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Abstract 

Starting from representations of the Birman-Wenzl-Murakami algebra underlying the critical 
B(. l), C. (l) and D(. 1) RSOS models of Jimbo, Miwa and Okado, we derive four series of solvable, 
critical RSOS models associated with the twisted affine Lie algebra A(. 2). Two of these are the 
critical limit of the A (2) and a(2) models obtained previously by Kuniba. The other two series, 

.2n - -  1 " L 2 n  

--(2). and one of the A(2) type, are new, and the latter generalizes the dilute A again one of the A2n_ j "*2n 
models to arbitrary rank n. For the two new series we present an elliptic extension which satisfies 
the Yang-Baxter equation, and show that for certain values of the parameters the higher-rank 
dilute A models break the Z2 symmetry of the underlying adjacency graph G, where G is the 
level-/C. (l) weight lattice. 

1. Introduction 

Since Baxter's celebrated solution of  the eight-vertex model [ 1 ], the relevance of  the 
star-triangle or Yang-Baxter equation (YBE) in solving two-dimensional lattice models 
has been widely acknowledged. Although many solutions to the YBE have already been 
found, a complete classification o f  all possible solutions seems still far from being 
established. Nevertheless, many of  the known solutions nicely fit into the classification 
scheme of  affine Kac-Moody  algebras [2] ,  and it is generally believed that a solvable 
model can be associated to each affine Lie algebra. For vertex models this was to a 
large extend established independently by Bazhanov and Jimbo [ 3 ] by quantization of  
the Belavin-Drinfeld solutions to the classical YBE [4].  
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Dual to the vertex models there is another class of so-called restricted solid-on- 
solid (RSOS) models and, presumably, to each vertex model corresponds an RSOS 
counterpart. The first such restricted model, dual to the eight-vertex model, was found 
by Andrews, Baxter and Forrester [5]. This ABF model was subsequently generalized 
by Jimbo, Miwa and Okado (JMO), who constructed RSOS models based on the non- 
twisted affine Lie algebras A,(, ~), B~7 j), C(, l) and D}, ~) [6]. These results in turn, were 
extended by Kuniba, who gave similar results for the twisted affine Lie algebras A (2) 

2 n - - 1  

and A(2) • "2, [7]. However, shortly after, a second series of RSOS models based on A2 (2) 

was found [8,9], which is quite distinct from Kuniba's A~ 2) model. This new series of 
so-called dilute A models has the interesting property that it provides an example of a 
solvable model in a magnetic field at T = Tc. 

In this paper we explain the occurrence of two different series of critical A~22) RSOS 
models, and generalize this result to arbitrary rank n. We thus obtain higher-rank gen- 
eralizations of the critical dilute A models. For these new models we also present an 
elliptic extension, and we point out that, like the dilute A models, the symmetry of the 
underlying adjacency graph is not obeyed. 

The setup of this paper is as follows. We first recall several known facts about the 
critical X, C~) = B (1), C:, l) and D~, 1) JMO models. Apart from their definition given in 
Section 2, we point out in Section 3, following Deguchi et al. [ I0], that the JMO models 
yield representations of the Birman-Wenzl-Murakami (BWM) algebra. We than show 
in Subsection 4.1, owing to a recent observation by Grimm [ 11], that the X~ 1) BWM 
representations admit a dual baxterization, resulting in three series of models based on 
the twisted affine Lie algebra A}72) . In Subsection 4.2 we extend the BWM algebra to 
allow for vacancies and, using the baxterization of this dilute BWM algebra as found in 
Ref. [ 11 ], we construct higher-rank dilute A models. In Section 5 we present explicit 
expressions for the face weights of the new twisted models in the off-critical elliptic 
case, and show that the dilute models break the level-/ C~ 1) weight lattice symmetry 
of the underlying adjacency graph. Using the elliptic weights we also try to clarify the 
intimate relation between the two different series of A(2)Zn- 1 and .A(2).2n models. 

Finally, in Section 6, we summarize and discuss our results and point out some 
interesting open problems. 

2. The B~ ), Cfn 1), D~ ) face models 

Let us start with reviewing some basic facts about the B~ 1) (n>~2), C~ 1) (n~> 1) and 
D(I) (n ~> 3) face, or RSOS models of Jimbo, Miwa and Okado [6] of relevance to n 

subsequent sections. 

2.1. Local states and adjacency rules 

The JMO models are solvable lattice models defined on the square lattice E, in which 
the local states a, also referred to as heights, are the dominant integral weights of X(~ 1) 
at some arbitrary but fixed level 1. Let L be 



S.O. Warnaar/Nuclear Physics B 435 [FS] (1995) 463-481 4 6 5  

L = t ( l  + g ) ,  (2.1) 

where g and t, the dual Coxeter number and the (long root)2/2  of  X(~ l), respectively, 
are listed in Table 1. Furthermore let A0 . . . . .  An denote the fundamental weights of  
X(~) We then define the local states of  the respective models as /7 • 

B O  ) a =  ( L - a j  - a 2 -  1 ) A 0 +  ( a i - a i + l  - 1 ) A i +  ( 2 a n -  l)An, 
i=1 

L > al + a2, aj > a2 > . . .  > an > O, all ai C Z ,  or all ai C Z + ½, 

cn(l ) a =  ( L / 2 - a l  - l ) A 0 +  ( a i - a i + l  - 1 ) A i +  (an - 1)An,  
i=1 

L / 2  > al > a2 > . . .  > a,  > O, ai C Z ,  

n--I 

a = (L  - al - a~ - 1)Ao + E (ai - ai+l - 1) Ai + (an-1 + a~ - 1)An, 
Dn( ~ ) i=l 

L > al -ha2,  a! > a2 > . . . > a n ,  an- l  + an > 0, 

1 ( 2 . 2 )  all ai C Z ,  o r  all ai C Z + ~. 

