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We compute the one-dimensional configuration sums of the ABF model using 
the fermionic technique introduced in part I of this paper. Combined with the 
results of Andrews, Baxter, and Forrester, we prove polynomial identities for 
finitizations of the Virasoro characters X~'r)(q)  as conjectured by Melzer. In 
the thermodynamic limit these identities reproduce Rogers-Ramanujan-type 
identities for the unitary minimal Virasoro characters conjectured by the Stony 
Brook group. We also present a list of additional Virasoro character identities 
which follow from our proof of Melzer's identities and application of Bailey's 
lemma. 
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1. I N T R O D U C T I O N  

Probably among the most celebrated results in mathematics are the iden- 
tities of Rogers and Ramanujan, (1-31 

q,,,o,,+,) 1 ~, (-1)Jq J(SJ+l+2")/2, a = 0 ,  1 (1.1) 
.,=o ~ (q)"--'-'~--(q)~j= -o~ 

w h e r e  (q)m = 1-I7,'= l ( 1 --  qk), m > 0, and  (q)o = 1. In  the  c o n t e x t  o f  m o d e r n  

physics ,  o n e  r ecogn izes  the  r i g h t - h a n d  side o f  these  ident i t ies  to  be  the  

R o c h a - C a r i d i  exp re s s ion  for  the  V i r a s o r o  c h a r a c t e r s  .(2.5) t ~  o f  m i n i m a l  ~1.2- - .  ~r 
conformal field theory M(2, 5). (4) As such, the Rogers-Ramanujan identities 
can be seen as character identities of some Virasoro algebra. A natural 

Dedicated to the memory of Piet Kasteleyn. 
2 Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia; 

e-mail: warnaar @maths.mu.oz.lu. 

49 

822/84/I-2-4 0022-4715/96/0700-0049509.50/0 ~) 1996 Plenum Publishing Corporation 



50 Warnaar 

question is whether the other Virasoro characters also admit identities of 
the Rogers-Ramanujan type. For  the important  class of unitary minimal 
models M ( r -  1, r), this was answered affirmative in a remarkable paper  by 
the Stony Brook group/5~' 2 However, the results of ref. 5 were all based on 
extensive numerical studies, and actual proofs remained elusive. 

Among the many methods of proof  of the original Rogers-Ramanujan  
identities an elegant approach is that of first proving the polynomial 
identities t 8.91 

L m j m = 0  j =  - - o r .  

( _  l )J qjtSj+ l + 2~,l/2 [ L ] 
1 � 8 9  

(1.2) 

for all L >/a. Here k x ]  denotes the integer part  of x and [.~] is a Gaussian 
polynomial defined as 

O <~ m <~ N 
(1.3) 

otherwise 

Clearly, in the limit of L ~ ov we recover the Rogers-Ramanujan  identity 
(1.1). To prove the finitized Rogers-Ramanujan identities (1.2) it suffices to 
check that both left- and right-hand sides satisfy the elementary recurrences 
f L = f t _ ~ + q L - - ~ f L _ 2  as well as the same initial conditions for L=a ,  
a + l .  

In an attempt to find proofs of the identities for the characters 
~,( , - -  l ,  r) b. ~, (q) (see next section for their actual form), Melzer followed Schur's 
approach and conjectured finitizations similar to those in (1.2). However, 
Melzer's polynomial identities were sufficiently complicated not to lead to 
a straightforward proof  using recurrences. It was only after Melzer proved 
the cases r = 3  (Ising) and r = 4  (tricritical Ising) I1~ that Berkovich 
succeeded in proving recurrences for the polynomial identities for all 

Ir.,'- 11 (q).lll) 
X b .  1 

In this paper we present a combinatorial  proof  for Melzer's identities, 
based on yet another observation made by Melzer. Again the motivation 
for this has been the original Rogers-Ramanujan identities (1.1), whose 
finitization (1.2) can be viewed as evaluations of the sum 

