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Abstract 

An analytic method of calculating conformal partition functions of solvable lattice models is pre- 
sented. Our technique involves the solution of transfer matrix functional equations in the scaling 
limit, and unifies the work of Albertini et al. on the classification of transfer matrix eigenvalues 
with that of Kl~imper and Pearce on finite-size corrections. As an illustration, conlormal partition 
functions of the tricritical hard square model with fixed boundaries are derived. The resulting Vira- 
soro characters arise in their fermionic representation and agree with the Coulomb gas calculations 
of Saleur and Bauer. @ 1997 Elsevier Science B.V. 
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1. Introduct ion 

Solvable lattice models have long proven to be valuable tools in the study of crit- 

ical phenomena. Since the advent of conformal invariance in particular [1,2], many 

theoretical predictions have been confirmed by direct analytic calculations on solvable 

models. Indeed, techniques to calculate such quantities as central charges and conformal 

weights have now become standard [3-10] .  However, confirmation of the predictions 

of conformal invariance regarding conformal partition functions j is a rather more dif- 

ficult problem, and fully analytic derivations have so far been restricted to the Ising 

model [ 1 1,12 ]. 

l Following Ref. [ 17], we refer to the universal part of the partition function as the "conformal" partition 
function. 
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There are two ingredients necessary for an analytic calculation of conformal partition 
functions from solvable lattice models: the complete classification of all eigenvalues of 

the row-to-row transfer matrix in the leading band; and the exact calculation of finite-size 
corrections to each of these eigenvalues. Important steps towards such a calculation have 

been taken in the work of the Stony Brook group [ 13-17] and the work of Kltimper 

and Pearce [8-10].  The former work, performed in the context of the three-state Potts 

model, provided a general approach to the classification of all transfer matrix eigenvalues. 
Although this led to the computation of conformal partition functions, the finite-size 

corrections to the eigenvalues in the leading band were determined numerically [ 17]. 
In contrast, in the latter work an approach was developed for the analytic derivation of 
such finite-size corrections, but only for the primary scaling dimensions. 

In this paper we present an analytic technique for computing conformal partition 

functions of solvable lattice models. Specifically, we follow the methods of Albertini 

et al. [ 13] for the classification of transfer matrix eigenvalues. We then extend the 
methods of Kltimper and Pearce [9] to calculate analytically the finite-size corrections 

to all eigenvalues in the leading band. 

To demonstrate our method we derive conformal partition functions for the tricritical 

hard square model with fixed boundaries, thus confirming the predictions of Saleur and 
Bauer [ 18] based on Coulomb gas calculations [ 19-21]. The model has been chosen 
as the simplest non-free-fermion model, whilst the fixed boundaries have been chosen 
to give the simplest possible classification of the leading band of eigenvalues. 

This paper is organized as follows. In the next section we introduce Baxter's tricritical 
hard square model with fixed boundaries, and give a functional equation satisfied by 

the row transfer matrix. In Section 3 we define the conformal partition function for 
cylindrical geometries. Sections 4 to 9 are devoted to solving the functional equation to 

obtain the conformal partition functions. These six sections correspond to the indepen- 

dent choices of boundary, and each yields one of the six c = 7 Virasoro characters in 

its fermionic representation [ 16]. We conclude with a brief discussion. 

2. The tricritical hard square model 

Baxter's hard square model is a gas of interacting hard-core particles on the two- 
dimensional square lattice [22-24].  Each site of the lattice carries a spin/z which can 
take the value 0 or 1. Spins on adjacent sites must satisfy/~/~t = 0, so that allowed spin 
configurations correspond to configurations of hard-core square particles rotated by 45 ° 
with respect to the lattice. Adjacent particles interact, with partition function 

~(L,M,z) = Z zNeLNI+MN2' (2.1) 
particle 

configurations 

where N is the number of particles, N1 the number of adjacent particles in the NE-SW 
direction, and N2 the number of adjacent particles in the NW-SE direction. Baxter 
has shown the model to be integrable on the manifold z = ( i  - e - L ) ( 1  - e - M ) ~  
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(e L+M - e  L - e M ) .  The phase diagram of the hard square model has been discussed by 

Huse [25], who showed that on a particular line of the solvable manifold the model 
becomes tricritical. 

A convenient reformulation of the model is given by the four-state Andrews-Baxter- 
Forrester model [26]. In this representation, sites of the square lattice take heights from 

the set { 1,2, 3,4} subject to the condition that the values of heights on adjacent sites 
must differ by 4-1. When the heights 1 and 4 are identified with/.t = 1 and the heights 
2 and 3 with/z = 0, the allowed lattice configurations reproduce the hard square model. 

The Boltzmann weights of the tricritical hard square model in the ABF formulation are 

w ( d  ; )  s i n ( A - u )  sinu (S~Sc'~ '/2 
a - s~n~ ~,,c + ~ \S / - -~J  ~h,,l, (2.2) 

where A = gT"r and Sa = sin(aA). The parameter u lies in the range 0 < u < A, with the 

point u = ½A corresponding to L = M. 
Since the weights satisfy the Yang-Baxter equation [23], they ensure commuting 

transfer matrices on a periodic lattice. On a lattice with boundaries it is necessary to 
introduce left and right boundary weights which satisfy reflection equations [27,281. 

Such weights have been obtained in Ref. [29], and for our purposes we select 

f a ~ S,,±l ,/2 sin(A - u ± go)sin(A - u  z~ aA T ~) a + l  j -- ( -U, , )  K 
a sin ~/l 

K ( a + l  a ) ( S a + l )  1/2 
a = T (2.3) 

The parameter ( is restricted to the range ½ A < s c < A, but is otherwise arbitrary. 
We use the face and boundary weights to construct a (double-row) transfer matrix 

T [29]. For a lattice of width N, the entry of T corresponding to rows of heights 
a = {a, . . . . .  aN-, } and b = {b, . . . . .  bu - ,  } is defined diagrammatically by 

r. . . r  bl  b2 b N - i  s S 

r ( u ) a , b  = c Zo c co ~'1 c2 ON-, cu , (2.4) 
. . . . .  iv U U 

F F a I a2 (2 N -- 1 S S 

where the triangles and squares represent the boundary and face weights respectively. 

The adjacency condition on the heights of the model can be encoded in the 4 x 4 

incidence matrix A with entries Aj, k = 81J-kl,1. The dimension of T is then simply 
expressed in terms of A N a s  

_ N d i m T -  Ar,.,.. (2.5) 

In Ref. [29], a functional equation for T(u) has been obtained. By defining a nor- 

malized transfer matrix 

t (u)  = ( - l ) S a r ( u  - ( )  Cr_r(U + ~) ~(u)  y2(u) T(u) / y t (u )  y3(u) (2.6) 
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this equation takes the simple form 

t(u) t(u + a) = I + t(u + 3a). (2.7) 

In this normalization we have used the definitions 

2 N  

Tk(u) = (--1) N ( s in (u  +kA)  ) sin2(2u A) 

\ sin A _ , /3(u) = sin(2u - 3A) sin(2u + A)' 

sin ,~ sin(u + (3 - a),~) sin(u + (1 - a ) a )  aa(u) = (2.8) 
sin u sin(u - A) sin(u + 2A) 

The arbitrary factor of ( - 1 )  s in Eq. (2.6) has been included so that Eq. (2.7) takes a 
form independent of s. 

