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Abstract. In a recent letter, new representations were proposed for the pair

of sequences (γ, δ), as defined formally by Bailey in his famous lemma. Here
we extend and prove this result, providing pairs (γ, δ) labelled by the Lie

algebra AN−1, two non-negative integers ` and k and a partition λ, whose

parts do not exceed N − 1. Our results give rise to what we call a “higher-
level” Bailey lemma. As an application it is shown how this lemma can be

applied to yield general q-series identities, which generalize some well-known

results of Andrews and Bressoud.

1. Introduction

A well-known approach to proving q-series identities of the Rogers–Ramanujan
type is the Andrews–Bailey construction [8, 7], given by the following lemma.

Lemma 1.1. Let α = {αL}L≥0 and β = {βL}L≥0 be sequences which satisfy

(1.1) βL =
L∑
r=0

αr
(q)L−r(aq)L+r

,

for all L. Then the sequences α′ and β′ defined by

α′L =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)L(aq/ρ2)L
αL(1.2a)

β′L =
L∑
r=0

(ρ1)r(ρ2)r(aq/ρ1ρ2)r(aq/ρ1ρ2)L−r
(aq/ρ1)L(aq/ρ2)L(q)L−r

βr,(1.2b)

again satisfy equation (1.1).

A pair of sequences (α, β) that satisfies (1.1) is called a Bailey pair relative to a.
The iteration of Lemma 1.1:

(α, β)→ (α′, β′)→ (α′′, β′′)→ · · ·

is called a Bailey chain. The symbol (a)n in the above lemma is the usual q-shifted
factorial,

(a; q)∞ = (a)∞ =
∞∏
n=0

(1− aqn)

and

(a; q)n = (a)n =
(a; q)∞

(aqn; q)∞
n ∈ Z.

1
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Perhaps not so well-known however, is that Bailey in his original paper [8] con-
sidered another pair of sequences γ = {γL}L≥0 and δ = {δL}L≥0 related by

(1.3) γL =
∞∑
r=L

δr
(q)r−L(aq)r+L

,

for all L. We will refer to a pair of sequences (γ, δ) which satisfies (1.3) as a
conjugate Bailey pair relative to a. Bailey noted that given a Bailey pair and some
conjugate Bailey pair (both relative to a) the following identity holds:

(1.4)
∞∑
L=0

αLγL =
∞∑
L=0

βLδL .

As pointed out by Andrews [7], Lemma 1.1 is a special case of this result with
conjugate Bailey pair

(1.5a) γL =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)L(aq/ρ2)L
1

(q)M−L(aq)M+L

and

(1.5b) δL =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)M (aq/ρ2)M
(aq/ρ1ρ2)M−L

(q)M−L
,

where M is an arbitrary non-negative integer.
As a special case of (1.5a) and (1.5b) we may send the undetermined parameters

ρ1 and ρ2 to infinity. Using

lim
a→∞

a−n(a)n = (−1)nqn(n−1)/2,

this gives the simple expressions

(1.6) γL =
aLqL

2

(q)M−L(aq)M+L
and δL =

aLqL
2

(q)M−L
.

It is the aim of this paper to show that these two expressions are the first instances
of an infinite series of conjugate Bailey pairs. Specifically, we establish a conjugate
Bailey pair relative to a = qk+`, for each pair of non-negative integers k and `,
positive integer N and partition λ with largest part not exceeding N−1. For k = 0
and λ = (`) or |λ| = 0, ` = N , this result was announced in [36]. The conjugate
Bailey pair (1.6) with a of the form a = q` is the special case N = 1 and k = 0.

Before we proceed we note that Milne and Lilly [30, 32, 33] have recently given
higher-dimensional generalizations of the Bailey transform and the Bailey lemma
in the setting of very-well poised basic hypergeometric functions on the higher rank
groups A` and C`. Specifically they generalized the defining relation of a Bailey pair
to higher rank (Equation (1.1) corresponding to A1) and obtained the corresponding
generalization of Lemma 1.1. This has to be contrasted with the results obtained in
this paper, which stay within the framework of A1, but provide higher-level (spin)
representations for conjugate Bailey pairs. Indeed these representations involve
expressions closely related to the string functions of the affine Lie algebra A(1)

1 at
level N , and can be used to obtain q-series identities for the branching functions of
the level-N A(1)

1 cosets theories.
In the next section we slightly reformulate the definition of a conjugate Bailey

pair and state our main result; an infinite hierarchy of conjugate Bailey pairs.
In Section 3 we present a recursive proof of our result using telescopic expansion
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techniques. In Section 4 we apply what we term the “higher-level” Bailey lemma
to derive a very general q-series identity, which contains many known Rogers–
Ramanujan type identities as specializations. For the proof of this general identity
we also introduce some further transformations of the Bailey chain and Bailey
lattice type. We finally conclude with a brief discussion of our results.

2. A hierarchy of conjugate Bailey pairs

In the following we present an infinite series of pairs of sequences (γ, δ) which
satisfy equation (1.3). In fact, for notational reasons it turns out to be fruitful to
slightly modify the definition (1.3) of a conjugate Bailey pair.

Definition 2.1. A pair of sequences Γ = {ΓL,k}L,k≥0 and ∆ = {∆L,k}L≥k≥0 which
satisfies

(2.1) ΓL,k =
∞∑

r=L+k

∆r,k

(q)r−L−k(aq)r+L
,

for all L, k ≥ 0 is called a (Γ,∆)-pair relative to a.

At first sight it may seem that a (Γ,∆)-pair is more general than a conjugate
Bailey pair, reducing to it for k = 0. However note that given a (Γ,∆)-pair relative
to a and setting

(2.2) γ
(k)
L = ΓL,k and δ

(k)
L =

∆L+k,k

(aq)k
,

the pair (γ(k), δ(k)) becomes a conjugate Bailey pair relative to aqk.

We now proceed to state a series of (Γ,∆)-pairs. For this some further notation is
needed. First, we need two types of Gaussian polynomials or q-binomial coefficients
(see for example [22]).