~ L - I  k . 
E q2-X-= I o-~, 

a l  . . . . .  ~ L - I  = 0 ,  l 

ajaj  + l = 0  

0"0 = a, O'L:O (1.4) 

2 By now character identities of Rogers-Ramanujan type for all minimal Virasoro characters 
Z ~p' P'~(q) have been found. 15-7~ 
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in two intrinsically different ways. Similar to this, Melzer has argued that 
the polynomial identities for the finitized ,,tr--]. ,~b,a ,l(q) characters arise from 
computing the sums 

XL(a, b) = 
r - - 2  

qZ~= I k la/ ,-+ I - -  ~ ' k - 1 1 / 4 ,  

a l , . . . ,  O ' L -  I ~ 0 
l a j  + I - -  a j ]  = 1 

O-o=a--1, aL=b--1 ,  aL+l=b (1.5) 

for all a = 1 ..... r - 1 and b = 1 ..... r - 2. 
We will take this observation as the starting point for proving the 

polynomial and Rogers-Ramanujan identities for the (finitized) characters 
( r - - l .  Xb,,, r)(q). That is, we give two different methods to compute (1.5), one 

leading to a so-called fermionic expression similar to the left-hand side of 
(1.2) and one method leading to a so-called bosonic expression similar to 
the right-hand side of (1.2). In fact, it should be noted that Xt(a, b) defined 
above is exactly the one-dimensional colfiguration sum X,(a, b, c), with 
c = b + 1, as defined by Andrews, Baxter, and Forrester in their computa- 
tion of the order parameters of the ( r - 1 ) - s t a t e  ABF model in regime 
III. c~2~ Hence, computing the sum (1.5) amounts to computing the order 
parameters of the ABF model. The fact that (finitized) Rogers-Ramanujan 
identities arise from calculating order parameters of solvable lattice models 
is in fact not new, and indeed the sum (1.4) is exactly the one encountered 
by Baxter in his solution of the hard-hexagon model in regime I. ~13) 

The remainder of this paper is organized as follows. In the next 
section we describe Melzer's polynomial identities, their limiting Rogers- 
Ramanujan-type form, and some other Virasoro character identities that 
follow from the proof of Melzer's identities and the application of the 
Andrews-Bailey construction. (14-16) Then, in Section 3 we compute the 
configuration sums (1.5) using the technique developed in part I of this 
paper.(~7) This amounts to reinterpreting the sum (1.5) as the grand canoni- 
cal partition function of a one-dimensional gas of charged particles obeying 
certain Fermi-type exclusion rules. In Section 4 we describe the original 
approach of ABF for computing (1.5) using recurrence relations. Together 
with the result of Section 3, this proves Melzer's polynomial identities. We 
finally end with a discussion of our result and an outlook on related 
problems and generalizations. 

To end this introduction we make some further remarks on the 
problem described in this paper. First, as mentioned before, an altogether 
different kind of proof of Melzer's identities has recently been given for the 
case of Z~b'i] - I. ,.)(q) by Berkovich. ( I1~ This method of proof, which in fact is 



52 Warnaar 

applicable to all unitary minimal characters, t7~ is based on recursive instead 
of  combinator ia l  a rgumen t s )  

Second, in their solution of  the ABF  model,  Andrews, Baxter, and 
Forrester  also considered the configurat ion sums XL(a, b, c), with c = b -  1. 
Hence, to compute  complete all configurat ion sums of  the A B F  model,  
more  general sums than those defined in (1.5) have to be considered. 
However,  f rom simple symmetry  arguments  t~2' 10~ (see also Section 3) one 
can easily deduce that comput ing  (1.5) suffices to obtain expressions for all 
XL(a, b, c). 

Finally we remark that  Melzer tl~ and Kedem et al. ~51 conjecture (in 
the general case) four fermionic expressions for each (finitized) character.  
In this paper  we give detailed p roof  of  only two of  the four. For  the 
remaining two representations we did not  succeed in finding a derivation 
in terms of  a Fermi lattice-gas. 