Before we actually solve the functional equation (2.7) in later sections, let us note 
one property of the eigenvalues of t which follows directly from the weights (2.2) and 
(2.3). Using these weights it follows that 

• . . d 

l i m  ~ e - 4 i u  ~ ac : lira pe -2iu ~ c  ~bd, (2.9) 
iu---~:x3 iu----~oo " 

g 

a a b 

with p-1 = -4exp(i,~)sinZA, and we conclude that t(u) is diagonal in the limit 

iu --~ exp. If we N times apply (2.9) to the transfer matrix and then use 

lim Z e  -2iu ~ = - 2 p c o s ( a , ~ ) ,  (2.10) 
iu  ----~ C,c~ 

g 

a a 

we find 

( - 1 ) , +  1 
lim t(U)a,a = lim (peZi,)u+l T(u)a,a = ( -1 ) '+1 2 co s ( s a ) ,  (2.11) 

i u - - - ~  i u - - - * ~  

independent of a. The fact that only the two values 2 cos A = ½ ( 1 + v/5) and 2 cos(3a) = 
½ (1 - v~)  occur can be understood by taking the limit iu --, cx~ in the functional 
equation (2.7). We will need the result (2.11) in Sections 4 to 9. 

3. Conformal properties of the tricritical hard square model 

We here briefly recall some of the properties of the tricritical hard square model with 
fixed boundaries as predicted by conformal invariance. Consider the finite-size partition 
function ZNM of the tricritical hard square model on a cylindrical lattice of width N and 
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Fig. 1. Fixed boundaries on the square lattice. Unlabelled sites are free. 

Table 1 
Grid of conformal weights /1~ s = ~ [(5r  - 4s) z - 1 ] for the unitary minimal theory with c = 7 

' I l l  " 

S 

4 3/2 7/16 0 

3 3/5 3/80 1/10 

2 1/10 3/80 3/5 

1 0 7/16 3/2 

1 2 3 r 

circumference M. The asymptotic behaviour of  ZNM in the limit of  large N and M with 
the ratio M / N  fixed is given by 

ZN~(U) = Tr(T(u)  M) ~ e x p ( - N M  fb(u)  - M L ( u )  ) Z (  q). (3.1) 

Here T is the row transfer matrix, fb is the bulk free energy, f,~ is the surface free 

energy, and Z ( q )  is the universal conformal partition function with modular parameter 

q = exp ( -27"r sin(5u) M / N ) .  ( 3.2 ) 

To leading orders, each transfer matrix eigenvalue T(u)  reads [30] 

lnT(u)  = - -N fb (u )  -- f s ( u )  + - ~  ( ~ c  - A -- n) sin(5u) + o , (3.3) 

where c = 7 is the central charge, A is one of  the conformal weights in Table 1, and n 

is a non-negative integer which is zero for the largest eigenvalue. After taking the ratio 
of  each eigenvalue with the largest, we can write 

3 2 3 2 

k=l t=l i ~=l t=l 

with Af(Ak,t) = 0 or 1 and Xk,I one of  the c = 7 Virasoro characters. 

The operator content .Af(Ak,t) is determined by the particular choice of  boundary 

conditions on the cylinder [31,18].  For a lattice with the boundary conditions (r, s) 
depicted in Fig. 1, Saleur and Bauer [ 18] have used Coulomb gas techniques to calculate 
./V'(Ak,I) = 6~,~6t,.~, so the conformal partition function is given by 

Z ( q )  = Xr,s(q). (3.5) 

Returning to the transfer matrix defined in Eq. (2.4), observe that we have chosen 
our boundary weights (2.3) to correspond to the lattice in Fig. 1. Every second site on 
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the right boundary is fixed to the same height s, and the remaining right boundary sites 

are freely summed over. Furthermore, at the point u = ,~ - ~: we have 

K( r ) ( ) r + l  4=0, K r r - 1  = 0 ,  (3.6) 
/" F 

so that near this point the left boundary condition effectively becomes that of  Fig. 1. 

4. The character /]['1,1 

We first study the spectrum of  the transfer matrix T(u) for a lattice of  width N 

and boundary heights (r, s) = (1, 1), as defined by Eq. (2.4). The adjacency condition 

implies that N must be even. We begin by classifying the zeros of  the eigenvalues of  
T(u ) ,  and identifying the characteristics of  those eigenvalues in the leading band as 

N --~ cx~. This allows us to compute the order-N, order-1 and order-1/N behaviour of  

all eigenvalues in that band, and we will see that the conformal partition function is 

given by Z(q) = Xl,l (q).  

4.1. Classification of zeros 

From numerical diagonalization of  T(u) we are able to classify all eigenvalues ac- 

cording to their zeros in the complex plane. For each eigenvalue we find that - apart 

from a pair of  zeros at u = A + ~: and u = 5A - ( induced by the left boundary weight 

- the zeros of  the eigenvalues occur on certain fixed lines. Specifically, two types of  

1-strings and two types of  2-strings occur. A 1-string is given by a single zero uj such 

that 

= { ½ A '  type 1, 
Re(u  j)  3,L type 2. (4.1) 

A 2-string is a pair of  zeros (uj,u}) with equal imaginary part and 

{ ( -~ ,~ ,  ~A), type 1, (4.2) 
(Re(uj),Re(u))) = ( 2 a , 4 a ) ,  type 2. 

Distributions of  zeros for two typical eigenvalues of  T(u) for N = 16 are depicted in 

Figs. 2 and 3. We note that for finite N the 2-strings do not fall precisely on the lines 

given in Eq. (4.2), but that this deviation vanishes as N increases. 
Due to the crossing symmetry T(u) = T(A - u), each string occurs with its complex 

conjugate. We further observe from our numerics that only the exceptional zeros at 

u = A + ( and u = 5A - s c occur on the real axis. Hence, given an eigenvalue, we can 
denote the number of  strings as follows: 

2ml = number of  1-strings of  type 1, 2nl = number of  2-strings of  type 1, 

2m2 = number of  1-strings of  type 2, 2nz = number of  2-strings of  type 2. 
(4.3) 
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-" • • 

Fig. 2. Zeros of a typical eigenvalue of T(u) in the complex u-plane. 

~ . . . .  
• : i • * 2~ 3k 4~" 

Fig. 3. Zeros of another typical eigenvalue of T(u) in the complex u-plane. 

Since each eigenvalue of  T ( u )  has 2N + 2 zeros, we have the completeness relation 

ml + m2 + 2nl + 2n2 = N. (4.4) 

In addition, we observe the relation 

l (4.5) m2 + ?12 = ~mt ,  

so that both ml and m2 are even (recalling that N is even). These two equations may 
be recast in the more familiar form of an (m,n) - sys tem [32] 

m + n = ½(Nel  + Z m ) ,  (4.6) 

where m = (ml ,m2) ,  n = (n l ,n2) ,  el = ( 1 , 0 ) ,  and 2- is the A2 incidence matrix with 

entries Zhk = ~l./-kl,l" 
For each system size, we find that there are many eigenvalues with the same string 

content ( m , n ) .  These eigenvalues are distinguished by the relative orderings of  the 

strings of  type 1, and the relative orderings of  the strings of  type 2. Denoting the 
imaginary parts of  the l-strings of  type j by 0 < ul j) < < v (j), and the imaginary 

• " • mj 

parts of  the 2-strings of  type j by 0 < wl j) < . . .  < w~j ~, we see that in Fig. 2 
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(1) w~l) v~l) V~l), 0 < w l l )  < w2 < < ull) < < . . .  < 

(2) v2(2), (4.7) 0 < wl 2) < v I < 

whereas in Fig. 3, which has the same string content, 

( ') W~ 1 ) W~ 1) < <4"<  < 4 " < 4 " < 4 " ,  

w?' 4 0 < U  1 <~ < (4.8) 

Clearly, the total number of  possible orderings for a given (m,n) is (m~+a] (m:+n2' I 
\ nl I / \ /112 i "  

Summing over all allowed string contents (m,  n) using (4.6) then gives 

E (ml+nl)  (m2+n2~=A~,l' (4.9)  
ml even k, ml k, m2 / 
m2 even 

which as we see from Eq. (2.5) is indeed the correct number of  eigenvalues. 