Definition 2.2. For n,m arbitrary integers

(2.3)
[
m+ n

n

]
=


(q)n+m

(q)n(q)m
n,m ≥ 0

0 otherwise,

and

(2.4)
[
m+ n

n

]′
=


(qn+1)m

(q)m
m ≥ 0

0 otherwise.

Notice that the primed version of the q-binomials is asymmetric in m and n, and
that both types of q-binomials coincide for m+ n ≥ 0. Both the ordinary and the
primed binomials enjoy the recurrences[

m+ n

n

]
=
[
m+ n− 1
n− 1

]
+ qn

[
m+ n− 1

n

]
(2.5a)

=
[
m+ n− 1

n

]
+ qm

[
m+ n− 1
n− 1

]
,(2.5b)
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with the notable exception that when n = m = 0, (2.5a) and (2.5b) break down for
the ordinary q-binomials (2.3).

Next we introduce the following notation. Throughout N is assumed to be a
fixed positive integer and v = (v1, . . . , vN−1) denotes a vector with integer entries,
i.e., v ∈ ZN−1. In particular, ej is the j-th unit vector, (ej)k = δj,k (δj,k = 1 for
j = k and 0 otherwise). By definition e0 = eN = 0. For a given matrix M , we use
the following notation for matrix multiplication vMv =

∑N−1
j,k=1 vjMj,kvk, where

we omit the transposition symbol. We will often encounter the Cartan matrix of
the Lie algebra AN−1, denoted by C. That is, Cj,k = 2δj,k−δj,k−1−δj,k+1. Further
we adopt the compact notation

(2.6)
[
k

v

]
q

=
(q)k

(q)v1 · · · (q)vN−1(q)k−v1−···−vN−1

for v ∈ ZN−1
≥0 and zero otherwise. Lastly, let λ = (λ1, λ2, . . .), λ1 ≥ λ2 ≥ . . . denote

a partition with
∑
i λi = |λ|. If λ has largest part λ1 ≤ N − 1, we abbreviate

eλ1 + eλ2 + . . . to eλ.
We can now state the following theorem.

Theorem 2.1. Fix integers M ≥ 0, N ≥ 1 and ` ≥ 0, and fix a partition λ whose
largest part does not exceed N − 1. Choose σ ∈ {0, 1} such that ` + |λ| + σN is
even. Then the following two sequences form a (Γ,∆)-pair relative to a = q`:

ΓL,k =
aL/N+kqL

2/N+kL

(q)M−L−k(aq)L+M
(2.7a)

×
∑

η,i∈ZN−1

(σ)
q−iC

−1
(
i+(2L+`)e1

)[
k

i

]
1/q

qηC
−1(η−eλ)

N−1∏
j=1

[
µj + ηj
ηj

]′
and

∆L,k =
aL/NqL

2/N−kL

(q)M−L

∑
n∈ZN−1

(σ)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
.(2.7b)

The variables µj, which occur in the primed q-binomial in (2.7a), are fixed by the
(external) variables L, k and the (summation) variables i and η by the equation

(2.8) µ = C−1
(

(M −L− k)e1 + (M +L+ `)eN−1 +eλ−
N−1∑
j=1

(ij + ij+1)ej − 2η
)
,

where

(2.9) iN := k − i1 − · · · − iN−1.

Similarly, the variables mj, which occur in the q-binomial in (2.7b), are fixed by
L,n thanks to

(2.10) m = C−1
(

(2L+ `) eN−1 + eλ − 2n
)
.

So far we refrained from defining the superscript (σ) in the sums over η, i and
n in (2.7a) and (2.7b). To explain this notation (as well as the origin of the parity
restrictions in the theorem) let us consider expression (2.7b). In this expression
we sum over the vector n with integer entries. Given such n, we can compute a
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companion vector m using the (m,n)-system (2.10). Of course, because of the
product over the q-binomials, we only wish to consider those n which return a
vector m whose entries are all integer. A close scrutiny of equation (2.10) shows
that m ∈ ZN−1 if and only if `+ |λ|+ σN is even and

L+ (`− |λ|)/2
N

− (C−1n)1 ∈ Z +
σ

2
,

where σ takes either the value 0 or 1. A similar analysis can be made for the sum
in (2.7a) where n is replaced by η + i. More compactly we denote

(2.11)
∑

n1,...,np∈ZN−1

L+(`−|λ|)/2
N −(C−1(n1+···+np))1∈Z+σ

2

=
∑

n1,...,np∈ZN−1

(σ,L)
=

∑
n1,...,np∈ZN−1

(σ)
.

After stating Theorem 2.1, it seems appropriate to make a few remarks about its
origin. In statistical mechanics there has recently been much interest in so-called
fermionic representations of Virasoro characters, see e.g., [19]. Such fermionic char-
acter representations relate to combinatorial or “subtractionless” bases for Vira-
soro modules. One of the most successful approaches to this problem has been the
study of exactly solvable lattice models using what is termed the Bethe Ansatz
technique. One of the many remarkable features of this technique, is that it gives
rise to so-called fermionic polynomials, which in a special limit give fermionic char-
acter expressions. (The polynomials featuring in items 287 and 289 of MacMahon’s
Combinatory Analysis, Vol. 2 [31], are probably the simplest examples of fermionic
polynomials.) The rich combinatorics of the fermionic polynomials are described
by systems of (quasi)particles that obey exclusion statistics. These exclusion rules
are encoded in what are called (m,n)-systems [9]. Here n is a vector whose j-th
entry nj denotes the occupation number of particles of type j. The vector m has
an interpretation in terms of occupation numbers of holes or anti-particles.

Returning to the above theorem, Equations (2.8) and (2.10) are examples of the
afore-mentioned (m,n)-systems1, and apart from an overall factor, the sequence
∆ with σ = 0 and λ = (`), coincides with the fermionic polynomials of the level-2
A(1)
N−1 Jimbo–Miwa–Okado models [27], as obtained in [20].

Maybe more important than Theorem 2.1 itself is the following corollary.