2. MELZER'S P O L Y N O M I A L  IDENTIT IES A N D  RELATED 
R O G E R S - R A M A N U J A N  IDENTITIES 

In this section we give a summary  of  identities proven by the calcula- 
tions carried out  in Sections 3 and 4. First we describe the polynomial  
identities conjectured by Melzer t ~o~ and their limiting Roge r s -Ramanu jan -  
type form as discovered by the Stony Brook  group, tSJ Then we list two 
classes of  character  identities for nonuni ta ry  minimal models which, as 
recently pointed out  by F o d a  and Quano ,  t6~ arise from Melzer's identities 
and the Andrews-Bai ley construction. ~14-'61 

2.1. Identi t ies for the (Fini t ized)  Virasoro Characters 
X(,-1,r)( n.,, q) 

Before we state the polynomial  identities as conjectured by Melzer, we 
need some notation.  We denote the incidence matrix of  the At_  3 Dynkin  
diagram by J ,  with ~.. k = ~j. k -  1 + fij. k + ,, J, k = 1 ..... r -- 3. The Car tan  
matrix of  At_  3 is denoted as C, and is related to J by Cj. k = 2fij. k--Y). ~. 
We also define the ( r - 3 ) - d i m e n s i o n a l  (column) vectors m and ej, 
j = l  ..... r - 3 ,  by ( m ) j = m j  and (ej)k=~j.~,  and set m 0 : m r _ 2 = 0 ,  
e 0 = e r _ , _ = 0 .  With this notat ion,  using the Gaussian polynomials  as 
defined in (1.3), we can state Melzer's conjectures as the following identities 
for a =  1 ..... r -  1, b =  1 ..... r - 2 ,  and L - l a - b l  e2Z>~0," 

3 Berkovich has subsequently proven Melzer's identities for all characters, but his results 
remain unpublished. I ts~ 

4Throughout this paper we use the notation x=_y to mean x=-y (mod 2) Also, the sums 
x _= r and Z x are shorthand notations for ~Ij Y~.~, ~ o: .~j~; and 1-Ij Z.,~ ~ o, respectively. 



Fermionic Solution of ABF Model 53 

m---Qa.h 

L 

L 

qtl/4)mrCm--(l/2) . . . . . .  , "fi3 I �89 + Lel + e,--~-,  + e,--b- ~)21 
j=l mj 

(2.1) 

with f,,, b = q --I,,--blla -b-- 1~/4 and 

Q _hi , - -3)  ( e , .  + e , . _ ~ , _ 4 + - . . ) + ( e r _  b_ + e , _ b _ 4 + - . . )  (2.2) a , b - - ' ~ a , b  ~ -  - - a - - 2  2 

We note that in our derivation of the left-hand side of (2.1) in Section 3, 
this restriction naturally arises in the following form, (mod 2)-equivalent 
to (2.2): 

(Q,,. b)j = m i n ( a -  1, r - j - 2 ) +  m i n ( b -  1, r - j - 2 )  (2.3) 

In ref. 10, yet another expression for the left-hand side of (2.1) was 
conjectured as 

" - 3 [  � 8 9  (2.4) L.b  ~ qll/41mrCm-~l/2) . . . .  ' I'-[ m: 
m=--Ra, h j =  I 

where 

R , , . b = ( r - - a - - 1 ) p + ( % + e , + 2 +  . . . )+(e , ._b_2+e , ._b_4-F  .--) (2.5) 

with p = Z~:=~ ~ e/. Clearly, for a = 1 and for a = r -  1 the fermionic expres- 
sions in (2.1) and (2.4) coincide. 

As mentioned in the introduction, we have no explanation of this 
alternative fermionic form in terms of a Fermi gas, and (2.4) is listed only 
for completeness. 