Apart from this definition of  the states, we need to specify the allowed adjacency or 
admissibility condition for the states a and b of  two neighbouring sites on /2 .  For this 
purpose we define .A as the set of  weights in the vector representation of  the classical 
Lie algebra Xn, and we express the elements of  A in terms of  a set of  orthonormal 
vectors el, 1 <~ i <~ n, (ei, e j )  = f~i,j, 

{+e l  . . . . .  + e . , O } ,  Bn, 

A =  { ± 0  . . . . .  ±en},  C. ,  D..  
(2.3) 

We can now write the classical part of  the weights, denoted by 7]i, as follows: 

Bn(l ) [ Ai = el + . . .  ~-i, 1 ~< i ~< n - 1, 

( 1 = 5 ( e l + . . . e n )  i = n ,  

C~ 1) Ai = Ej + . . .  + ei, 1 <. i <. n, 

{ 17li -~ el  - '~-. . . '-~-ei,  1 <~ i <~ n -  2, 

Dn (l) = l ( e l - ] - . . . - ' ~ n _ 2 " ~ - E n _ l - - E n )  , i = n - 1 ,  
1 = ~ ( e l + . . . + % - z + e n _ l + e n ) ,  i = n .  (2.4) 

I f  we finally introduce one more symbol p = Ao + • • • + A n ,  and set e - i  = --el, we get 
n from (2.2) for the classical part of  a + p :  f i + ~  = ~i=1 aiei, and hence a t, = ( a + p ,  el, ), 

- n  <. l~ <~ n, lz --g O. 

With the above definitions, we can now formulate the adjacency rule for two neigh- 
bouring sites on E with heights a and b, respectively. I f  such a pair is admissible it will 
be denoted by a ,-~ b and we have, V(~) being an irreducible Xn module with highest 
weight ~, 
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a ,-~ b iff, for any Dynkin diagram automorphism/x, the tensor 

module V(/~(~) ) ® V(Aj ) includes V(tx(b)). (2.5) 

For C~ l) and D~ ~) this simply means that a ~ b iff a - b E ,A. For B~ ~) we have, in 
addition to this, to implement the rule that a 7~ b if a = b A a,  - 1 

In our discussion of the higher-rank dilute A models in Sections 4-6, it will be 
convenient to also adopt a slightly different terminology. Instead of referring to the 
adjacency rule (2.5), we use the concept of an adjacency graph G. Each allowed state 
or height corresponds to a node on ~, and a ~ b on /2 if a and b on ~ are connected 
by a bond. For the JMO models at level l the adjacency graphs just correspond to the 
level-I Xn Cl) weight lattices. Some weight lattices or adjacency graphs for the C~ l) JMO 
model have been drawn in Fig. 3a. In Subsection 4.2 we will show that these same 
graphs also encode the adjacency rule for the generalized dilute A models. 

2.2. Boltzmann weights 

With the previous definitions and adjacency rules we can now list the non-zero 
Boltzmann weights of the X~ l) JMO models. Defining the function 

[u] = sin {'~sqru t , - -~-)  ' s E Z ,  (2.6) 

with s and L coprime, the allowed local face configurations can be expressed as 

W (  a a+e~ ~ [ A - u ] [ 1 - u ]  
a + e~ a + 22~ J = [~ 'H1]  ' 

"(a 
/x ¢= O, 

a a + eu '~ [a l, zaz.+__ u ] [ A -  u] 
+e~ a+eu+e~J = [ au -a~ l [ - -~ j  ' 

W 
a a+eu 

a+e~z a + e u + e ~  

a a+e~ 
W a+ e~ a 

( a a + a E ~ )  = W a+e~ 

) ( [a~- -a~+l][au- -a~- - l ] ) l /2 [A- -u][u]  
= [a----~ - -  a~---] ~ - [ A - ~ ] ]  ' 

/z 4= 4-~,, 

= (Ga,~,G~,~)1/2 [a~, + a ~  - a +  1 + u][u]  [ a / z + a ~ +  1][A] , /x 4= v, 

[2a~ + 1 + u] [ a -  u] [ 2 a ~ -  A + 1 + u] [u] 
4- Ga,~ 

[2a~, + 1] [A] [2a~ + 1] [A] 

/x 4= 0, 

[ 2a ,  - 2A + 1 4- u] [A 4- u] [2a~ - A -4- 1 -4- u] [u] 
[ 2 a ~ , - 2 h + l ] [ A ]  -H , ,~ ,  [ 2 a ~ , - 2 A + I ] [ A ]  ' 

(2.7) 

where 
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Table  1 

X(n 1) g t 2t tr h ( a ) 

i Btn l) 2 n -  I 1 n -  ~ 1 [ a l  

C(n 1) n + 1 2 n + t - I  [ 2 a ]  

D(n l) 2n  - 2 1 n - I I 1 

h(a n + l )  ]7" [a n - a ~ + l ]  
G a , n  ~ 0  

h(an ) 11. [an - a~] 
v ÷ O , I n  

Ga,o = 1, 
X"" [a~ + a~ - 2A + 1 ] 

Ha,u Ga,~ 
v~nZ'~ [a~ + a~ + 1 ] ' 

p. v~ 0, 

(2.8) 

and a0 = -½.  As follows from Eq. (2 .3) , /z ,  v = 0, +1 . . . . .  +n  for B~ l) and 4-1 . . . . .  i n  

for C~ 1) and D~ 1). The crossing parameter ,~ -- ½tg, the sign factor o" and the function 
h are given in Table 1. 