Corollary 2.1. Let M,N, `, λ and σ be as in theorem 2.1. Then the following two
sequences form a conjugate Bailey pair relative to a = q`:

γL =
aL/NqL

2/N

(q)M−L(aq)M+L

∑
η∈ZN−1

(σ)
qηC

−1(η−eλ)
N−1∏
j=1

[
µj + ηj
ηj

]
(2.12a)

and

δL =
aL/NqL

2/N

(q)M−L

∑
n∈ZN−1

(σ)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
.(2.12b)

1For the “interpretation” of the (µ,η)-system (2.8), one in fact has to allow for the occupation
numbers ηj to become negative. A phenomenon discussed in [11, 13].
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Here m is given by (2.10) and µ by

(2.13) µ = C−1
(

(M − L)e1 + (M + L+ `)eN−1 + eλ − 2η
)
.

We remark that this generalizes the conjugate Bailey pair (1.6) (with the restric-
tion a = q`, ` ∈ Z≥0.)

Proof of corollary 2.1. Setting k = 0 in Equation (2.7b) immediately gives ∆L,0 =
δL. Setting k = 0 in Equation (2.7a) we find that the sum over i is non-zero for
i = 0 only. Hence (2.8) simplifies to (2.13) and ΓL,0 gives precisely the above
expression for γL provided one can show that the primed q-binomials in (2.7a) can
be replaced by the unprimed q-binomials. To see this, notice that both q-binomials
are zero unless µj ≥ 0 for all j = 1, . . . , N − 1. From this, and (2.13), it follows
that with µ0 = µN = 0,

µj+ηj =
1
2

(
µj−1+µj+1+(M−L)δ1,j+(M+L+`)δN−1,j+δλ1,j+δλ2,j+ · · ·

)
≥ 0.

(We can safely assume that M ≥ L since ΓL,0 (and γL) are non-zero for M ≥ L
only.) But for µj + ηj ≥ 0 the primed and unprimed q-binomials coincide, and so
indeed ΓL,0 = γL. �

To conclude this section we note that Corollary 2.1 will be used in the following
for applications rather than Theorem 2.1. Almost all of the identities arising from
(2.7a) and (2.7b) can either be obtained from corollary 2.1 or are of such com-
plexity that they seem of little relevance. Still, the parameter k in Theorem 2.1
is indispensable to us, as it gives rise to recurrences which are at the heart of our
proof of the infinite series of conjugate Bailey pairs.

3. Proof of theorem 2.1

In this section we prove theorem 2.1 using recurrence relations. For the proof of
these recurrences we rely on the following generalizations of the q-binomial recur-
rences (2.5b), termed telescopic expansions [9]. (Similar generalizations of (2.5a)
will not be needed here.)

Lemma 3.1. For integer N ≥ 2 and Aj , Bj integer for all j = 1, . . . , N − 1,
(3.1a)

N−1∏
j=1

[
Aj +Bj
Aj

]′
=
N−1∏
j=1

[
Aj +Bj − 1

Aj

]′
+
N−1∑
p=1

qBp
N−1∏
j=1

[
Aj +Bj − χ(j ≤ p)

Aj − δj,p

]′
and
(3.1b)

N−1∏
j=1

[
Aj +Bj
Aj

]′
=
N−1∏
j=1

[
Aj +Bj − 1

Aj

]′
+
N−1∑
p=1

qBp
N−1∏
j=1

[
Aj +Bj − χ(j ≥ p)

Aj − δj,p

]′
where χ(true) = 1 and χ(false) = 0.

Proof. For N = 2 (3.1a) and (3.1b) simplify to (2.5b). For N ≥ 2, (3.1a) and (3.1b)
follow by induction on N and application of (2.5b). �

Let us now return to Theorem 2.1. Inserting both the definition of ∆ and Γ into
equation (2.1) and reshuffling some of the terms, the claim of Theorem 2.1 can be
re-expressed as the following polynomial identity.
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Lemma 3.2. Let M,N, `, λ and σ be as in Theorem 2.1. Then for 0 ≤ L ≤ M
and 0 ≤ k ≤M − L,

(3.2)
∑

η,i∈ZN−1

(σ,L)
q−iC

−1
(
i+(2L+`)e1

)[
k

i

]
1/q

qηC
−1(η−eλ)

N−1∏
j=1

[
ηj + µj
ηj

]′

=
M∑

r=L+k

q(r+L+`)(r−L−Nk)/N
[
M − L− k
M − r

]
(q`+1)L+M

(q`+1)L+r

×
∑

n∈ZN−1

(σ,r)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
,

with (µ,η)-system (2.8) and (m,n)-system (2.10), where L in (2.10) has been
replaced by r.

3.1. Proof of Lemma 3.2. We prove the polynomial identity (3.2) by induction
on k and M − L. To this end we show that both the left- and right-hand side of
(3.2), denoted by f1 and f2, respectively, obey the recursion relations

f(M,L, k) = f(M − 1, L, k) + qM+L+`
(
f(M,L, k + 1)− f(M − 1, L, k)

)
(3.3a)

for 0 ≤ k < M − L

f(M,L, k) = q−(2L+`+1)(N−1)/Nf(M,L+ 1, k − 1) for k = M − L(3.3b)

as well as the initial condition

(3.3c) f1(M,M, 0) = f2(M,M, 0) for M ≥ 0.

Equations (3.3a)–(3.3c) fix the function f uniquely. With (3.3c) as a seed, re-
currence (3.3b) gives f(M,L, k), for all k = M − L. Now assume that f(M,L, k)
is known for all k = M − L − n, with n = 0, . . . , n0. Since (3.3a) expresses each
f(M,L, k) with k = M−L−n−1 as the sum of two f(M,L, k) with k = M−L−n,
this implies that f(M,L, k) is fixed for k = K−L− (n0 + 1). Since the assumption
is obviously true for n0 = 0, we indeed find that f is fixed by (3.3a)–(3.3c).