Taking the finitization parameter L to infinity, we find that (2.1) leads 
to Rogers-Ramanujan-type identities for unitary minimal Virasoro charac- 
ters. Here we recall the well-known Rocha-Caridi expression for all (nor- 

~p p') ) malized) characters Zr. ~. (q of minimal CFT M(p,  p'), 

1 ~" {qjlpp'j+p','-pSl qljp+,')(jp'+s)} (2.6) Xtf.; p') (q) - ( q ) ~ j  . . . .  
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for r = 1 ..... p -  1, s = 1 ..... p'  -- 1, with p and p' coprime. We thus find that 
the right-hand side of (2.1) gives the bosonic Rocha-Caridi expression for 
Z(b(~ ~. r)(q), whereas the left-hand side leads to a fermionic counterpart,  

q(1/4) m rCm -- ( l / 2 ) t n r - a -  I 
X("-"')(q)=f, , .b b , a  

m = - Q a ,  b (q).,, 
r - 3  [1 (  J m - k e  . . . .  "l-er--b-l)j] (2.7)  

• 
j =  2 m j  

This result is one of the many celebrated conjectures for fermionic charac- 
ter representations made by the Stony Brook group; see, e.g., refs. 5, 19, 
and 20. 

An obvious symmetry of (2.6) is y~P'P') (q) =y(P'P') Ca) Making the ~ . r .  s r~p -- r .  p~ -- s x z  �9 

transformation a - - , r - a  and b ~ r - b - 1  in the fermionic expression 
(2.7), we see that this symmetry is not at all manifest, except for b = I and 
a = 1, r -  2. Hence we have two different fermionic representations for each 
character of the unitary minimal series. 

To end our discussion on Melzer's polynomial identities, we remark 
that in ref. 10 identities were also given for finitizations of the characters 
(r- I, r) Xb,. (q), with finitization parameter L such that L + a - b  ~ O. Since 

these can simply be obtained from (2.1) and (2.4) by the above-mentioned 
symmetry transformation, they are not listed here as separate identities. 

2.2. R o g e r s - R a m a n u j a n  Ident i t ies  for  v(r" (k q-1)r-- ^ , . ( * + l ) n  1)(q)  and 
xlr-1. ( k - I - 1 l r - k )  ( 

b, (k+l)a) q)  

It was recently pointed out by Foda and Quano (6) that many new 
Virasoro character identities can be obtained by applying some powerful 
lemmas proven by Bailey and Andrews to Melzer's polynomial identities. 
The main idea of these lemmas is to prove the more complicated Rogers- 
Ramanujan-type identities by showing that they are a consequence of iden- 
tities that are easier to prove. Here we will not state the relevant lemmas 
but refer the interested reader to the work of Foda and Quano ~6) and to 
the original work of Bailey (14" ~ 5) and Andrews.(16) 

In both series of Virasoro character identities given below, we encoun- 
ter the k by k matrix B with entries Bj, t=min ( j ,  l). We note that this 
matrix is the inverse of the Cartan-type matrix of the tadpole graph with 

~(k )  with incidence matrix of the tadpole graph k nodes; (B-1) j , t=26 : , t -~ ,  z t ,  
given by J(k)--di +Jy~+l+bj.16j .  j , l= l , . . . , k .  We will also use the j , I  - j , l - - I  , k ,  

k-dimensional vectors n and sk, whose j t h  entries read nj and bk, j, respec- 
tively. 
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v(r, (k+l)r--1)(n 2.2.1. ^ , ,  | k+ l )b  ~f). Substituting the Bailey pair read off from 
(2.1) into the Bailey chain of  length k, we obtain 

x ( r .  (k+ 1 )r-  I )[,,7~ 
a,(k+l)b ~tl! 

q-rB. 