In Ref. [6] it was shown that the above Boltzmann weights satisfy the Yang-Baxter 
equation [ 12] 

a e d u + v )  W(  d c  v)  

Z ( e  g v) W(  ab  ) ( e d )  = W O a  u + v  W u . g c  
g 

(2.9) 

Some useful properties of  the weights are the standard initial condition, crossing sym- 
metry and inversion relation 

a b 0 = 8a,c, 

a b A u \G----~J W d a ' 

) g a g b - u =p(u)p(--U)t~ .... 

(2.1o) 

(2.11) 

(2.12) 

with the function p given by 

[ a - u ] [ 1  - u ]  
p(u) = (2.13) 

[ a ] [1 ]  
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3. The BWM algebra 

In this section we Mlow Deguchi ct al. [ 10] to show that the JMO models defined 
in the previous section in fact provide realizations of the well-known Birman-Wenzl- 
Murakami algebra [ 13 ]. 

3.1. Braid-monoid algebra 

To establish this, we first recast the JMO models into operator form by defining the 
face operators Xi, 

X i ( u ) { a } , {  b} W (  a i - l b i  ) H  = u 6,,j,/,j, i= 1 . . . . .  N. (3.1) 
ai ai+l ,j~i 

The entries {a} = ao . . . . .  aN+~ and {b} are elements of the N + 1 step path space, that 
is ai E G and ai "~ ai+l, for all i. 

With this definition, the YBE (2.9) can be rewritten as 

Xi+ 1 ( u ) X i ( u  -3w u )X i+  I ( u )  = X i ( u ) X i +  I (u  -3 t- v ) X i ( u  ) . (3.2) 

Together with the obvious relation 

X i ( u ) X i ( v  ) = X i ( v ) X i ( u )  for li - j ] /> 2, (3.3) 

the operators Xi form a so-called Yang-Baxter algebra [ 12]. 
If we now define the braid and inverse braid operators bi and b,: -l,  as well as the 

Temperley-Lieb (TL) operators or monoids ei, by 

b~l = q~:l lim Xi(u) 
u---~4-ioo p ( u )  ' ei = Xi(A) ,  (3.4) 

we can recast the X(, l) models into the following simple from: 

[u] (q"-ab, - q-"+abT' ) . (3.5) X i ( u ) = I  2 i [ a ] ] l ]  

Here I = Xi(O) is the identity operator, and 

q = e -sir~L, (3.6) 

with L as in (2.1). 
The braids and the TL operators, which will be given explicitly in Eq. (3.15), satisfy 

the following braid-monoid algebra [ 14] : 

e2i = V/-Oei, 

ei ei::kl ei -~ ei, 

eie j=e. je i  for l i - J l  ~> 2, (3.7) 

b i b ~ l  = b ~ !  bi = l ,  
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Fig. 1. From left to right: graphical representation of the local identity I,  the braid b, the inverse braid b- I 
and the TL operator e. 

bi bi+l bi = bi+l bi bi+l, 

bi bJ = bJ bi for l i - J l ~> 2, 

bi ei = ei bi = to el, 

bi+l biei+l =eib i±l  bi = e ie i±l ,  

e i = l +  - -  

bi ej  = ej bi for l i - J l />  2, 

(bi - q - l  l )  (bi -k- q l )  (bi - tol) = 0, 

bi - b71 co -I  
q _ q - I  q _ q - I  ( b i - q - j l ) ( b i + q l ) '  

where 

¢.,O - -  t o  - 1  

v/-Q= 1 + - -  q - q - J  

09 = o" q2a+o-. 

[21] [1  + ~A] 

[a][1]  ' 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

We remark that the above braid-monoid algebra, where the braids satisfy the cubic 
reduction relation (3.10) and the TL operators can be expressed as quadratics in the 
braids, was first introduced by Birman and Wenzl, and independently by Murakami, and 
is known as the BWM algebra [ 13 ]. 

In our construction of  the higher-rank dilute A models, presented in Subsection 4.2, 
it will be convenient to represent the braid and TL operators graphically. In order to 
do so, we view these operators as acting on strands of  N + 1 strings, where b/:t:1 and 
ei act non-trivially on the ith and (i + 1)th position only. Removing the trivial part, 
we introduce local operators X ( u ) ,  Z = X(O) ,  b ~l and e, shown in Fig. 1, acting in a 
two-step path space, or, equivalently, acting on strands of two strings. We can thus write 
the local equivalent of  Eq. (3.5) pictorially as 

Lu,( ) 
X ( u ) =  ~ (  2 i [ , t ] [ l ]  q , -a) / (~  _ q - , , + a / ~  . (3.13) 