The recurrences are illustrated in Figure 1. Each coordinate in the (k,M − L)-
plane for which 0 ≤ L ≤M and 0 ≤ k ≤M −L is represented by a node, the node
at (k,M−L) representing f(M,L, k). All incoming arrows at a given node indicate
which values of k and M − L are needed in the recursion relations. For example
the nodes on the diagonal k = M −L all follow from just the previous node on the
diagonal as given by (3.3b). All other points need two values of k and M − L as
given by (3.3a).

Proof of the initial condition (3.3c). For k = 0 and L = M , f1 and f2 reduce to

(3.4) f1(M,M, 0) =
∑

η∈ZN−1

(σ,M)
qηC

−1(η−eλ)
N−1∏
j=1

[
µj + ηj
ηj

]′
,

with µ = C−1((2M + `)eN−1 + eλ − 2η), and

f2(M,M, 0) =
∑

n∈ZN−1

(σ,M)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
,
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k

M − L k = M − L

Figure 1. Graphical representation of the “flow” induced by the
recurrence relations (3.3a)–(3.3c) in the (k,M − L)-plane.

with m = C−1((2M + `)eN−1 + eλ − 2n). Since ηj + µj ≥ 0, we can remove the
prime in (3.4) and we are done. �

Since the (m,n)-system (2.10) corresponding to the right-hand side of (3.2) does
not depend on the variables M − L and k, f2 is much easier to handle than f1.
Hence we proceed in reversed order.

Proof of the recursion relation (3.3a) for f2. We substitute the definition of f2, given
by the right-hand side of (3.2), into f2(M,L, k)−(1−qM+L+`)f2(M−1, L, k). This
immediately yields the desired result since

f2(M,L, k)− (1− qM+L+`)f2(M − 1, L, k)

=
M∑

r=L+k

q(r+L+`)(r−L−Nk)/N
([
M − L− k
M − r

]
−
[
M − L− k − 1
M − r − 1

])

× (q`+1)L+M

(q`+1)L+r

∑
n∈ZN−1

(σ,r)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
= qM+L+` f2(M,L, k + 1),

where in the last step we have used equation (2.5a). �

Proof of the recursion relation (3.3b) for f2. The proof of (3.3b) for f2 is again
trivial, since

q−(2L+`+1)(N−1)/N f2(M,L+ 1,M − L− 1)

= q(M+L+`)(M−L−N(M−L))/N
∑

n∈ZN−1

(σ,M)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
= f2(M,L,M − L). �

So far, everything has been extremely simple. The proof that f1 satisfies the
recurrences (3.3a) and (3.3b) is however considerably more involved.
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Proof of the recursion relations (3.3a) for f1. To avoid possible confusion in the
course of the proof, we will make the dependence on M,L, k and i of the vec-
tor µ explicit by writing µ(M,L, k, i). Most importantly, the left-hand side of
(2.8) should now be read as µ(M,L, k, i). We also make repeated use of the matrix
elements of the inverse Cartan matrix, given by

(3.5) C−1
j,k =

(N − k)j/N for j ≤ k

C−1
k,j for j > k.

From the definition of f1 as the left-hand side of (3.2) we have

(3.6) f1(M,L, k)− f1(M − 1, L, k)

=
∑

η,i∈ZN−1

(σ,L)
q−iC

−1(i+(2L+`)e1)+ηC
−1(η−eλ)

[
k

i

]
1/q

×

{
N−1∏
j=1

[
ηj + µj(M,L, k, i)

ηj

]′
−
N−1∏
j=1

[
ηj + µj(M,L, k, i)− 1

ηj

]′}
.

Here we have used µj(M−1, L, k, i) = µj(M,L, k, i)−C−1
1,j−C

−1
N−1,j = µj(M,L, k, i)−

1.
We now insert the telescopic expansion (3.1a) with the replacements Aj → ηj

and Bj → µj , and change ηp → ηp + 1 and ip → ip− 1 in the p-th term of the sum.
Carrying out both variable changes, using (2.8) and definition (2.9) of iN , yields

µj(M,L, k, i)→ µj(M,L, k, i) + ejC−1(ep−1 − ep − eN−1)

= µj(M,L, k, i)− χ(j ≥ p).

As a result (3.6) becomes (note that
∑(σ)
η+ep,i−ep . . . =

∑(σ)
η,i . . .)

f1(M,L, k)− f1(M − 1, L, k)

=
N−1∑
p=1

∑
η,i∈ZN−1

(σ,L)
q−iC

−1(i+(2L+`)e1)+ηC
−1(η−eλ)

[
k

i− ep

]
1/q

× qµp(M,L,k,i)−1+epC
−1(2η+2i+(2L+`)e1−eλ)

N−1∏
j=1

[
ηj + µj(M,L, k, i)− 1

ηj

]′
.

Using (2.8) and (3.5) one may readily check that

µp(M,L, k, i) + ep C−1(2η + 2i+ (2L+ `)e1 − eλ) = M + L+ `− k +
p∑
j=1

ij ,
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resulting in

(3.7) f1(M,L, k)− f1(M − 1, L, k)

= qM+L+`
∑

η,i∈ZN−1

(σ,L)
q−iC

−1(i+(2L+`)e1)

(
N−1∑
p=1

q−k−1+
Pp
j=1 ij

[
k

i− ep

]
1/q

)

× qηC
−1(η−eλ)

N−1∏
j=1

[
ηj + µj(M,L, k, i)− 1

ηj

]′
.

One can now simplify the sum over p. Using definition (2.9) we get

N−1∑
p=1

qk+1−
Pp
j=1 ij

[
k

i− ep

]
q

=
qk+1(q)k

(q)i1 . . . (q)iN−1(q)iN+1

N−1∑
p=1

(1− qip)q−
Pp
j=1 ij

=
(q)k

(q)i1 . . . (q)iN−1(q)iN+1

(
(1− qk+1)− (1− qiN+1)

)
=
[
k + 1
i

]
q

−
[
k

i

]
q

.