,o=-b) f,.bq_k,,_b,,/4 ~. m_~Qab (q ) ,  "'" (q),,e-t(q)2,,k 

~-3 [ � 89  + 2 n k e ,  + e  . . . .  , + e , _ b _ , ) j ]  X q (I/4}mrCm-(]/2)mr-~ I-I 
j =  ~ mj 

(a ~ b) --k((a--b) 2-  1)/4 Z ~ qnrBtn+'~k) 
= f,,,bq . . . .  -=,z b(q),,~'''(q),,,~-~(q)2,,k+~ 

x q  ~l/4~m~cm-(lm . . . . . .  '1--[ ( J m + ( 2 n k +  1)el + e  . . . .  1 + e r - b - ~ ) j  
j= z m j  

(2.8) 

valid for all k >/1, a = 1 ..... r - 1, b = 1,..., r - 2. 
The p roof  of  this result for a =  1 was first noted by F o d a  and 

Quano ,  t6) using the p roof  of  Melzer's identities for a = 1 as established by 
Berkovich.t Ill The fermionic expression in (2.8) can also be found in ref. 7. 

2.2.2.  v(r- - l "  (k+llr--k) ^b ,  (k+ 1 )a ( q ) .  Subs t i t u t e  the dual Bailey pair 
obtained from (2.1) into the Bailey chain of  length k +  1. Then make the 
change of  variables m j ~ m j +  I, followed by 2 n k + ] + l a - b l ~ m ~ ,  
nk ~ nk + l (ml  -- la -- bl), and r --* r - 1. Finally, interchanging a and b, 
then using 

('Mr-- 3)] ~ f(Q(b[a4))J - 1 '  j = 2 ,  ..., r -  3 (2.9) 
"~,,.b ,j [ a - b ,  j =  1 

true for a = 1,..., r - 3, b = 1,..., r - 2, yields 

• ( r - -  1, (k+ l)r-- k)(rt) 
b, ,tk+ l)a ",~l/ 

qt, + (l/2)mltk)TB(n +(I/2),911 ek) 
,s ~--k(a--b)2/4 

=da, bt~ E E 
n m~Qa.b ( q ) . , "  (q),,k 

x (q),,, :=2 rnj 

valid for all k/> 0, a = 1 ..... r -  3, b = 1 ..... r -  2. Note  that  for k =  0, corre- 
sponding to a Bailey chain of  length 1, we actually recover a subset of  the 
character  identities (2.7) for M ( r -  1, r). 
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For a = b  = 1, (2.10) was conjectured in ref. 5. The proof  for a =  1 can 
again be found in ref. 6, though the actual form of the fermionic side 
therein rather differs due to the sequence of the transformations carried out 
above. The fermionic form (2.10) can also be found in ref. 7. 

3. F E R M I O N I C  S O L U T I O N  OF THE ABF M O D E L  

We now come to the main part of this paper, the evaluation of the 
one-dimensional configuration sums (1.5) of the ABF model. This yields, 
up to the prefactor f~. b, the left-hand side of the identity (2.1). To establish 
this, we first reformulate the sum (1.5) as the generating function of certain 
restricted lattice paths. We then compute this generating function by iden- 
tifying each path as a configuration of charged fermions on a one-dimen- 
sional lattice. This identification allows us to view XL(a, b) as the grand- 
canonical partition function of a one-dimensional Fermi gas. Because of the 
one-dimensional nature of this gas, its partition function can readily be 
computed. 

3.1. Restr icted Latt ice Paths 

To reformulate the sum (1.5) in terms of lattice paths, we first give 
some basic definitions. 

Definit ion 1. An ordered sequence of spins {ao,~rz ..... ~t.+,} is 
called admissible if: 

�9 crje{0,1 ..... r - 2 }  for j = 0  ..... L + I  

�9 It~j+,--ajl=l for j = 0  ..... L, and 

�9 cr 0 = a - l , C r L = b - l , a n d t 7  L + l = b  

Defini t ion 2. Let { ~ o , ~  ..... at.+~} be an admissible sequence of 
spins. Plot all pairs (j, ~j) in the (x, y)-plane and interpolate between each 
pair of neighboring points by a straight line segment. The resulting graph 
is called a restricted lattice path. 

An example of a restricted lattice path for a = 3 and b = 5 is shown in 
Fig. 1. 