4.2. Characterization of leading eigenvalues 

Having classified all eigenvalues of  T, we would like to calculate the order-1 /N 
corrections to the leading band. The eigenvalues in this band are obtained as follows. For 

an arbitrary system size N --- No, consider a pattern of  zeros labelled by mt, me, nl and 
n2. Now increase N, keeping ml, m2 and n2 fixed. From the completeness relation (4.4) 
we see that the number of  2-strings of  type 1 must grow linearly with N. In addition, 

~ .  ( l ) l m  I r ( l ) l n  I we keep fixed the relative ordering between tuk lk=~ and lwk lk--i and the relative 
r (2 )  l n 2  ordering between {v~2)}~1 and t~,k Jk=l" We also specify that the 2-strings of  type 1 

added as N is increased all have imaginary parts less than " (1) (l , mln{v I ,w I ) v12),w(12)}. 

To obtain the leading band of eigenvalues in the thermodynamic limit we must finally 
take No ~ oo. 

The process of  adding 2-strings of  type 1 has the effect of  pushing the original zeros 
away from the real u-axis. We observe from our numerics that this growth is logarithmic, 
and that the limits 

y~.i) = lira (5v~ i) - I N N ) ,  z~ j) = lim (5w~ j) -INN), (4.10) 
N--*oo  N---*oo 

are well defined. 

4.3. Free energies 

Before calculating the o r d e r - l / N  corrections to the leading band of eigenvalues, we 
need to determine the order-N and order-1 contributions. Because all of  the zeros except 
those on the lines Re(u)  = -½/ l  and Re(u)  = ~ l  are pushed to infinity logarithmically 
with N, these contributions are the same for all eigenvalues in the leading band. 

Since the number of  zeros on the lines Re(u)  = - ~ , t  and Re(u)  = 3~l grows linearly 
with N while their extent grows logarithmically, these zeros become dense. Hence in the 
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1 3 thermodynamic limit we consider two distinct regions of  analyticity, - :  A < Re(u)  < : '1 
and 3~ < Re(u)  < 9,t. 

Up to this point our discussion has pertained to the transfer matrix T. We now want 
to use the functional equation (2.7) for the normalized transfer matrix t, so we have to 

consider additional zeros and poles introduced by the normalization factors in Eq. (2.6). 
The ratio of  functions y~(u)  induces poles of  order 2N at u = 2'1 and u = 4'1 and a 

zero of  order 2N at u = 3'1. Likewise, the function /3(u) induces poles of  order I at 
I 3 It = --~.A, U = 7'1' U = 2'1 and u = 4'1, and zeros of  order 2 at u = ~'1 and u = 3'1. 

Finally, the product al  (u - ~) a - l  (u + ~:) implies poles of  order l at u = '1 + c and 

u = 5A - ~:. Note that these last poles of  order 1 cancel the anomalous zeros on the real 
axis induced by the boundary weight. 

Writing an eigenvalue of  t as t, we isolate the order-N and order-1 behaviour, 

t(u) = f (u)  g(u) l(u), (4.11) 

where the functions f and g are defined by 

[f(u)]I/N= lim [t(u)] 1/N, g(u) = lim t (u ) / f (u ) .  (4. t2) 
N ~ c:xD N ---* o~ 

The order-N behaviour of  the functional equation (2.7) is then [9,33] 

f (u )  f ( u  + A) = 1, (4.13) 

I 1 3 7 for - 7 A  < u < 7'1 or 7'1 < u < :A. The solution of this equation in accordance with 

the order-N analyticity is 

= { 1, - -1a  < u < 3A, (4.14) .f(l~) cotZN(~u), 3'1 < u < 9'1. 

This solution in turn implies the order-1 functional equation 

g(u) g(u + A) = { 1, -½A < u < ½a, 
2'1 (4.15) 1 + g ( u - 2 A ) ,  3 3 . < u <  2 • 

I 3 In the interval - U t  < u < 7,t, the solution in accordance with the order-1 analyticity 

is given by 

g(u) = - tan2(Su - 5)" (4.16) 

The solution inside 3A < u < 9'1 can be obtained similarly, but will not concern us as 

it does not enter the calculation of  the order- 1/N corrections. 

4.4. Computation of the order-1/N corrections 

For convenience, we start by selecting a line of  constant real part within each of  the 

two strips in the u-plane. For the functions t, f ,  g and l, it is then natural to define 

hi(x) = h ( ½ a +  ½ix), for I Im(x) l  < ~r, 
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h2(x) = h(3,~+ ½ix), for jim(x)[ < 3~r, (4.17) 

as well as 

H l ( x ) = l + h l ( x ) ,  H 2 ( x ) = l + h 2 ( x ) .  (4.18) 

Substituting (4.11) into the functional equation (2.7), and using Eqs. (4.13) and (4.15), 
we obtain 

l l ( X -  ½izr)/l(x + ½ivr)= T2(x), 

12(x - ½iTr)12(x + ½izr) = T~ (x) /G~ (x) .  (4.19) 

For a given eigenvalue of string content (m, n), the function l j (x )  has m.i pairs of zeros 
inside the strip I Im(x)[ < or. Hence 

mj 

l j ( x )  I l c o t h [  ½(5v~ j) - x)] coth[ ½(5v~ j) + x ) ] ,  for j = 1,2, (4.20) 
k=l 

is free of poles and zeros inside this strip. Taking the Fourier transform of the logarithmic 
derivative of Eq. (4.19) thus gives, for I Im(x)[ < 7r, 

Ill1 

In l , (x)  = Z ln(tanh[ ½(5v~') - x)] tanh[ ½ (5vk (') + x)])  + k * In T2(x) + DI, 

k=J ( 4 . 2 1 )  

//I 2 

In 12(x)= Z ln(tanh[ ½(5v~ 2 ) -  x)] tanh[ ½(5v~ e) + x)])  + k * ln(T1/Gl)(X)  
k=l 

+D2, (4.22) 

where f ,  g denotes a convolution and the kernel k is 

1 
k ( x )  = 2zrcoshx" (4.23) 

Before we can determine the integration constants D1 and D2, we have to fix the branches 
of the logarithms of ll and 12. We first observe from numerical diagonalization of T(u)  
that the complex function l j ( x  -- i ~ ) ,  where e > 0, winds !m. times around the origin 2 ./ 
anticlockwise as x increases from zero to infinity. An example of this winding is given 
in Figs. 4 and 5. In selecting branches of lnlj, we regard l j (x )  as l i m e - . o l j ( x -  ie). At 
each point x = +5vk (j) the real function l j (x )  changes sign. We specify that between x = 
+5vlY) the logarithm corresponds to the principal branch, so that for k = 1 . . . . .  mj - 1 

0, 
(J) ( 4 . 2 4 )  I m ( l n l j ( x ) )  = l i m l m ( l n l i ( x  - ie)) = kTr, < x < ~vk+ l, 

~-~o " mjzr, 5v,(i~ ) < x. 