Substituting this into (3.7) and noting µ(M,L, k, i) − 1 = µ(M,L, k + 1, i) =
µ(M − 1, L, k, i), we arive at the desired result

f1(M,L, k)− f1(M − 1, L, k) = qM+L+`
(
f1(M,L, k + 1)− f1(M − 1, L, k)

)
. �

Proof of recursion relation (3.3b) for f1. From the definition of f1 as the left-hand
side of (3.2) we obtain

f1(M,L+ 1,M − L− 1) =
∑

η,i∈ZN−1

(σ,L+1)
q−iC

−1(i+(2L+`+2)e1)

[
M − L− 1

i

]
1/q

× qηC
−1(η−eλ)

N−1∏
j=1

[
ηj + µj(M,L+ 1,M − L− 1, i)

ηj

]′
.

We now apply telescopic expansion (3.1b), with Aj → ηj and Bj → µj , to rewrite
the product over the q-binomials. Then we make the change of variables i1 → i1−1
in the first-term on the right-hand side of (3.1b), ηp → ηp + 1, ip+1 → ip+1 − 1 in
the p-th term of the sum (1 ≤ p ≤ N − 2) and ηN−1 → ηN−1 + 1 in the term with
p = N − 1. Since under these variable changes

µj(M,L+ 1,M − L− 1, i)→ µj(M,L,M − L, i)− ejC−1(ep − ep+1 − eN−1)

= µj(M,L,M − L, i) + χ(j > p),
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we obtain

(3.8) f1(M,L+ 1,M − L− 1)

=
N−1∑
p=0

∑
η,i∈ZN−1

(σ,L)
q−iC

−1(i+(2L+`)e1)+ηC
−1(η−eλ)

[
M − L− 1
i− ep+1

]
1/q

× qµp(M,L,M−L,i)−2iC−1(e1−ep+1)+epC
−1(2η−eλ+ep)+ep+1C

−1((2L+`+2)e1−ep+1)

×
N−1∏
j=1

[
ηj + µj(M,L,M − L, i)

ηj

]′
.

Now use (2.8) as well as the definition of iN (recall that k = M − L) to observe
that the exponent of q in the third line of the above equation simplifies to

(2L+ `+ 1)(N − 1)/N −
p∑
j=1

ij .

This allows (3.8) to be reduced to

(3.9) q−(2L+`+1)(N−1)/Nf1(M,L+ 1,M − L− 1)

=
∑

η,i∈ZN−1

(σ,L)
q−iC

−1(i+(2L+`)e1)

(
N−1∑
p=0

q−
Pp
j=1 ij

[
M − L− 1
i− ep+1

]
1/q

)

× qηC
−1(η−eλ)

[
ηj + µj(M,L,M − L, i)

ηj

]′
.

Again we may simplify the sum over p,

N−1∑
p=0

q
Pp
j=1 ij

[
M − L− 1
i− ep+1

]
q

=
(q)M−L−1

(q)i1 . . . (q)iN

N−1∑
p=0

(1− qip+1)q
Pp
j=1 ij

=
[
M − L
i

]
q

,

so that the right-hand side of (3.9) gives f1(M,L,M − L) as desired. �

4. Applications

We now show how theorem 2.1, and in particular Corollary 2.1, can be exploited
to obtain very general q-series identities, which take many of the known Rogers–
Ramanujan type identities as special cases.

We substitute the conjugate Bailey pair of Corollary 2.1 into Equation 1.4 and
take the limit M →∞. This gives the important result

Corollary 4.1 (higher-level Bailey lemma). Let N, `, λ and σ be as in theorem 2.1,
and let (α, β) form a Bailey pair relative to a = q`. Then the following identity
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holds:

(4.1)
1

(aq)∞

∞∑
L=0

aL/NqL
2/N αL

∑
η∈ZN−1

(σ,L) qηC
−1(η−eλ)

(q)η1 · · · (q)ηN−1

=
∞∑
L=0

aL/NqL
2/N βL

∑
n∈ZN−1

(σ,L)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
,

with the (m,n)-system

m = C−1
(

(2L+ `) eN−1 + eλ − 2n
)
.

For λ = (`), σ = 0 and for |λ| = 0, ` = N, σ = 1 this result was announced in
[36].

As first noted by Foda and Quano [21] for some specific examples and in full in
[10, 13], polynomial identites related to the characters of c < 1 Virasoro algebras
give rise to Bailey pairs. The name of the above lemma has been motivated by
the fact that inserting these Bailey pairs into (4.1) yields Rogers–Ramanujan type
identities for the branching functions of level-N A(1)

1 conformal coset models. De-
tails of this application will be presented elsewhere [14].2 Instead, we apply here
Corollary 4.1 to some of the simplest known Bailey pairs. For these we wish to use
Corollary 4.1 as efficiently as possible. To this end we utilize, as well as the Bailey
chain and its generalization to the Bailey lattice, two new transformations acting
on Bailey pairs.

4.1. Transformations on Bailey pairs. Lemma 1.1 provides a powerful mecha-
nism to obtain new Bailey pairs from a given Bailey pair. One of the limitations of
(1.2) is however that if (α, β) is a Bailey pair relative to a, so will be the resulting
Bailey pair (α′, β′).

A useful transformation which does not keep a fixed was found by Agarwal,
Andrews and Bressoud [1, 18]

Lemma 4.1. Let (α, β) be a Bailey pair relative to a and define α′0 = α0 and

α′L =
(ρ1)L(ρ2)L(a/ρ1ρ2)L

(a/ρ1)L(a/ρ2)L

(
(a)2L
(aq)2L

αL − aq2L−2 (a)2L−2

(aq)2L−2
αL−1

)
L ≥ 1

(4.2a)

β′L =
L∑
r=0

(ρ1)r(ρ2)r(a/ρ1ρ2)r(a/ρ1ρ2)L−r
(a/ρ1)L(a/ρ2)L(q)L−r

βr.

(4.2b)

Then (α′, β′) is a Bailey pair relative to aq−1.

In combination with Lemma 1.1, transformation (4.2) gives rise to what is called
the Bailey lattice.

We now introduce two new transformations that map a Bailey pair onto a new
Bailey pair. The first transformation is of the type (1.2) in that it leaves the value
of a invariant.