To write the one-dimensional configuration sum as a sum over 
restricted lattice paths, first notice that the restrictions on the ~'s in (1.5) 
precisely correspond to those defining an admissible sequence of spins. 
Consequently, each restricted lattice path corresponds to one of the terms 
in the sum (1.5) and, conversely, each term in the sum corresponds to a 
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(3 

r--2 

1 

0 
0 2 L+I 

Fig. 1. An example of a restricted lattice path in rip(0, r). 

~ j  

restricted lattice path. Given an admissible sequence, its total weight is 
decomposed as follows. If  o)_ l < c r j < ~ j + l  or a j_ l>Crj>tXj+l  this con- 
tributes a factor qj/2 and if tZj_l < g j > g j + l  or a j_ l  > ~ j < ~ j + ~  this con- 
tributes a factor 1. In terms of the restricted lattice paths this simply means 
that for each integer point j along the x axis we get a factor 1 if (j, crj) is 
an extremum and a factor qj/2 otherwise. Here the terminals of a path are 
to be viewed as extrema. Writing this in the language of statistical 
mechanics, we get, setting q = e x p ( - i l l  

XL(a,b)= ~, expI--fl ~, E(j) 1 (3.1) 
restricted lattice paths j = 1 

with energy function E given by 

0 if the path has an extremum at (x position) j 
E ( j ) =  i .  (3.2) 

_~j otherwise 

Each of the lattice paths in the sum (3.1) starts in (0, a - 1 ) ,  ends in 
(L, b - l ) ,  ( L +  1,b), and is restricted to the strip 0 ~ < y < ~ r - 2 .  We now 
define rlp(p, r) as the set of all restricted lattice paths with minimal y value 
equal to p and maximal y value less than or equal to r - 2 .  Hence we can 
write 

min(a, b) -- I 

XL(a, b) = ~ ZL(a, b; Ft, r) (3.3) 
.u=O 

with 

r,---- Z ] 
rlplp, r) j =  I 
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Noting the obvious relation ~l_(a, b; It, r)= ~c(a-It ,  b-It;  O, r - I t )  gives 

r a i n ( a ,  b )  - -  1 

Xc(a, b)= ~. ~z_(a-it, b-It;  O, r - i t )  (3.5) 
I t  = 0  

and we conclude that to compute XL(a, b) it suffices to compute the sum 
(3.4) for It = 0  and arbitrary a, b, and r. 

So far we only have reformulated the problem of computing XL(a, b), 
and it is by no means clear that 3/.(a, b) := 3L(a, b; 0, r) is any simpler to 
evaluate than (1.5). To make some real progress, we will show in the next 
section that SL(a, b) can be viewed as the grand canonical partition func- 
tion of a one-dimensional gas of charged fermions. In other words, each 
path in rip(0, r) can be viewed as a configuration of an appropriately 
defined Fermi gas. Now decomposing the sum over all Fermi-gas con- 
figurations into a sum over the configuration with fixed particle content 
(FC) and a sum over the particle content (C), we get 

~z(a, b)= ~ Z( C; a, b) (3.6) 
C 

with Z(C; a, b) the partition function of the one-dimensional Fermi gas, 

1 j = l  

3.2. A One-Dimensional Fermi Gas 

To interpret each restricted lattice path in rip(0, r) as a configuration 
of particles, we need some more terminology. In fact, since some of the 
concepts introduced below are somewhat awkward to describe, but easily 
explained pictorially, we state some definitions purely graphically. 

In the previous section restricted lattice paths were introduced as 
paths from (0, a - l )  to ( L , b - 1 ) ,  ( L + l , b ) ,  restricted to the strip 
0 ~<y ~< r - 2 ,  such that y j + t - y j =  + 1 for all consecutive points (j, yj) and 
( j +  1,yj+~) on the path. We somewhat relax these conditions by defining 
a lattice path as follows. 