We note that this definition also implies that Im (ln l.i (5v~ j) ) ) = (k - ½ ) zr. 
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-2E 

Fig. 4. The function 11 (x - ie) in the complex plane between x = 0 and x = oc, corresponding to the 
eigenvalue depicted in Fig. 2. As x increases, the function winds anticlockwise. 

0.1~ 

0.004 

Fig. 5. Magnification of Fig. 4 in the vicinity of the origin. The total of six intersections with the imaginary 
axis corresponds to tnl = 6 in Fig. 2. 

We are now able to determine DI and D2, but it is convenient first to take the scaling 
limit. Guided by the function f2,  which behaves as 

lim f2(x + In N) = exp(-4e-X),  (4.25) 
N~e,o 

we assume the general scaling forms 

h ( x ) =  lim h(x+lnN).  (4.26) 
N----~oo 

It will be important later to note that 

lim ~t(x)= lira h(x), lira h ( x ) =  lira lim h(x), (4.27) 
. r ~  x----* ~ . r ~ - - o o  x - - -* - -  o o  N - - , o o  

as may be explicitly verified for the function ./2. 
N o w  taking the scaling limit of  (4 .21)  and (4 .22)  gives 

m 1 

In/', (x )  = Z ln(tanh[ 1 r,~,,.rk(l) _ x ) l )  + k * In ~ 2 ( x  ) , (4 .28)  
k=l 

nl2  

l n h ( x )  - 4 e  -x  +~- -~ ln( tanh[½" (2) = tYk - x) ]) + k * In f'l (x). (4.29) 
k=l 

To obtain these expressions we have used the factorization (4 .11) ,  Eqs. (4 .10)  and 
( 4 . 2 5 ) ,  the  p r o p e r t y  
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O 0  

(k * In H ) ( c ~ )  = l nH(c~)  / k(y) dy = ½ lnH(cx~) (4.30) 

--(3<) 

and the limits x --~ oo of Eqs. (2.7), (4.13) and (4.15). From these and Eq. (4.24) 
we have D1 = D2 = 0. 

We now return to the calculation of the finite-size corrections and express the order- 
1/N contributions to In 11 in terms of scaling functions. Taking the first term on the 
right-hand side of Eq. (4.21), we use Eq. (4.10) to write 

nil  ni l  

i 5 (1) 4 l ( 5 v ~ ' ) - x ) l t a n h [ 5 (  v, + x ) l ) = - ~ c o s h x Z e - Y : " + o ( l ~  S-',_.., In (tanh [ ~ \ N/" 
k=l k=l 

(4.3 1 ) 

Next we consider 

0(2 

k * In T2(x) = / [ k ( x  - y) + k(x + y) ] lnT2(y) dy 
d 

o 
O 0  

= / [ k ( x - y - l n N )  + k ( x + y + l n N ) ] l n T 2 ( y + l n N ) d y  
J 

--|nN (4.32) 

and assume that this can be replaced by 

OO 

2 coshx fe -Y lnT2(y)  d y + o ( 1 )  (4.33) k * lnT2(x) = 7r--N 
- - O G  

This assumption can be verified explicitly when T2 is replaced by 1 + ]'2. Hence, 
combining Eqs. (4.21), (4.31) and (4.33), we have to leading order 

4 m, l J  ] 
In Ii (x) = -- ~ cosh x [ Z  e-y~" 2~ e -y In ~?2 (Y) dy . (4.34) 

t. k = l  
- o o  

We now rewrite this expression by manipulating the functional equations (4.28) and 
(4.29). Evaluating (4.28) at x = y~2) _ ½iT'r and (4.29) at x = y~l) - ½iT"r gives 

j /t~l 
I In 7~2 (y) d y -  i E In(tanh[ ½(y~l) - y ~ 2 ) +  liT.r) ]) 

0 = ~ sinh(y~ 2-----5-- Y) t=l 
- - 0 0  

+ i In/'l (y~2) _ ½iTr) (4.35) 

and 
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, 

Fig. 6. The function t2(x - ½i~) in the complex plane between x = 0 and x = oc, corresponding to the 
t l )  eigenvalue depicted in Fig. 2. As x decreases from infinity to w I > 0, the argument of the function decreases 

by a total of (2ml + 2nl - 1 )~r = 17~r. The function q (x - ½irr) behaves similarly, but with a total decrease 
in argument of (2m2 + 2n2 - 1 )Tr = 5~r. 

in 7~1 ( y )  m2 
= __1 f dy  - i ~ -~  l n ( t a n h [  1"5ty,(2) -- V~ 1 ) -  . + ½iJr) ] ) 4e-Y'~ 1} 

2~" s i nh (y~  1) - Y) t=l 
--OO 

+ i ln / '2 (y~  l/ - ½i~r). (4. :36) 

T h e  s c a l i n g  l imi t  o f  the  func t i ona l  e q u a t i o n  ( 2 . 7 )  i m p l i e s  that  

/, (y~2) _ 1i77.) = ~,l (Z(2) _ l i ~ .  ) = - 1 ,  

t '2(y~ 1) - -  ½i~)  =t2tZ  k : ' "  (1) --  ½i~') = - -1 .  ( 4 . 3 7 )  

W e  n o w  d e t e r m i n e  the b r a n c h  o f  the  l o g a r i t h m  at the  p o i n t s  ~ j ( y S  ) - ½i~-), w h e r e  

f = 3 - j .  D e c r e a s i n g  x f r o m  inf in i ty  in the  func t ion  ~ / (x  - ½i~') ,  w e  e n c o u n t e r  the  

mj ,  + n j, p o i n t s  at w h i c h  /'j = - I .  B e t w e e n  succes s ive  e n c o u n t e r s  ~/ d e c r e a s e s  its 

a r g u m e n t  by  2¢r, a p r o p e r t y  w h i c h  can  be  o b s e r v e d  n u m e r i c a l l y  for  tj as in F ig .  6. 