3.2. Representat ions o f  the B W M  algebra 

To give explicit expressions for the non-zero elements of ei and b/:t:l arising from the 
JMO models, we write, following the notation of  (3.1),  
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(ei) {a},{b} = e H 8"s'bJ' 
ai ai+l jei 

(biil){a},{b} =b4-I ( ai-i bi ) H ¢~aj,bj. 
k. ai ai+l jei 

(3.14) 

With the help of these definitions, the representations of the BWM algebra following 
from the JMO models read 

e = , a + e ~  a " 

a + e u a + 2eu = q~:l, tz # O, 

b+l ( a a+e~z ) = _ q + ( a , - a , ) [ 1 ]  
a + eg a + el, + e~ [au - a ,]  ' /~ # +v, 

b ± l (  a a+e~  ) ( [ a u - a v + l ] [ a u - - a v - - 1 ] )  '/2 
a + e ~  a + e u  +e~ = -  [a--u'-__-a---]y , Ix --/= +u, 

b±i ( a a + e ~ ) = ( G ,  uG,~)l/2qi(a~+a~+l ) [1] 
a +  e~ a ' ' [a~ + a ,  + 1] '  

/ x # v ,  

b+ l (a - t - aeg  a+a~:~) =(Ga'~-l)q±(2a"+l)  
[1] 

[2au + 1] '  
/ ~ # 0 ,  

= (1 - H,,,#) q+(2,,,+l) [1] 
[ 2 a u -  2A+ 1] '  

(3.15) 

with Ga,~, and Ha.u as in (2.8). 

4. Construction of A~ ) models 

Using the representations of the BWM algebra as listed in Eq. (3.15), we construct 
four different series of A(, 2) RSOS models. 

4.1. Dual baxterization 

The first three are in fact obtained straightforwardly, following an observation made 
in Ref. [ 11 ] that to each representation of the BWM algebra correspond two distinct 
operators Xi(u) satisfying the Yang-Baxter algebra. That is, apart from the baxterization 
(3.5) or, equivalently, (3.13), with A related to the rank n of X(, 1) as in Table 1, we 
can make a second choice for A as a function of n such that (3.5) satisfies the YBE. 
This alternative choice for the crossing parameter A, together with the twisted affine Lie 
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Table 2 

X O) y(2) A 

B(I) A (2) 2n n+ ½--½L 
C(n 1) A (2) 2n--1 n -  I L  

Dn(l) --(2) A2n_l n -  ½L 

471 

algebra associated with the resulting model, is given in Table 2. In this table we also 
list the untwisted model from which these "new" models arise. 

The proof of this dual baxterization is very simple. If  we replace q~ by - q - %  
keeping to as a function of n fixed, all BWM relations (3.7)-(3.11) remain unchanged, 
and hence the form (3.5) still baxterizes the X~n l) representations. The condition that to 
is invariant under the above transformation is met by replacing A by ~ - o- + L/2 in 
Table 1, resulting in the new relation between A and n of Table 2. 

As a function of A (not as a function n) the values of ~ and to have of course 
changed, and, by replacing A in (3.12) by A - o- + L/2 , now read 

V / 0 =  [2A] [ I - o-A] 
[ a ] [ 1 ]  ' 

to = - o ' q  2a-~, (4.1) 

where we note that the relation between ~ and to as given in (3.12) remains unaltered. 
The A(2) and A(2) models arising from the B~ l) and C~ l) algebras, respectively, are X2n * X2n-- 1 

precisely the critical cases of the models obtained previously in Ref. [7]. In order to 
make the correspondence with the parametrization in Ref. [7] exact, one has to make 
the transformation A + - a  - L/2 and u + - u  in expression (3.5). The a(z) model • ~2n-- 1 

obtained via D~, 1) is new, though it was already suggested in Ref. [7] that such a model 
could be found. In Section 5 we give explicit expressions for the Boltzmann weights for 
this model in the more general, but still solvable, elliptic case. 

4.2. Construction of higher-rank dilute A models 

4.2.1. Dilute BWM algebra 
To obtain a second series of a(2) models, we have to generalize the BWM algebra " ~2n 

to allow for vacancies, i.e., the absence of strings. This idea of so-called dilution was 
first applied in Refs. [8,9] to the TL algebra, yielding a dilute version of this algebra. 
It was shown in these same papers that this dilute TL algebra, like the ordinary TL 
algebra, admits a baxterization. The resulting models admit a classification in terms of 
the classical and affine, simply laced Lie algebras, and were, for obvious reasons, termed 
dilute A - D - E  models. (For a somewhat more algebraic setting of dilute algebras, see 
also Ref. [ 15].) Recently, also a dilute version of the BWM algebra has been found 
which can be baxterized [ 11 ]. It is in fact precisely this same dilute BWM algebra that 
underlies our construction of higher-rank dilute A models. 
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1 2 3 4 5 6 7 8 9 10 11 

Fig. 2. Graphical representation of the local operators in the dilute BWM algebra. 

The idea of  dilution amounts to including operators acting on vacant states. That 
is, instead of  the usual braids and monoids shown in Fig. 1, we allow for the full 
set of  operators COl . . . . .  COil depicted in Fig. 2. The first four operators act simply as 
projectors on the various local subspaces. Also the "shift" operators 6 and 7 act trivially, 
their product being a projector of  type 3 or 4 depending on their relative ordering. The 
only non-trivial new objects are the TL like operators 10 and 11, which, for example, 
obey the relations 

" " "  = ~ " )  O = v / - Q  ' '  (4.2) r % '  - 

For the complete set of  defining relations of  the dilute BWM algebra we refer the reader 
to the original paper [ 15]. Clearly however, the operators (9,, 07-09, generate a BWM 
subalgebra. 