Definition 3. A lattice path is a restricted lattice path with 
arbitrary (integer) begin and endpoint. 

In particular, if a lattice path ends in (j, yj), the y-coordinate of the 
second-last point can either be y j -  1 or yj + 1. 
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(0,a-I) 

0',o) (J,Yj) (k,yk) 

(L+l,b) 

(j,o) 

Fig. 2. Typical examples of left-boundary, bulk, and right-boundary complexes. 

We use the previous definition to define a very important object, a 
complex. 5 This will be used subsequently to decompose each restricted 
lattice path into particles. 

D e f i n i t i o n  4. A bulk complex is a lattice path from (j, yj) to 
(k, Yk), with (j, yj) and (k, Yk) connected by a dashed horizontal line, such 
that yj=yk,  yl> yj for all j < l < k .  

A left-boundary complex is a lattice path from (0, a - 1 ) to (j, 0), such 
that Yk > 0 for all k <j ,  and with (0, 0) and (j, 0) connected by a horizontal 
dashed line and (0, 0) and (0, a - 1) connected by a vertical solid line. 

A right-boundary complex is a lattice path from (j, 0) to (L, b - 1 ) ,  
(L + 1, b), such that Yk > 0 for all k > j  and with (L + 1, 0) and (j, 0) con- 
nected by a horizontal dashed line and (L + 1, 0) and (L + 1, b) connected 
by a vertical solid line. 

Examples of left-boundary, bulk, and right-boundary complexes can 
be found in Fig. 2. With respect to the above definition, we remark that the 
term complex is chosen since we wish to view each complex as a collection 
of charged particles moved on top of each other. To make this explicit, we 
define particles in the following two definitions. 

Definit ion 5. A pure bulk particle of charge j is a bulk complex 
with a single local maximum of height j (measured with respect to its 
dashed line). 

A pure left-boundary particle of charge ( a - 1 ) / 2  is a left-boundary 
complex with a single local maximum, located at (0, a -  1). 

A pure right-boundary particle of charge b/2 is a right-boundary com- 
plex with a single local maximum. 

s In ref. 21, Bressoud gives a lattice path interpretation of the Andrews-Gordon generaliza- 
tions of the Roger-Ramanujan identities. 122'23~ In Bressoud's terminology a complex 
corresponds to a mountain. 
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The graphical representation of pure particles is given in Fig. 3. 
To introduce the more general idea of a particle, we need some simple 

terminology. 

�9 The peak of a bulk complex is the leftmost highest point. Similarly, 
the peak of a particle is its highest point. 

�9 The origin of a particle or complex is the left- and downmost point; 
the endpoint of a particle or complex is the right- and downmost 
point; the baseline of a particle or complex is the dashed line con- 
necting the begin and endpoint. 

�9 The contour of a particle or complex is its part drawn with solid 
lines. 

Using this terminology, we present the following definitions. 

Defini t ion 6. A bulk particle of charge j is a pure bulk particle of 
charge j whose contour is interrupted at arbitrary integer points by 
horizontal dashed lines of even length. 

A left boundary particle of charge ( a -  1 )/2 is a pure left-boundary 
particle of charge (a - 1 )/2 whose contour to the right of (0, a - 1 ) is inter- 
rupted at arbitrary integer points by horizontal dashed lines of even length. 

A right-boundary particle of charge b/2 is a pure right-boundary par- 
ticle of charge b/2 whose contour to the left of (L, b -  I) is interrupted at 
arbitrary integer points by horizontal dashed lines of even length. 

Typical examples of particles are shown in Fig. 4. We note that for 
later convenience the contour of the boundary particles is drawn with 
thicker lines than that of the bulk particles. 