S i n c e  Eq.  ( 4 . 2 4 )  i m p l i e s  I m ( l n ~ / ( o c ) )  = mjcr, we see that  

In/ ' ,  (y~2) _ ½icr) = ( 2 k  + m, - 2m2 - 1 - 21~2))i¢r ,  

In/'2 (y~ ' )  - ½ i~)  = ( 2 k  + m2 - 2m,  - 1 - 21~1))i¢r ,  ( 4 . 3 8 )  

.C/) y~J) l~J, w h e r e  I~ j)  is the  n u m b e r  o f  Zl (j) grea t e r  than  y~J). Since  Yk+l > , the  in tege r s  

mus t  sa t i s fy  

n.i ~ l{J) ) l~ j) >/ >/1 (j) ) O. ( 4 . 3 9 )  
" " " nlj 

I f  we  n o w  s u m  Eq.  ( 4 . 3 5 )  f r o m  k = 1 to m2, Eq.  ( 4 . 3 6 )  f r o m  k = 1 to ml and  use 

the  r e l a t i on  

l n ( t a n h (  ¼iTr + x ) )  + l n ( t a n h (  JiTr - x ) )  = iT"r, ( 4 . 4 0 )  

we  a r r ive  at  
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. q  2 m j [  1 j In i?j (y) dy] (4.41) 
4 ~ e_y~,, ½mCm + Z Z 2I~i) + ~ sinh(y~j) _ y) 
97" k = l  j = l  k = l  - o o  

where C is the A2 Cartan matrix with entries given by Cj, k = 2fij,~ - 61J_kl,1. Substitut- 
ing (4.41) into Eq. (4.34) gives 

2 mj oo (½ i f  ln~.(y) dy] ln/l(X) = - ~ c o s h x  mCm + 21~ j) + ~ sinh(y~j--------S~y ) 
j = l  k = l  - 0 0  

2 f e-Yln~2(y)dy) (4.42) 
77. 2 

--0<3 

It remains to evaluate the integrals in Eq. (4.42). Following Ref. [9], we consider the 
quantities 

o o  

Sj= / ([ln~i(x)l'lnT"j(x)-ln~j(x)[lnTj(x)]')dx, f o r j  = 1,2. 

-oo (4.43) 

On the one hand we can use the explicit expressions for ln fj given in Eqs. (4.28) 
and (4.29) to write 

S, + $2 = 8 e -x lni82(x) dx-  iTrmj ln~j(oo) + 2 Z sinh--Ty(---j- ~ 
_ ~  j = l  t. k = l - - o o  

(4.44) 

where due to the symmetry k(x) = k(-x) all terms involving the kernel have cancelled. 
On the other hand, we can change integration variables in Eq. (4.43) to evaluate Si 

directly. Dividing the line of integration into the mj + 1 intervals between - o c  < yl ./) < 
< v ( j )  < 0(3, we note that for all k = 1, mj - 1, 

• " " J n t j  • • • , 

r ( J )  
- k 4 1  

f ([ln fj(x)l'lnT"j(x)-ln~j(x)[ln~j(x)]')dx 
VlJ I 
-k 

f ( l n ( l + x )  lnx+i~k) dx=O. (4.45) 
x 1 +  

- Ij 
t j ( 3 k  ) 

Hence we are left with 
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o i:(oo) 
S,= (In(l+X)x l~xjlnx ~ dx+ /" (ln(I;x)_ Inx+i~m") 

i:(-oo) o 
6(~o) 
f ( l n ( l + x )  lnx "~ 

= x f ~ x /  dx -iTrmj lnT~j(cxD). (4.46) 
~,(-oo) 

From Eqs. (2.11), (4.14), (4.16) and (4.27), we obtain the limits 

[l(~c) =/`2(oc) = 2cosA, ?j ( - o o )  = g l ( - o c )  = 1, 

/ '2(-:)c) = f e ( - o c )  = 0, (4.47) 

which give, using the values of the Rogers dilogarithm in the appendix, 

2 
Sl +S2+iTrEm. /  lnTj(c~) =4L(2c-~sa) - 2 L ( I )  = VTr2. (4.48) 

j=l 

Equating (4.44) and (4.48), we finally arrive at 

1 2 "'s In Tj (x) 
7r -~2 e_Xln~2(x) dx + . ~ 2  E Z  sinh(v~j)__ dx -- 12~6"7 ( 4.49 ) 

_ ~  ./=1 k=l 

Substituting Eq. (4.49) into Eq. (4.42), then recalling Eq. (4.17), we have 

2 mj 
2 7 r s i n ( 5 u ) [ 7 - 1 m C m - Z E , ~ / ) ] .  (4.50) 

Inl(u) = -~- i=1 k=l 

Since ml and m2 are even, the "minimal" solution of Eq. (4.6) is ml = m2 = 0. Thus 
comparison of (4.50) with Eq. (3.3) shows that c = 7 and A = 0, and hence that the 
integer n is to be identified with 

2 mj 
n = ¼mC m + - -~  --)_£ I~ "/) . (4.51) 

.i=l k=1 
From Eq. (3.4) we see that to calculate the conformal partition function Z(q) we 

must sum over q". From Eq. (4.51), this amounts to summing over all allowed values 
m and 1~/). We first perform the sum over 1~ -i) using the restrictions (4.39) 

lIJl nj 111 ) mj 1 

, 'J) . . . . .  , (J )[nI j~-Hj]  (4.52) 

l,.j =0 

Here the q-binomial coefficient is defined by 

[ m + n  l m  = {  o,(q)m+n/(q)"'(q)"' otherwise,m'n>~0' (4.53) 
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with (q)m = (1 - q )  " "  (1 - q m )  for m/>  1 and (q)0 = 1. Now summing over m gives 

ZNo(q)=q -~4 Z q¼mCmfm'+nl][m2+n21 , (4.54) 
nq even ml L m2 
m2 even 

with m+n = ½ (Noel +Zm). Following our description of  the leading band of  eigenvalues 
in Section 4.2, we take No ~ oo to obtain 

q~mCm[lmll(q)ml L m2 Z ( q ) = q - ~  Z = X l . l ( q ) .  (4.55) 
nil even 
I712 even 

Thus we see that the conformal partition function for the (r,s) = (1 ,1 )  boundary 

condition is the XI,I (q) Virasoro character, and that it arises naturally in its fermionic 

representation [34].  

5. The character XL2 

We next consider a lattice with boundary heights (r, s) = (1 ,2 ) .  We will see that 

the main difference in comparison to the (1, 1) boundary occurs in the classification of  

the transfer matrix eigenvalues, and we find the conformal partition function Z(q) = 
X1.2(q). 

5.1. Classification of zeros 

Our numerics show that the zero patterns of  eigenvalues of  T with the (1 ,2 )  boundary 

condition are qualitatively the same as those with the (1, 1) boundary condition. That 

is, the same four string types occur, and the same zeros on the real u-axis are induced 

by the left boundary weight. Therefore we again define (re, n) by Eq. (4.3). The 

difference between the two boundary conditions lies in the orderings of  the strings 

of  type 1. Previously, given a string content (ra,n), eigenvalues corresponding to all 
(m,+.~) orderings of  strings of  type 1 were seen to occur. In this case, however, we 

1711 1 

observe that for certain string contents, the 1-string of  type 1 furthest from the real 
u-axis is "frozen", so that no eigenvalue occurs with c.(,l ) < w~l). Hence for these 
contents, only (m~+.,-l~ orderings of  the strings of  type 1 are permitted. 

k m l - - I  ) 

To treat both cases simultaneously, we introduce a variable o" = -t-1, with cr = 1 for 

contents with a frozen l-string, and o- = - 1  for the other contents. We then find that 
the strings satisfy the (m, n)-system 

m l q - n l = l ( N + m 2 + o ' ) ,  m e + n z = l ( m l - o ' ) .  ( 5 . 1 )  

Since N is odd, this implies that ml is odd and m2 is even. Using (5.1), the total 
number of  eigenvalues is correctly computed to be 
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Z Z ( m l + n l - ~ ' ~ ' l ' ~ ( m 2 + n 2 ~  =AN 
,~ ,n: oda \ mi - ~c~,l J \ m2 / 1,2' (5.2) 

m2 even 

5.2. Computation of the order-1/N corrections 

As the order-N analyticity is independent of  the choice of  boundary conditions, 

the solution of the functional equation (4.13) for f is once again given by (4.14).  
The order-I analyticity, and hence the solution of Eq. (4.15) for g, does depend on the 
boundary conditions, but in this case it is unchanged from the description of Section 4.3. 