4.2.2. Baxterization of  the dilute BWM algebra 
As was shown in Ref. [ 11 ], the dilute BWM algebra admits a baxterization as follows: 

X ( u ) = > <  2 i [ A ] [ 1 ]  q,,-a~/( _ q - u + a / ~  

+ 

[u] (: : Cd) 
N + 

[A] [1] -t- [u] [ A -  ul ', ,' 

[A] [1 ]  .", 
(4.3) 

In the case of  our interest, we take the BWM subalgebra to be generated by C(, 1). Hence 
the expression (3.15) for the braids b~ 1 and the TL operator ei still holds, though the 
relation between the crossing parameter A and the rank n of  C(~ l) as given in Table 1 
changes to 2 

1 ( 4 . 4 )  h = n + ~ .  

2 Some care has to be taken in interpreting the very last line in (3.15), as it contains the variable A explicitly, 
as well as implicitly via the definition of Ha,l~. Only after first replacing ,~ by n + 1 before transforming a to 
a = n + ½, the expression remains valid. We do note however that. since for Cn (l) /~ ~ 0, we can always use 
the alternative form independent of A. 
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Consequently, the face operators generated by the BWM subalgebra do not yield a 
solution to the YBE. Due to the different relation between A and n, the "constants" 
and w now read 

x/-~= [ 2 a +  11[½-  a l ,  

[a+½][1] 

~o = _q2a, (4.5) 

where the relation (3.12) between x/-Q and o~ is, again, still valid. 

4.2.3. a(2) representation of the dilute BWM algebra • *2n 
As already mentioned before, the model obtained by diluting the C(, 1) BWM represen- 

tations is naturally associated with the twisted affine Lie algebra A~] ). The generators of 
the "a(2) dilute BWM algebra" underlying the RSOS model are, apart from (07)i = bi, • "2n 
(O8)i = b, ---~ and (O9)i = ei listed in (3.15), 

a a+e,, ) 
Ol a+eu a+e u+e v  =1, 

( a  a+.)=o3(a a ):, .  0 2  a + 6  u a+eu a a+6 u 

C94 ( a  aa) = 1, 

( a  a 
05 a+e~ ,  a + e  u a a + e ~  

( a  46, O10 a + e** a a a ' 

with/z = 4-1 . . . . .  +n. Here we have employed notation similar to that of Eq. (3.14). 

4.2.4. Higher-rank dilute A models 
We note that for n = I we can, using Eq. (3.15) and Ga.u = - [ 2 a u  + 2]/[2a~,], 

eliminate the braids in favour of the TL operators, to rewrite (4.3) as 

X ( u ) - [ a - u ] [ l - u ]  t (  [ a - l - u l [ u ]  ~ )  

[a][l] + ~ + [a------T- 

[al[l]  + [u][a u] 
[a][l] / , ,  

(4.7) 
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This is exactly expression (2) combined with (7) of Ref. [9] for the dilute A models. 
Hence we propose the name higher-rank dilute A models for the rank n > 1 case. 

5. Elliptic solutions to the YBE 

The procedure outlined in the previous section to find A~ 2) RSOS models only applies 
at criticality. It is however possible to extend all the A(n 2) models to yield elliptic solutions 
of the YBE. For the models based on the B{, 1) and C~ 1) BWM representations, the elliptic 
solution has already been found in Ref. [7]. We therefore restrict our attention to the 

r~( l )  a(:} models based on t~, , and to the higher-rank dilute A models. • ~2n- 1 
Before we present the solutions, we need the following elliptic theta functions, with 

argument u and arbitrary but fixed nome p = exp(i~-7-), Im(~-) > 0: 

oo 

Ol (u,p) =sinu I ' I  (1 - 2p 2n cos2u + p4n) (1 - p2 , ) ,  
n=l 

_ _ f i  - -  p4n- -2 )  (1 p2n) 04(u,p)  - (1 2p 2n-I COS2U + -- . (5.1) 
n=l 

5.1. Elliptic a(2} models ~'2n--I 

The elliptic extension of the A(2) models arising from the D{n l) algebra is particularly ~2n-- 1 
simple. In fact, the Boltzmann weights are again just given by Eqs. (2.7) and (2.8), 
where we now interpret the function [.] as a theta function: 

[u] =Ol ( ~ - ~ , p )  , (5.2) 

which reduces to (2.6) in the critical p ~ 0 limit. The function h which occurs in the 
definition of Ga,l~, a s s u m e s  the off-critical value 

h(a) =O4 (2s~ffa,p2) . (5.3) 

To show that the YBE holds for the elliptic face weights, we refer to the proof for the 
X~ 1) models [6]. Due to the similarity between the weights of the JMO models and 
the a(2) model, only some trivial modifications have to be carried out to extend their " ~2n-- 1 
proof to the above model. 

Although the A~2n~l model is defined for values of the rank n ~> 3 only (see Section 2), 
it is interesting to note that for n = 1 the Boltzmann weights simplify to that of the 
CSOS model [ 16]. 

