transform [21, 43]. For L,M, a, b, r, s integers such that not −L+a−r ≤
−b ≤ L + a < b + s ≤ M + s or −L− a ≤ b ≤ L− a + r < −b− s ≤ M , there holds

(9.9)
M∑

i=max(b,−b−s)

qi(i+b)

[
2L + M + r − i

2L + r

]
Br+s,s(L− i− s, i, a, b)

= qb(b+s)Br,s(L,M, a + b, b).

Before we use this transform we replace L by L + 1 in (9.8) and use that B0,1(L +
1,M, j, j) = B2,1(L,M, j + 1, j). Then we apply (9.9) with r = s = 1, a = j + 1,
b = j. This then yields

∞∑
j=−∞

(−1)jqj(7j+5)/2B1,1(L, M, 2j + 1, j)

=
∑

N1,N2≥0

qN2
1+N2

2+N1+N2(q; q)L

(q; q)L−N1−N2(q; q)N1−N2(q; q)N2

[
2L + M −N1 + 1

2L + 1

]
.
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We still need to check that the conditions imposed on the asymmetric Burge trans-
form do hold. The first condition is certainly satisfied if not simultaneously

(i) L ≥ −r, (ii) 2b > s, (iii) L + a− b− s < 0

and the second condition is satisfied if not simultaneously

(iv) L ≥ −r, (v) 2b < −s, (vi) L− a + b + r + s < 0.

If r = s = 1, a = j + 1, b = j this is easily seen to be the case.
Next we choose r = 0, s = 1, a = 2j + 1 and b = j, check that neither (i)–(iii)

nor (iv)–(vi) are all satisfied, and apply (9.9) to find that

(9.10)
∞∑

j=−∞
(−1)jqj(9j+7)/2B0,1(L, M, 3j + 1, j)

=
∑

n1,n2,n3≥0
N1+N2+N3≤L−1

qN2
1+N2

2+N2
3+N1+N2+N3(q; q)L−N1−1

(q; q)L−N1−N2−N3−1(q; q)n2(q; q)n3

×
[
2L + M −N1

2L

][
2L−N1 −N2 − 1

2L− 2N1 − 1

]
.

In the large M limit this implies Theorem 9.6. �

Theorems 9.5 and 9.6 are insufficient to conclude that An(q) ≥ and Cn(q) ≥ 0.
It does in fact appear that the polynomials AL,M (q) and CL,M (q) given by (the
right or left-hand side of) (9.7) with a = 1 and (9.10) have nonnegative coefficients.

Conjecture 9.2. For L,M nonnegative integers

AL,M (q) =
∞∑

j=−∞
(−1)jqj(9j+1)/2B(L,M, 3j, j) ≥ 0

and

CL,M (q) =
∞∑

j=−∞
(−1)jqj(9j+7)/2B0,1(L,M, 3j + 1, j) ≥ 0.

However, since

AL(q) = (q; q)2L lim
M→∞

AL,M (q) and CL(q) = (q; q)2L lim
M→∞

CL,M (q),

this does not imply that AL(q) ≥ 0 and CL(q) ≥ 0. Furthermore, it is certainly not
true that (q; q)2LAL,M (q) ≥ 0 or (q; q)2LCL,M (q) ≥ 0 for general L and M . (We
actually believe this never to be true for positive L and finite M). Nevertheless, the
Theorems 9.5 and 9.6 do give rise to a two-parameter refinement of the Borwein
conjecture. To describe this we need the polynomials

AL,m(q) =
∑

n1,n2,n3≥0
N1+N2+N3=m

qN2
1+N2

2+N2
3 (q; q)L−N1(q; q)2L−N1−N2

(q; q)L−m(q; q)2L−2N1(q; q)n1(q; q)n2(q; q)n3

and

CL,m(q) =
∑

n1,n2,n3≥0
N1+N2+N3=m

qN2
1+N2

2+N2
3+m(q; q)L−N1−1(q; q)2L−N1−N2−1

(q; q)L−m−1(q; q)2L−2N1−1(q; q)n1(q; q)n2(q; q)n3

.
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Comparing these definitions with Theorems 9.5 and 9.6 shows that

AL(q) =
L∑

m=0

AL,m(q) and CL(q) =
L−1∑
m=0

CL,m(q).

Conjecture 9.3. The polynomials AL,m(q) for 0 ≤ m ≤ L and CL,m(q) for 0 ≤
m ≤ L− 1 have nonnegative coefficients.

It is in fact not difficult to show that AL,m(q) ≥ 0 together with the initial
condition CL,0(q) = 1 implies that CL,m(q) ≥ 0. Indeed, by shifting the summation
variable n1 → n1 − 1 (so that N1 → N1 − 1) in the expression for CL,m−1(q), one
finds

CL+1,m(q) = qmAL,m(q) + q2L+1CL,m−1(q).
Since Conjecture 9.3 implies that AL(q) ≥ 0 and CL(q) ≥ 0, we hope it provides a
new way of tackling the Borwein conjecture. Here it should be noted that proving
AL(q) ≥ 0 and CL(q) ≥ 0 is sufficient since BL(q) = qL2−1CL(1/q).
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