2It is intriguing to note [12] that for N = 2 the characters of these coset models (which are
obtained from the branching functions by summing over both parities of σ) also arise from the

“classical” conjugate Bailey pair (1.5a) and (1.5b), taking ρ1,M →∞ and setting ρ2 = −(aq)1/2.
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Lemma 4.2. If (α, β) forms a Bailey pair relative to a, then the sequences

α′L = aLqL(L+1)
L∑
r=0

(ρ1)r(ρ2)r(q1−r/ρ1ρ2)r

(aq/ρ1)r(aq/ρ2)r
αr(4.3a)

− aL−1qL(L−1)
L−1∑
r=0

(ρ1)r(ρ2)r(q1−r/ρ1ρ2)r

(aq/ρ1)r(aq/ρ2)r
αr

β′L = qL
L∑
r=0

(ρ1)r(ρ2)r(aq/ρ1ρ2)r(aq/ρ1ρ2)L−r
(aq/ρ1)L(aq/ρ2)L(q)L−r

βr.(4.3b)

again form a Bailey pair relative to a.

The second transformation closely mimics Lemma 4.1.

Lemma 4.3. Let (α, β) be a Bailey pair relative to a and define α′0 = α0 and

α′L =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)L(aq/ρ2)L
(a)2L
(aq)2L

αL(4.4a)

− (ρ1)L−1(ρ2)L−1(aq/ρ1ρ2)L−1

(aq/ρ1)L−1(aq/ρ2)L−1
aq2L−2 (a)2L−2

(aq)2L−2
αL−1 L ≥ 1

β′L =
L∑
r=0

(ρ1)r(ρ2)r(aq/ρ1ρ2)r(aq/ρ1ρ2)L−r
(aq/ρ1)L(aq/ρ2)L(q)L−r

βr.(4.4b)

Then (α′, β′) is a Bailey pair relative to aq−1.

Proof of the Lemmas 4.2 and 4.3. For both the proof of Equation (4.3) and (4.4)
we only need the q-analogue of Saalschütz’s theorem [6, Eq. (3.3.12)]). First, to
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prove (4.3),

β′L = qL
L∑
k=0

(ρ1)k(ρ2)k(aq/ρ1ρ2)k(aq/ρ1ρ2)L−k
(aq/ρ1)L(aq/ρ2)L(q)L−k

βk

= qL
L∑
k=0

(ρ1)k(ρ2)k(aq/ρ1ρ2)k(aq/ρ1ρ2)L−k
(aq/ρ1)L(aq/ρ2)L(q)L−k

k∑
m=0

αm
(q)k−m(aq)k+m

= qL
L∑

m=0

αm

L∑
k=m

(ρ1)k(ρ2)k(aq/ρ1ρ2)k(aq/ρ1ρ2)L−k
(aq/ρ1)L(aq/ρ2)L(q)L−k(q)k−m(aq)k+m

= qL
L∑

m=0

(ρ1)m(ρ2)m(aq/ρ1ρ2)m αm
(aq/ρ1)m(aq/ρ2)m(q)L−m(aq)L+m

=
L∑

m=0

(ρ1)m(ρ2)m(q1−m/ρ1ρ2)m αm
(aq/ρ1)m(aq/ρ2)m

(
L∑

k=m

aq2k −
L∑

k=m+1

)
ak−1qk(k−1)

(q)L−k(aq)L+k

=
L∑
k=0

akqk(k+1)

(q)L−k(aq)L+k

k∑
m=0

(ρ1)m(ρ2)m(q1−m/ρ1ρ2)m αm
(aq/ρ1)m(aq/ρ2)m

−
L∑
k=0

ak−1qk(k−1)

(q)L−k(aq)L+k

k−1∑
m=0

(ρ1)m(ρ2)m(q1−m/ρ1ρ2)m αm
(aq/ρ1)m(aq/ρ2)m

=
L∑
k=0

α′k
(q)L−k(aq)L+k

.

To prove (4.4) we proceed as follows,

β′L =
L∑
k=0

(ρ1)k(ρ2)k(aq/ρ1ρ2)k(aq/ρ1ρ2)L−k
(aq/ρ1)L(aq/ρ2)L(q)L−k

βk

=
L∑

m=0

(ρ1)m(ρ2)m(aq/ρ1ρ2)m αm
(aq/ρ1)m(aq/ρ2)m(q)L−m(aq)L+m

=
L∑

m=0

(ρ1)m(ρ2)m(aq/ρ1ρ2)m(a)2m αm
(aq/ρ1)m(aq/ρ2)m(aq)2m

(
1

(q)L−m(a)L+m
− aq2m

(q)L−m−1(a)L+m+1

)

=
L∑

m=0

α′m
(q)L−m(a)L+m

. �

4.2. A general q-series identity. Equipped with Corollary 4.1 and the Lemmas
1.1, 4.1–4.3, we are prepared to prove the following q-identity.

Theorem 4.1. Fix integers N ≥ 1, δ ∈ {0, 1}, k ≥ 2 and 1 ≤ i ≤ k. Let λ be a
partition with largest part ≤ N − 1 and σ ∈ {0, 1} such that |λ|+ σN even. Then
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the following identity holds:

(4.5)
1

(q)∞

∞∑
j=−∞

(−1)jq
(
(2k+δ−2+2/N)j+2k−2i+δ

)
j/2

∑
η∈ZN−1

(σ,j) qηC
−1(η−eλ)

(q)η1 . . . (q)ηN−1

=
∑

r1≥···≥rk−1≥0

qr
2
1/N+r22+···+r2k−1+ri+···+rk−1

(q)r1−r2 · · · (q)rk−2−rk−1(q2−δ; q2−δ)rk−1

×
∑

n∈ZN−1

(σ,r1)
qnC

−1(n−eλ)
N−1∏
j=1

[
mj + nj
nj

]
with (m,n)-system m = C−1(2r1 eN−1 + eλ − 2n).