5.2. Elliptic A(22n ) models 

The elliptic Boltzmann weights for the higher-rank dilute A models are somewhat 
more involved. Apart from the function [u] in (5.2), we need a second theta function 
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{ sTru 

[u14 = "0"4 ~,T,P)" 

With these two functions we get the following non-zero face weights: 

(5.4) 

W (  a a+e~, ) =  [ a - u ] [ 1 - u ]  
a + e ~  a + 2,tz [~] ~ ]- ' 

W (  a a+e~  ) [ a u - a ~ , + u l [ a - u ]  
a + e . a + e u + e~ = -(-~ " -- -~ ] -[ ~ i ' tl. * + v, 

( a  a + e v ) ( . [ a ~ , - a , , + l ] [ a ~ , - a v - 1 ] ) l / 2 [ A - u ] [  u] 
W a + e u  a + e u + e , ,  = (-a-~7~-]2 [a ] [1]  

a a + e ~ ) = ( G ~ , u G a . ) , / 2 [ a u + a ~ - a + l + u l [ u ]  
W a + e u  a [a~ +a~. + 1][a]  I.Z :¢ = V, 

( a a%e,,) [2al,+l+u][,~-u] 
W a + e u  = [2au + ] ] [ a i  +Ga,u 

[ 2 a u -  a +  1 + u][u]  
[2a u + 1][k]  

[ 2 a t z - 2 A + l + u ] [ h + u ]  
[2a u - 2A + l ] [ a ]  

- Ha ,**  
[ 2 a u -  3.+ 1 + u] [u] 

[ 2 a u -  2 a +  1] [A] 

<a )< )( W a + E u  = W  a a [au + ~]4[a~z- 114 
. . . .  T - T  a + e  u a+e~ a+eu  [au+ 214 [A] [1] 

a÷.o ) = W (  a a )  t'~ .~1/2 [ a # - h . + l + u l 4 [ u ]  
a + e  u a = ~' .... ~J [a u + l ] 4 [ a  ] 

(a ) ( ) 1 -u]4[~-u] a =W a + e  u a [ a u + ~  
W a + e ~ ,  a a = [au + ½1412t] ' 

w(a a)~ [2/~-u][,~--~/,t][2/~] [~] - Ha°[~- u ] [ R ] "  [2,~] [,~] ' (5.5) 

with ~ = +1 . . . . .  i n .  The function G,,u as given in (2.8) is still correct, but the 
function h therein generalizes to 

[2a] h(a) - (5.6) 
[a]4" 

The functions Ha,u and Ha,o read 

H a , u = E G , ~ a [ a u + a , - 2 A +  1] + [ a u - 2 k +  ½]4 
v'~t~ [ a u + a , , +  1] [ a u + ½ ]  4 ' 
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Ha'°=~-'~Ga'tz[atzL.~ - 2 , ~ +  114 
(5.7) 

~z [a~z ÷ 114 ' 

where here, as well as in Eq. (5.5) , /z ,  u = ÷1 . . . . .  -4-n. In order to avoid confusion, we 
remark that the above relation between Ha,~ and G a , ~  does not reproduce the relation 
(2.8) in the p ~ 0 limit. This is a consequence of the different relation between the 
rank n and the crossing parameter A for the C, (l) model and the a(2) model, see Table 1 X2n 
and Eq. (4.4), and also the footnote on page 472. 

The full proof that the weights (5.5) satisfy the YBE is rather involved, though the 
approach followed in Ref. [6] still does apply. A simpler method of proof is provided 
by noting that the above model can be obtained by restricting the unrestricted A, (2) SOS 
model of Ref. [7], after first performing an imaginary transformation. To show that 
after restriction the YBE is still satisfied, it suffices to inspect equations where some 
of the external spins in the YBE take their values at the boundary of the level- /C,  (~) 
weight lattice. From the zeros of the function h, 

h ( a )  = 0  i f  a = O , L / 2 ,  (5.8) 

and the particular form of the function G,,.l, in (2.8), we readily find that the "boundary" 
YB equations are indeed satisfied for ai C T,,  L / 2  > al > a2 > . . .  > an > O. 

It is known that the off-critical n = 1 dilute A models break the Z2 symmetry of the 
underlying adjacency graph for odd values of the parameter s. This led [ 17] for example 
to the identification of the dilute A3 model (n = 1, l = 2, s = 5) and Zamolodchikov's 
E8 S-matrix of the critical Ising model in a field [18]. 

Here we extend this broken Z2 observation to the general-rank dilute A models. The 
adjacency graphs for the rank-n dilute models correspond to the level-/ C (1) weight 
lattices, some examples of which are shown in Fig. 3a 3 . First of all we note that the 
C, (I) weight lattice at level l is invariant under the following transformation: 

a i  ----+ L / 2  - a n - i + l  ~ a~ for all i = 1 . . . . .  n, (5.9) 

where we recall that L / 2  = l + n ÷ 1. Denoting the corresponding height as d ,  

17-- 1 

a' = ( L / 2 -  al - 1)A,, + Z (ai - ai+j - 1) A, , - i  + (an - 1)A0, (5.10) 
i=1 

we find that 

W al b~ v~ W for s odd and p v~ 0. (5.11) 
a b  

3 Note that by construction the dilute models are based on the same graphs as their "undiluted" counterparts. 
This implies that although two neighbouring sites on/2 can have the same height, the adjacency graphs ~ do 
not have tadpoles. This meets our earlier convention 19,191 that only if two neighbouring sites on E have 
different heights, they must be adjacent on ~. 
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(a) 

(b) 

Fig. 3. (a)  Some simple adjacency graphs for the rank-n, level-/dilute A-model. Note that the (n, l) = (3, 2) 
and the (n, l) = (2, 3) graphs are in fact identical. This level-rank duality is true more generally for the pairs 
(n, l) and (l, n). (b)  The D type graphs obtained by modding out the Z2 symmetry of graphs in (a). 