Thus the function g for the ( ! , 2 )  boundary is again given by Eq. (4.16).  
Recalling the definition of lj from Eqs. (4.11) and (4.17),  and proceeding with 

the Fourier transformation as performed in Section 4.4, we again obtain Eqs. (4.21) 
and (4.22).  Examination of  the winding of the function l j (x  - ie) shows the same 

behaviour as before, and we choose branches of  the logarithms in accordance with 

Eq. (4.24).  Now taking the scaling limit of  (4.21) and (4.22),  and again using the 
limits x--~ ~ of Eqs. (2.7),  (4.13) and (4.15) in conjunction with (4.10) and (4.24),  

we obtain 
nil 

In/'1 ( x ) =  ~--] ln(tanh[ ½(y~'> - x)1) + k* In 7~2(x), 
k=l 

1112 

l (2) In 7~1 (x) .  (5.3) l n [ - ? 2 ( x ) ]  = - 4 e  -x  + 5--~ln(tanh[:(Yk - x ) ] )  + k *  
k=l 

We note that since the limit limi,~oo t(tt)a,a in Eq. (2.1 1) is negative when s = 2, our 

signs inside the logarithms of  71 and 72 are such that 

I ra(In/ :  (cx:)) = m,or, Im( ln [ -~ '2 (oe )  ]) =m2rr  (5.4) 

are consistent with the parities of  ml and m2. 
Following the same procedure as in Section 4.4, we will use (5.3) to rewrite the 

order -1 /N term (4.34).  The crucial step, and the one at which differences between this 

and the ( l, 1 ) boundary case are evident, is the determination of In i'l (y~Z) _ ½iTr) and 
ln[-F2(y~ 1) - ½i0"r)]. When o- = - l ,  the behaviours of  tl ( x -  ½iTr) and t2(x - ½irr) 

are given respectively in Figs. 7 and 8. When o" = l, the qualitative features of  the two 
plots are interchanged. In each case the arguments are decreasing as x decreases from 

infinity, but we see that in Fig. 7 the function first passes through the point - l with the 
same argument as at x = ~ ,  while in Fig. 8 the function's argument has decreased by 
2rr at thc corresponding point. Recalling Eq. (5.4),  we therefore see that 

l n ~ ,  ( y ~ 2 ~  _ ½ i ~ r )  = ( 2 1 ,  + m ,  - 2 m 2  - -  o-  - 1 - -  2 1 ~ 2 ~ ) i ~  -,  

In[ t'2(y~ 1) -  ½iqr)] = (2k + m 2 -  2ml + o r - - 1  - 21~1))i77 , (5.5) 

where 1~ i) is the number of  the z/j) greater than y~.i). The integers 1~ j) again satisfy 

the restrictions (4.39),  but with the additional restriction 1,:,] ) = 0 when o-=  1. 



790 D.L. O'Brien et al./Nuclear Physics B 501 [FS] (1997) 773-799 

I 

0.5 

-1 -().5 

Fig. 7. The function tl (x -- ½i~') in the complex plane between x = 0 and x = o~. As x decreases the winding 
is clockwise. 

Fig. 8. The function t2(x - ½i~) in the complex plane between x = 0 and x = oo. As x decreases the winding 
is clockwise. 

With the branches of  the logarithms in (5 .5) ,  the manipulation of  (4.21) leads to the 

expression 

l n l l ( X )  = _7"r coshx(½mCm - (ml - m 2 ) o  
N l 

2 mj [ l j lnT~j(y) dy] 
+ Z ~ 21~ j) + ~ sinh(y~./-----S~ y)  

. /=1 k = l  - - o o  

o o  

2 / e -Y ln~2(y )  dy) (5.6) 
,w 2 

- - o o  

This corresponds to Eq. (4.42) of  Section 4.4. As in that section, we evaluate the 

integrals in Eq. (5.6) by considering 

2 

f ([ln?i(x)]'ln~j(x)-ln[-t-Fj(x)][In~j(x)]')dx. (5.7) 
./=1 -c~ 

Substituting the expressions (5.3) for In 71 and ln[-?2] leads once again to Eq. (4.44). 
Equating this to the expression obtained by changing variables of  integration and using 



D.L. O'Brien et al./Nuclear Physics B 501 [FS] (1997) 773-799 79 I 

the limits 

~ l (ec)  = / ' 2 (oc )  = 2cos (3A) ,  /'l ( - e c )  = 1, / ' 2 ( -oc )  = 0 ,  (5.8) 

we arrive at 

1 2 mj In Tj ( x )  

~--~2 e -x  In ir2(x) dx + ~ Z ~ sinh(y~j)-- -- x) dx 
--'co j=l k=l 

'[ ] = - 4 r r 2  4 L ( - 2 c o s ( 3 ~ I ) )  + 2 L ( ½ )  - 120"7 (5.9) 

Now substituting (5.9) into Eq. (5.6),  we obtain 

2rr [ 2 n,~ q 
ln l (u )  = - - -~-  s in(5u)  [2@0 + ¼mCm- ½(m,- m2)o- + Z X--" I ~i11 / _ .  k j .  (5.10) 

.j=l k=l 

The minimal solution of  Eq. (5.1) is ml = 1 and rn2 = 0 with o- = 1, so in this case 
A = ~ and the integer n of  Eq. (3.3) is given by 

2 mj 
n = ¼ m C m  - ½ ( m , -  m2)o-+ ~ 1  'j} k • (5.1 l) 

j=l k=l 

Summing over all eigenvalues in the leading band gives, recalling the restrictions on the 

integers I (j} k ' 

ZNo(q) =q-~+a',2Z Z q¼mCm-½(n'-m2)'r [ml+nl --~°,ll [m2+'t2 ] 
(r ml odd 1/21 --  ~,~r,1 k m2 " 

nl2 even (5 .12 )  

Eliminating nj and n2 using Eq. (5.1),  we employ the standard q-binomial recurrence 

E:l I qmE m'l = m 1 + (5.13) 

to perform the sum over o-. We thus obtain 

ZNo(q)=q-~4+a~.2 ~_~ q¼mCm-½m, . (5.14) 
m~ even ml  L m2 
m 2 e v e n  

Finally, taking No ---+ oc gives 

q¼mCm-½n" [ ½ml I ( 5 . 1 5 )  Z(q) q -  ~+al.2 
- -  (q)n,, m2 ' 

BI  1 e v e n  
,ql 2 e v e n  

which is the XJ.2(q) Virasoro character [34].  
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6. The  c h a r a c t e r  X2,1 

6.1. Classification of zeros 

Under the boundary condition (2,  1) the zeros of  eigenvatues of  T again form the 

same four string types defined in Section 4.1. In addition to the strings, however, we 

find that some eigenvalues have zeros on the real u-axis. Such eigenvalues have either 

a single pair  of  zeros at u = 3A + a ,  or a single quadruplet of  zeros at u = 2A ± o~ 

and u = 4A + a .  The numbers a satisfy 0 < a < ½,< and are in general different for 

each eigenvalue. We make the crucial observation that if we fix a set of  eigenvalues for 

an arbitrary system size No, and increase the system size by adding 2-strings of  type 1 

in accordance with the description of  the leading band, then for each eigenvalue there 

exists a K such that o~ = 0 for all N > K. Indeed, we see that each pair of  real zeros 

becomes a 1-string o f  type 2, and that each quadruplet of  real zeros becomes a 2-string 

of  type 2. 