(Note: the summation symbol
∑(σ,a) in the above is that defined in (2.11) with

` = 0.)
Before we prove this result, we note that identity (4.5) has a number of important

specializations. First, setting N = 1 and rewriting the left-hand side using Jacobi’s
triple product identity [6, Eq. (2.2.10)], we get

Corollary 4.2. For integers δ = 0, 1, k ≥ 2 and 1 ≤ i ≤ k + δ − 1,

(4.6)
∑

n1,...,nk−1≥0

qN
2
1+···+N2

k−1+Ni+···+Nk−1

(q)n1 · · · (q)nk−2(q2−δ; q2−δ)nk−1

=
∞∏
j=1

j 6≡0,±i (mod 2k+δ)

(1− qj)−1,

where Nj = nj + · · ·+ nk−1.

For δ = 1, k = 2 these are the Rogers–Ramanujan identities [34, 35]. For
δ = 1, general k, these are Andrews’ analytic counterpart of Gordon’s partition
theorem [4, 24]. For δ = 0 the identities (4.6) were discovered by Bressoud [16], and
are the analytic counterpart of partition identities of Andrews [2] and Bressoud [15].
We note that the derivation of these identities using the Bailey chain and lattice is
of course not new, see e.g., [1].

The next two corollaries are obtained by setting N = 2 in Theorem 4.1

Corollary 4.3. For integers k ≥ 2 and 1 ≤ i ≤ k,
(4.7)∑
n1,...,nk−1≥0

qN
2
1+2N2

2+···+2N2
k−1+2Ni+···+2Nk−1(−q; q2)N1

(q2; q2)n1 · · · (q2; q2)nk−1

=
∞∏
j=1

j 6≡2 (mod 4)
j 6≡0,±(2i−1) (mod 4k)

(1−qj)−1.

Corollary 4.4. For integers k ≥ 2 and 1 ≤ i ≤ k − 1,

(4.8)
∑

n1,...,nk−1≥0

qN
2
1+2N2

2+···+2N2
k−1+2Ni+···+2Nk−1(−q; q2)N1

(q2; q2)n1 · · · (q2; q2)nk−2(q4; q4)nk−1

= (−q2k−1, q4k−2)∞
∞∏
j=1

j 6≡2 (mod 4)
j 6≡0 (mod 8k−4)

j 6≡2k−1,±(2i−1) (mod 4k−2)

(1− qj)−1.
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The identities of Corollary 4.3 are due to Andrews [5] and Bressoud [17], and are
related to Andrews’ generalization of the Göllnitz–Gordon partition identities [23,
25, 3]. The identities of Corollary 4.4 were discovered by Bressoud [17]. These
results can also be obtained using the conjugate Bailey pair given by (1.5a) and
(1.5b). For N ≥ 3, however, Theorem 4.1 relies on the higher-level Bailey lemma
and, at present, we cannot obtain it by means of the standard conjugate Bailey
pair.

Proof of Corollaries 4.3 and 4.4. Set N = 2 in (4.5) and sum over both choices for
σ. Recalling the q-binomial expansion [6, Eq. (3.3.6)] to sum

r1+|λ|/2∑
n=0

qn(n−|λ|)/2
[
r1 + |λ|/2

n

]
= (−q(1−|λ|)/2)|λ|/2(−q1/2)r1

and
∞∑
η=0

qη(η−|λ|)/2

(q)η
= (−q(1−|λ|)/2)|λ|/2(−q1/2)∞

we get, after dropping the factor (−q(1−|λ|)/2)|λ|/2, replacing q → q2 and applying
the triple product identity,∑

n1,...,nk−1≥0

qN
2
1+2N2

2+···+2N2
k−1+2Ni+···+2Nk−1(−q; q2)N1

(q2; q2)n1 · · · (q2; q2)nk−2(q4−2δ; q4−2δ)nk−1

=
1

(q)∞

∞∏
n=0

(1− q2+4n)(1− q2i−1+An)(1− q−2i+1+A(n+1))(1− qA(n+1)),

with A = 4k + 2δ − 2. Rewriting the right-hand side gives equation (4.7) when
δ = 1 and equation (4.8) when δ = 0. �

4.3. Proof of theorem 4.1. The proof of Theorem 4.1 is based on the following
two Bailey pairs relative to q ([7, Eqs. (2.12) & (2.13)] and item E(3) of [37]):

αL = (−1)LqL(L−1)/2 (q2)2L
(q)2L

(4.9a)

βL = δL,0(4.9b)

and

αL = (−1)LqL
2 (q2)2L

(q)2L
(4.10a)

βL =
1

(q2; q2)L
,(4.10b)

as well as the Bailey pair (items B(2) and E(4) of [37])

αL =

1 L = 0

(−1)Lq(δ+2)L(L−1)/2
(
1 + q(δ+2)L

)
L ≥ 1

(4.11a)

βL =
qL

(q2−δ; q2−δ)L
,(4.11b)

relative to 1, where δ = 0, 1.
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To now derive (4.5) we have to consider various different ranges of i.

Proof of Theorem 4.1 for i = 1. We take Lemma 4.2 with a = 1 and let ρ1, ρ2 →
∞. Hence given a Bailey pair (α, β) relative to 1, the sequences

α′L = qL(L+1)αL − qL(L−1)(1− q2L)(αL−1 + · · ·+ α0)

β′L = qL
L∑
k=0

qk
2
βk

(q)L−k

form yet again a Bailey pair relative to 1. Now iterating this k − 2 times, using
(4.11) as initial Bailey pair, we obtain the new Bailey pair

αL =

1 L = 0

(−1)Lq(2k+δ−2)L(L−1)/2
(
1 + q(2k+δ−2)L

)
L ≥ 1

(4.12a)

βL = qL
∑

L≥r2≥···≥rk−1

qr
2
2+···+r2k−1+r2+···+rk−1

(q)L−r2(q)r2−r3 · · · (q)rk−2−rk−1(q2−δ; q2−δ)rk−1

.(4.12b)