5.3. Unrestricted A (2) models 

Our approach to obtain the four series of  (critical) A}, 2) RSOS models has been to 
utilize representations of  the (dilute) BWM algebra based on the non-twisted affine Lie 
algebra X(, I), X=B,C,D. 

Here we wish to briefly mention an alternative method [5-7]  to obtain the (elliptic) 
A,  (2) RSOS models. This serves the purpose of explaining the close relation between 

A~2) models. the two series of  a~2) models as well as between the two series of,~zn ~2n- 1 
As already mentioned in the previous section, the A}, 2) RSOS models can be viewed 

as restricted versions of  some A,¢, 2) SOS model. This is similar to the ABF model being 
the restriction of the eight-vertex SOS model [5].  

In the case of  ACn 2), the unrestricted SOS model was found in Ref. [7].  In such an 
SOS model the states or heights are not restricted to a finite adjacency graph (for the 
models in this paper the level-/X,,  weight lattices), but range over an infinite set. 

For the elliptic models of  Subsections 5.1 and 5.2, this is established as follows. We 
replace Eq. (2.2) by 

aC ~-'~ CAi, 
i=o 

(5.12) 

w i t h  Ai the fundamental weights of  D}, 1) and C¢, J), respectively. Furthermore, instead of  
the adjacency rule (2.5) we have that a ~ b if a - b E .A. Finally, we let L, which now 
appears only in the definitions (5.2) and (5.4) of  [.] and [ ' ]4,  be an arbitrary complex 
variable, L C C, L 4: 0. 

n Of course, since only a - b E .A, we effectively have that a = w0 + ~i=l  Z Ei, with 

w0 a fixed element of  ~-~7---o CAi.  It is this freedom in the choice of  "origin" wo which 
allows us to make different types of  restrictions. 

Let us first show how this works in the A¢2) • "2n-1 case. I f  we choose L as in (2.1) with 
X=D and we restrict the local states to be the level- /dominant  integral weights of  D~ j ), 
i.e., we have (2.2),  then the elliptic Boltzmann weights (2.7) with (2.8) and (5.3) 



4 7 8  S.O. Warnaar/Nuclear Physics B 435 [FS] (1995) 463-481 

satisfy the YBE provided we impose the adjacency rule (2.5). This gives us back the 
A ( 2 )  RSOS model based on D~, t) as presented in Subsection 5.1. The other way to 

2 n  - -  1 

restrict is that of Ref. [7]. First we carry out the imaginary transformation 

rL  
ai ~ ~ s  + ai (5.13) 

in the weights (2.7). It is the freedom in w0 which allows us to perform this translation. 
To actually obtain a model based on C,, we now "reinterpret" the h i ' s  in (5.12) to 
be the fundamental weights of C~ 1 ). Since formally .A is the same for Cn and Dn, see 
(2.3), the SOS model still satisfies the YBE. Now we again choose L according to 
(2.1) but with X=C, and restrict the states to the dominant integral weights of C~ 1). 
Provided (2.5) holds, this yields the A ~  RSOS model based on C, ~). It is a simple 
matter to check that in the critical limit the thus obtained Boltzmann weights are, up to 
a gauge transformation, those of Subsection 4.1 with X---C. 

In an almost similar manner we can restrict the A~] ) SOS model in two ways. One, 
based on C~ 1) leads to the rank-n dilute A models and the other, based on B~ I) leads 
to the A(2) RSOS models of Ref. [7]. The only slight complication is that the set of 

• " 2 n  

weight vectors .A for B~ and C, are not equal (equal in a formal sense). However, the 
extra 0 for Bn is compensated by the fact that for the dilute models we have the rule 
that only if two neighbouring sites on 13 have different height they must be adjacent on 
G. As a remark we add to this that though it might be tempting to reformulate the dilute 
models such that the adjacency graphs G explicitly encode the fact that neighbouring 
sites on £ can take equal values, we believe this to be unnatural. This reformulation 
would, following the notation of Fig. 4, result in the same graphs as those of Fig. 3, 
but with all nodes replaced by open circles, The problem with this approach however is 
that dilution of models based on graphs with tadpoles becomes ill-defined, or requires 
additional spin variables on the edges of £. See for e.g., the dilution of the B(~ l) JMO 
models as carried out in Ref. [20]. 

Despite the intimate relation between the several series of An (2) models, we wish 
to stress here that as far as the RSOS versions are concerned the models have quite 
different properties. The most apparent one is perhaps the quite distinct incidence or 
adjacency rule depending on the underlying untwisted algebra. For example, the graphs 

--(2) of Fig. 3a for the dilute A models have to be compared with those of Fig. 4 for the A2~ 
models of Ref. [7]. But also the difference in BWM structure (ordinary or dilute), in 
critical behaviour [7,21,17], and broken Z2 symmetry are worth mentioning. 