It is therefore clear that any zeros on the real u-axis should be interpreted as forming 

strings of  type 2. With this interpretation, and with the definitions of  Eq. (4 .3) ,  we 

observe that the strings satisfy the (m,  n) -sys tem 

m l + n l = l ( N + m 2 ) ,  m 2 + n 2 = l ( m l + l ) ,  (6.1) 

so that ml and m2 are odd. Using (6.1) we correctly compute 

E ( m l + n l ) ( m 2 + - n 2 )  =AN 
ml odd \ ml / \ m2 / 2,1" (6.2) 
m2 odd 

6.2. Free energies 

The order-N behaviour is, o f  course, the same as for the previous two boundary 

conditions,  but the boundary spin r = 2 induces different order-1 analyticity on the 

real u-axis. We see from Section 6.1 that in the limit N --~ ~ the eigenvalues of  

T in the leading band are free of  zeros on the real u-axis. However, the product 

O:'2 (U -- ~ )  O'_2(U q- ~ )  in the normalization (2.6) of  t now introduces zeros of  order 1 

at u = ~ - ,~ and u = 2A - s c, and poles of  order I at u = A - ~:, u = s c and u = 3~ -4- ( .  Of 

these points,  u = so-A,  u = A - s  c, u = ( and u = 2 A - (  fall into the strip - I A  < u < -~A. 

The zeros and poles of  f l  are unchanged, so the solution of  Eq. (4.15) inside this strip 

is now 

g(u) = tan2(~u - ~ )  t a n [ 5 ( u  + ( ) ]  c o t [ 5 ( u -  ~:)]. (6.3) 

It immediately follows that l imx-- ,+~ gl ( X )  = - -  1. 
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6.3. Computation of the order-1/N corrections 

The computation of the order-I/N corrections is very similar to that presented in 
Section 4.4. We need simply to replace ?l and ?2 by their negatives on the left-hand 
sides of Eqs. (4.28) and (4.29), and hence in Eqs. (4.35), (4.36) and (4.38). This is 
necessary for our choice of the branches of the logarithms of t'l and ?2 to be consistent 
with the parities of ml and m2. Once this change is made, the whole of Section 4.4 
from Eq. (4.17) to Eq. (4.42) holds for this boundary condition. 

Instead of the expression (4.43), we now consider 

2 oo 

Z / ([ln?j(x)]'lnT"j(x)-ln[-Fj(x)][ln~j(x)]')dx. (6.4) 
./=1 - o o  

The left-hand side of Eq. (4.49) is unchanged, but using the limits 

?1 (00) =?2(00) = 2cosA, ?l (-~x~) = - 1 ,  ?2(-cx~) =0,  (6.5) 

the right-hand side is replaced by 

1 F4L( I "~ +2L(1)] " = F6" (6.6) 47-r 2t. \ 2 c o s A /  

Hence in place of (4.50) we obtain 

ln/(u)  = ---2rr sin(5u) - 13-~o + ¼mCm + Z Z I~ i) . (6.7) 
N j=l k=l 

The minimal solutionml = m 2 =  1 of Eq. (6.1 gives mCm =2,  so we have A -  7 - 1"-6 

and the identification 

2 m) 

I =lmC m + Z Z t ( j ,  n + 7 "k - ( 6 . 8 )  

j = l  k=l 

Summing over the leading band of eigenvalues thus gives 

Zgo(q)=q-~4+a2.'-½~_~q¼mcm[ml+nll[m2+n2 ] . (6.9) 
rnt odd m l  [. m 2  
m2 odd 

Eliminating nl and n2 using Eq. (6.1) and taking No --+ c~ finally yields 

Z(q) = q-h+a2.,-½ ntj~odd q¼mCrn[l(ml(q)m' L m2 + 1 ) 1 =  X2,1(q)- (6.10) 

m2 odd 
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7. The charac te r  Xz,2 

7.1. Classification of zeros 

Under the (2, 2) boundary condition we see, in addition to the usual four string types, 

both the "frozen" zeros of  Section 5.1 and the zeros on the real u-axis of  Section 6.1. 

Once again we see that these latter zeros become strings of  type 2 for N sufficiently 

large. 

As in Section 5.1, we let o- = 1 for contents with the frozen 1-string and or = - 1  

otherwise. With the definitions of  Eq. (4.3), we then observe the (m, n)-system 

1 m l + n l = ½ ( N + m 2 + o - ) ,  m 2 + n 2 = ~ ( m j - - o ' + l ) ,  (7.1) 

so that ml is even and m2 is odd. Using Eq. (7.1), the total number of  eigenvalues is 

correctly computed to be 

Z ( m l W n l - - 8 ~ , l ) ( m 2 + n 2 ~  N 

o~ m~ ~w. \ ml -- 80,3 f \ m2 / = A2'2" (7.2) 
m2 odd 

7.2. Computation of the order-1/N corrections 

With the same height r = 2, the free energies under this boundary condition are 

the same as those given in Section 6.2. We now proceed precisely in the manner of  

Section 5.2, with the simple replacement of/ ' j  by -/'1 and -/ '2 by/'2 in accordance with 

the parities of  ml and m2. The calculation of  Section 5.2 then applies from Eq. (5.3) 

to Eq. (5.7). The limits 

/'i(cx)) = / ` 2 ( ~ )  = 2 c o s ( 3 a ) ,  /'1 (-e<))  = - 1 ,  /'2(--OO) = 0 ,  (7.3) 

change the right-hand side of  (5.9) to 

1 [ 4 L ( - 2 c o s ( 3 a ) )  - 2L(1) ]  = -626. (7.4) 
47-r 2 

Hence we obtain 

lnl(u)=--~-sin(5u) + l m C m - ½ ( m l - m 2 ) o ' + Z Z I ~ J )  . (7.5) 
j=l ~=1 

The minimal solution ml = 0 and m2 = 1 with o- = - 1  of  Eq. (7.1) leads to the 
identifications A = 3 and 

2 In) 

n : ¼mCm - ½(m, - m2)o" + ~ Z l(kJ)' (7.6) 
j= l  k=l 

with I,(,: ) = 0 if o- = 1. Summing over the leading band of  eigenvalues, we have 
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m2 odd 
(7.7) 

Eliminating n l and n2 using Eq. (7.1), and summing over o- using the recurrence (5.13), 
we obtain 

[ l[' 1 Zuo(q)=q-~+~2'2 Z q¼mCm-½.,, ½ ( N o + m 2 + l )  ~ ( m l + l )  . (7.8) 

ml odd m l  m 2  
m2 odd 

Finally, taking No ~ ~ gives 

Z(q) =q-~+,a2,2 ~ q - ½ ( m l + l )  =Xz,z(q) .  (7.9) 
mj odd (q)ml m2 
m2 odd 

8. The character X3,1 

8.1. Classification of zeros 

Under the (3, 1 ) boundary condition, the zero patterns of  eigenvalues of  T are very 

simple. We see the usual string types, no zeros on the real u-axis, and no "frozen" zeros. 