Substitution into Equation (4.1) with a = 1 yields Theorem 4.1 for i = 1. �

Proof of Theorem 4.1 for 2 ≤ i ≤ k + δ − 1. We take the Bailey pair (4.9) when
δ = 1 and (4.10) when δ = 0. Now we apply transformation (1.2) k − i + δ − 1
times, then (4.4) once and then (1.2) i− 2 times, all with ρ1, ρ2 →∞. This yields
the following Bailey pair relative to 1:

αL =

1 L = 0

(−1)Lq
(
(2k+δ−2)L−2k+2i−δ

)
L/2
(
1 + q(2k−2i+δ)L

)
L ≥ 1

(4.13a)

βL =
∑

L≥r2≥···≥rk−1

qr
2
2+···+r2k−1+ri+···+rk−1

(q)L−r2(q)r2−r3 · · · (q)rk−2−rk−1(q2−δ; q2−δ)rk−1

,(4.13b)

for i = 2, . . . , k+ δ− 1. Substituting this into Equation (4.1) with a = 1 completes
the proof. �

Proof of Theorem 4.1 for 3 ≤ i ≤ k. Again we take the Bailey pair (4.9) when δ = 1
and (4.10) when δ = 0. This time we apply transformation (1.2) k − i + δ times,
then (4.2) once and then (1.2) i − 3 times, all with ρ1, ρ2 → ∞. This again yields
the Bailey pair (4.13) but now for i = 3, . . . , k + δ. Since the cases i = k and
i = k + δ coincide, we only need to keep i = 3, . . . , k. After substituting this into
Equation (4.1) with a = 1 we are done. �

5. Conclusion

We end this paper with a few further remarks about the higher-level Bailey
lemma.

In this paper we considered the problem of generalizing the conjugate Bailey pair
(1.5a)–(1.5b), and more specifically its specialization (1.6). Now the very problem
of what exactly is meant by “generalization” deserves some discussion. In particular
we note the following lemma.
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Lemma 5.1. Let (α, β) and (α′, β′) be Bailey pairs relative to a and ab, respectively,
with

α′L =
L∑
k=0

PL,kαk and β′L =
L∑
k=0

QL,kβk,

and let (γ, δ) be a conjugate Bailey pair relative to a. Then the sequences

(5.1) γ′L =
∞∑
k=L

Pk,Lγk and δ′L =
∞∑
k=L

Qk,Lδk,

form a conjugate Bailey pair relative to ab−1.

Proof. For compactness, write the Equations (1.1) and (1.3) as βL =
∑L
k=0ML,k(a)αk

and γL =
∑∞
k=LMk,L(a)δk. Then from the fact that (α, β) and (α′, β′) are Bailey

pairs, and from Equation (5.1), we infer the relation
L∑

k=m

QL,kMk,m(a) =
L∑

k=m

ML,k(ab)Pk,m m = 0, . . . , L.

With this we compute

γ′L =
∞∑
k=L

Pk,Lγk =
∞∑
k=L

Pk,L

∞∑
m=k

Mm,k(a)δm

=
∞∑

m=L

δm

m∑
k=L

Mm,k(a)Pk,L =
∞∑

m=L

δm

m∑
k=L

Qm,kMk,L(a/b)

=
∞∑
k=L

Mk,L(a/b)
∞∑
m=k

Qm,kδm =
∞∑
k=L

Mk,L(a/b)δ′k,

establishing the claim of the lemma. �

The obvious implication of this result is that instead of using the Bailey-chain,
Bailey-lattice, et cetera, we could equally well keep (α, β) fixed, and transform (γ, δ)
to yield a conjugate Bailey-chain, lattice and so on. Of course, when searching for
generalizations of the conjugate Bailey pair (1.6), one must exclude those conjugate
Bailey pairs which can simply be obtained from (1.6) by linear transformations of
type (5.1). Let us merely state here that the new conjugate Bailey pairs presented
in this paper admit no further simplifications, and are, in the loose sense of [7],
“reduced”.

The expression on the left-hand side of the higher-level Bailey lemma admits
several different representations from the one listed in Equation (4.1). The most
relevant rewriting arises by first noting that the sum over η only depends on L
(mod N). Using this as well as some other simple symmetries, the left-hand side
of Equation (4.1) can be put into the form
(5.2)

1
(aq)∞

bN/2c∑
p−p`=0

∑
η∈ZN−1

2p−|λ|+σN
2N −(C−1η)1∈Z

qηC
−1(η−eλ)

(q)η1 · · · (q)ηN−1

∞∑
L=0

L+`/2≡±p (mod N)

aL/NqL
2/N αL,

where p` = 0 when ` is even and p` = 1/2 when ` is odd. We now assume that
the partition λ has just a single part, λ = (`′), with `′ = 0, . . . , N − 1. This admits
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(5.2) to be expressed in terms of a sum over the level-N A(1)
1 string functions

c`m [26, 28, 29],

q−
`′(N−`′)
2N(N+2) (q)`

bN/2c∑
p−p`=0

c`
′

2p+σN

∞∑
L=0

L+`/2≡±p (mod N)

aL/NqL
2/N αL,

where `+ `′+σN must be even. An alternative form (to that implied by (5.2)) for
c`m, known as Hecke’s indefinite modular form, reads [26, 28]

c`m =
qh

`
m

(q)3∞

{( ∑
j≥0

∑
k≥0

−
∑
j<0

∑
k<0

)
(−1)jqj(j+`+m+1)/2+k((j+k)(N+2)+`+1)

+
( ∑

j>0

∑
k≥0

−
∑
j≤0

∑
k<0

)
(−1)jqj(j+`−m+1)/2+k((j+k)(N+2)+`+1)

}
,

for ` = 0, . . . , N−1, `−m even and |m| ≤ `, with h`m = `(`+2)/[4(N+2)]−m2/(4N).
To obtain an expression for c`m, when |m| > `, one may use the symmetries c`m =
c`−m = c`m+2N = cN−`N−m.

As a final comment and advertisement, we remark that an application of the
higher-level Bailey lemma to obtain q-series identities for the characters of the
level-N A(1)

1 coset conformal field theories, will be given in [14] in collaboration
with A. Berkovich and B. M. McCoy.
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