To end this our discussion on restricted versus unrestricted SOS model, we remark 
that the two possible ways to restrict the a(2) and A (2) SOS models have a simple 

• " 2 n -  I 2 n  

algebraic origin. That is, both A (2) and A(2) admit two realizations in terms of the 
2 n - -  I • ~2n  

classical Lie algebras X,, X=B,C,D. In particular, a(2) • "2n-1 can be based on the root 

systems of either Cn or Dn, and a(2) • L2, , can be based on the root systems of both B~ 
and C,. Moreover, the imaginary transformation (5.13) precisely corresponds to the 
interchange of the two associated (finite) root subsystems of A~ 2). 
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(a) ~ (b) 

f 
Fig. 4. Some  ad j acency  g raphs  for  the A~2) model  based  on B}, 1) . The rank and  level read ( a )  n = 2, l = 4 "'2n 
and  (b )  n = 3, l = 5. Nodes  admiss ible  to themselves  ( a  ,,~ a)  are represented by  an open  circle. 

6. S u m m a r y  and discussion 

In this paper we have derived four series of solvable RSOS models associated with 
the twisted affine Lie algebra A~, 2). All four series did arise as baxterizations of known 

--(2). and ~,(2) models B (1), C (1) and D u-(l) representations of the BWM algebra. The A2n_l "'2n 
B(~) • obtained from the C(~ l) and ~ algebras, respectively, are the RSOS models found 

previously in Ref. [7]. The A~)_, and A~2n ) models arising from the D(~ l) and, again, 
the C. (1) algebra, are new. 

To obtain the second series of A<2) models, we have generalized, following recent • ~2n 
work by Grimm [ 11 ], the BWM algebra to allow for vacancies. We have furthermore 
shown that the second a(2) model reduces to the dilute A-model [8,9] in the n = 1 • X2n 
c a s e .  

Finally, for the two new series of RSOS models we presented, without proof, an 
elliptic, off-critical extension that satisfies the YBE. 

From the results presented in this paper, various questions naturally arise. First of 
all, it is known that the critical dilute A models are members of a larger class of 
dilute A-D-E  lattice models. These models give a complete realization [21] of the 
SU(2) modular-invariant partition functions as classified by Cappelli et al. [22]. An 
interesting question is whether not also the higher-rank dilute A models belong to some 
larger family of models, and, if so, to what modular invariants they correspond. Clearly, 
from the form of the higher-rank models as given in Eq. (4.3), such a larger class is 
not apparent. However, by eliminating the inverse braid operator in favour of the TL 
operator, a form very close to the dilute TL algebra emerges. Indeed, for n = 1 we 
exactly recover this algebra, see Eq. (4.7). Starting from this generalized dilute TL 
algebra, one might try to extend the method of Ref. [ 19] to find higher-rank dilute 
D and E models. Of course, some of these (D type models) readily follow from the 
fact that the dilute A models at criticality always obey the Z2 symmetry of the ts u-(l) 
weight lattice, and hence from modding out this symmetry. For the graphs in Fig. 3a, the 
resulting D graphs are shown in Fig. 3b. A property of the higher-rank dilute A models 
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supporting the possibility of  finding D and E type models is the fact that the function 
Ga,~ in (2.8) closely relates to eigenvectors S of the level-/C~ J) weight lattice 4 , 

S(a + e u) 
Ga,u - S(a)  ' 

n 

S ( a ) = ( - ) a ' + + a " I - [ h ( a i )  1-I [ a i W a j ] [ a i - a j ] .  (6.1) 
i=1 1 <~i<j<~n 

Here S satisfies the eigenvalue equation 

Z S(a)  = V/--QS(b), (6.2) 
a ~ b  

where the eigenvalue x/-Q is given by (4.5).  Like for the known n = 1 case, other 
models might occur for adjacency graphs that fit this same eigenvalue equation, or in 
other words that intertwine the t~ n-(l) weight lattice. 

Another question concerns the dilution of BWM representations other than those 
n(2) vertex yielding the ,A(2),2n models. As was shown in Ref. [ 11 ], the R-matrix of  the ~n+l 

model [ 3 ] can be found by diluting B(, l) BWM representations. This can actually easily 
be carried out at the level of  the RSOS models as well. This and the dilution of  the 
D(n l) JMO model, resulting in a new series of  models related to B (1), will be the issue 
of  a separate publication [20].  

A final intriguing point is the problem of generalizing the Hecke algebra to a dilute 
Hecke algebra. I f  such an algebra could be defined, it would open the possibility to 
generalize the rank-one dilute A models in a completely different fashion as described 
in this paper. This would be similar to the two distinct ways of  generalizing the ABF 
model [5] .  That is, the critical ABF model can either be viewed as a TL model, 
naturally leading to a An(l) generalization based on the H e r e  algebra [6],  or we can 
view it as a model based on the BWM algebra, leading to the C~ 1) JMO models of  
Eq. (2.7).  In a naive attempt to generalize the Hecke algebra to allow for vacancies, 
simply following the same procedure as applied in diluting the TL or BWM algebra, 
we however encounter the problem that by combining the defining relations between the 
generators, we can always reduce the algebra to the dilute TL case. Whether this rather 
unwanted feature can be repaired by some more elaborate dilution process remains an 
open question. 
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Note added in proof 

The author was informed by A. Kuniba that the idea of dual baxterization as described 
in Subsection. 4.1 has been applied to vertex models in Ref. [23]. 
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