Defining (m,n) by Eq. (4.3) we then observe 

ml+nl=½(N+m2+l) m 2 + n 2  =1  , ~ml, (8.1) 

so that ml is even and m2 is odd. Using Eq. (8.1), the total number of  eigenvalues is 

correctly computed to be 

Z (ml+nl)(m2+n2) AN 
nq even \ m l  \ m2 = 3A' (8.2) 
m2 odd 

8.2. Computation of the order-1/N corrections 

As there are no zeros of  T on the real u-axis, the order-I analyticity of  t is determined 

solely by the zeros and poles of  the normalizing functions/3 and a. Since the function/3 

is the same for all boundary conditions, the order-1 analyticity is as given in Section 4.3, 

but with the product a3(u  - ~c) a - 3 ( u  + s c) now inducing zeros at u = 2a + (  and u = 
4A - s c, and poles at u = 3, + ~:, u = 3,~ + ( and u = 5A - s c. These additional zeros 

and poles all fall inside ~A < u < 9A, so the solution (4.16) for g inside the interval 

-½ h < u < ~,~ is unchanged for the (3, 1 ) boundary condition. 
Indeed, the differences between the computation of  the o rde r - l /N  corrections for the 

(3, 1 ) and the ( 1, 1 ) boundary conditions are also very small. All of  the calculation from 



796 D.L. O'Brien et al./Nuclear Physics B 501 [FS] (1997) 773-799 

Eq. (4.17) to Eq. (4.50) proceeds in an identical fashion, with the simple replacement 

of F2 by its negative in accordance with the change in parity of m2. 
The minimal solution of Eq. (8.1) is ml = 2  and m2 = 1, so d = 3 and Eq. (4.51) is 

replaced by 

2 my 

n + 3 = ¼mCm + ~ Z I~J)" (8.3) 
j=l k=l 

Summing over the leading band of eigenvalues, we therefore have 

ZNo(q)=q-~Zq¼mcm[ml+nl][m2+n2].  (8.4) 
nq even [ ml m2 
m2 odd 

Eliminating nl and n2 using Eq. (8.1), and taking No ~ c~, we finally obtain the 
partition function 

q¼mCm [ lml m2 J Z(q) =q ~ Z =X3,1(q). (8.5) 
ml even 
m2 odd 

9. The character X3,2  

9.1. Classification of zeros 

For the (3, 2) boundary condition we see the usual four strings, no zeros on the real 
u-axis, and the "frozen" 1-string of type 1 for certain string contents. As in Sections 5.1 

and 7.1, we let o- = 1 for contents with the frozen I-string and o- = - 1  otherwise. With 
the definitions of Eq. (4.3), we then observe the (m, n)-system 

ml+nl=l(N+m2+o'+l),  m2+n2=l(ml-o'), (9.1) 

so that ml and m2 are odd. Using Eq. (9.1), the total number of eigenvalues is correctly 
computed to be 

Z (m'+nl-8°""~(m2+n2"] =AN 
o" ml odd \ ml -- ~r I // \ m2 ,/ 3,2" (9.2) 

m2 odd 

9.2. Computation of the order-] /N corrections 

Under the (3 ,2)  boundary condition, the order-I analyticity is the same as under the 
(3, l )  boundary. Hence the function g is again given by Eq. (4.16). The order- I /N 
calculation now proceeds exactly as in Section 5.2, with the replacement of -t'2 by t2 
in accordance with the change in parity of m2. 
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With this single alteration, the computation of  Section 5.2 holds from Eq. (5.3) to 

Eq. (5.10).  However, the change in parity of  m2 means that the minimal solution to the 
( m , n ) - s y s t e m  (9.1) is ml = m2 = 1 with or = - 1 .  Hence 4 = 53 - and the integer n of  
Eq. (3.3) is given by 

2 mj 

n + ~1 ---- lmC m _ ½ ( m l -  m2)o + Z Z l(j)k " (9.3) 
j= l  k=l 

Summing over all eigenvalues in the leading band then gives 

ZNo(q) =q'--~+A3"2--½ Z Z q¼mCm-½(m,-m2)o" [m~+nt-'~,~,][mz+n21, 
o" m! odd L m l  - -  ~ r  1 . j [  m 2  " 

m2 odd 
(9.4) 

Eliminating nl and n2 using Eq. (9.1),  and summing over o- using the recurrence (5.13),  
we obtain 

ZNo(q)=q-~+zl3"2-½ZqlmCm-½m'[l(N°+m2+2)][lml ] . (9.5) 

ml even m l  m 2  
m2 odd 

Finally, taking No ~ ~ gives 

q¼mCm-½m' [ ½ml m2 Z(q) = q-2~+,a3,2-½ Z = X3,2(q)- (9.6) 
/111 even 
m2 odd 

10. D i s c u s s i o n  

In this paper we have computed conformal partition functions of  the tricritical hard 

square model with fixed boundaries by calculating analytically the order- 1 /N corrections 
to all leading eigenvalues of  the transfer matrix. Each partition function is found to be a 

single c = 7 Virasoro character Y ..... with r and s depending on the choice of  boundary 
condition. This is in agreement with the results of  Saleur and Bauer [ 18]. 

It is worthwhile noting that, as a bonus, the calculations of  this paper also yield 
partition functions of  the critical hard hexagon model [23].  This model has the same 
Boltzmann weights as tricritical hard squares, but with u < 0 in the ABF formulation. 
Once again, the heights 1 and 4 are identified with /z = 1 and the heights 2 and 3 
with Iz = 0. There are three degenerate ground states, which correspond to the complete 
filling (/z = 1 ) of  one of  the sublattices A, B or C: 

C A B  C A B  
A B  C A B  C 
C A B  C A B  
A B C A B  C 
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We denote by Zp,Q the conformal partition function of the model on a lattice with left 
boundary labelled by P and right boundary by Q. Generally, P and Q may correspond 
to sums of ground states. 

By making the transformation q --~ 1/q  in the finite partition functions ZNo and 

then taking No ~ cxD, we obtain ZA,A = )t/l,l q- X4,1 = b °, ZA,B = ZA,C = X1,3 = b2 °, 
ZA,B+C ---- XZ,l  + X3,1 = bt], and ZA,A+ B = ZA,A+ C = X2,3 = bl. Here ,¥r,s are now the 

4 Virasoro characters and ffm are the branching functions corresponding to the Z3 C = ~  

parafermion models. We note that for the (2, 1) and (2, 2) boundaries the classification 
of eigenvalues depends on the interpretation of zeros on the real u-axis. Hence in these 
cases the transformation is meaningless, since we have no description of the leading 
band of eigenvalues in the hard hexagon regime. The above results are in accordance 
with those of Refs. [31,18] for the three-state Potts model, which lies in the same 
universality class as the hard hexagon model. 
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Appendix A. The Rogers dilogarithm 

In this appendix we briefly collect some results for the Rogers dilogarithm which 
enable us to evaluate the integrals that occur in our calculation. For details we refer the 
reader to, for example, Ref. [35]. The Rogers dilogarithm is defined for 0 < x < 1 by 

X 

i (  In/~ L ( x )  = - ½  ln(1-x) + dx.  (A.1) 
x 1 - - - - sS)  

o 

When a > 0, we can make the identification 

(,+a) 1 + xJ  dx = 2L . (A.2) 

o 

For our calculation we need the particular values 

L(1) __lg~r,2 L(½) = ~ . z ,  

L (  1 ) = L ( - 2 c o s ( 3 , ~ ) ) = ~ o T r  2 , ~  (1.3)  

where ,~ = ½~. 
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