With the above set of definitions we now give a prescription to divide 
each restricted lattice path into particles. This will be done by giving an 
algorithm that divides a complex into a particle and several smaller com- 
plexes. Each of these new complexes is either a particle or is again divided 
into a particle and yet smaller complexes. This procedure is continued until 

(0 ,a- l )  

(a-l,O) 

(x+j,y+j)  (L+I ,b) 

5 
(x,y) (x+2j, y) (L+l-b,O) 

Fig. 3. The graphical representation of pure particles. The charges are, from left to right, 
(a - 1 }/2, j ,  and b/2, respectively. 
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(0 , a - l )  

(x,0) 

(x',y+j) 

/ i  . . . . . . . . . . . .  
(x,y) (x' ',y) 

(L+I ,b) 

/iii/j 
(x,O) 

Fig. 4. Typical examples of left-boundary, bulk, and right-boundary particles. The charges 
of the particles are (a - 1 )/2, j, and b/2, respectively. 

the entire complex is divided into particles. Since each lattice path can tri- 
vially be divided into complexes, this gives a procedure to divide any 
restricted lattice path into particles. 

(0) Draw a dashed line along the x axis from (0, 0) to (L + 1, 0) and 
draw bold lines from (0, 0) to (0, a - 1 )  and ( L +  1, 0) to ( L +  1, b). This 
divides each restricted lattice path into a left-boundary complex, a right- 
boundary complex, and a number of bulk complexes. For the restricted 
lattice path of Fig. 1, we get, for example, four complexes, two of which are 
of bulk type. If a = 1, the left-boundary complex is absent. 

Now consider each of the complexes obtained above. If such a com- 
plex is a particle (in which case it is pure), we are done with it. If not, go 
to step (1) in case of a bulk complex and to ( ID and (1R) in case of left- 
and right-boundary complexes, respectively. 

(1) Start at the peak of the complex and move down to the right 
along the contour till the endpoint of the complex. When a local minimum 
is reached, i.e., the contour starts going up again, we draw a dashed line 
from this local minimum to the right until we cross the contour. At that 
point we move further down along the contour. If another minimum occurs 
we repeat the above, etc. 

Repeat the above, now moving to the left. That is, start from the peak 
of the complex and move down to the left till the origin of the complex. If 
a local minimum is reached, we draw a dashed line to the left and continue 
our movement down when the dashed line intersects the contour. 

As a rest~lt of the above step we have divided the complex into a par- 
ticle (which is not pure) and several (at least one) smaller complexes. The 
peak and the baseline of the particle are the peak and the baseline of the 
original complex. Now go to (2). 

( ID  Start from (0, a - 1 ) .  Move to the right of this point down along 
the contour of the complex till its endpoint. If a local minimum is reached 
[which could be the point (0, a - 1 )  itself], draw a dashed line from this 
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Fig. 5. The particle configuration corresponding to the restricted lattice path of Fig. 1. 

minimum to the right, until the contour is crossed. At that point move 
further down along the contour. If another minimum occurs we repeat the 
above, etc. 

As a result of the above step we have divided the left-boundary com- 
plex into a left boundary particle and several (at least one) smaller bulk 
complexes. To treat these smaller bulk complexes, go to (2). 

(1R) Start from (L + l, b). Move to the left of this point down along 
the contour of the complex till its endpoint. If a local minimum is reached, 
draw a dashed line from this minimum to the left until the contour is 
crossed. At that point move further down along the contour. If another 
minimum occurs, repeat the above, etc. 

As a result of the above step we have divided the right-boundary com- 
plex into a right-boundary particle and several (at least one) smaller bulk 
complexes. To treat these smaller bulk complexes, go to (2). 

(2) Scan each of the smaller bulk complexes. If such a complex is a 
bulk particle (in which case it is pure), we are done with it. If not, repeat 
step (1) for this complex. 

We note that the above procedure converges, since the number of 
local maxima of a restricted lattice path is finite. In Fig. 5 we have carried 
out the procedure for the restricted lattice path of Fig. 1, thereby identify- 
ing the corresponding configuration of particles. 6 

Thanks to the above algorithm, each restricted lattice path in rlp(0, r) 
can now be viewed as a particle configuration. In particular, since the 
maximal height of a path is r - 2 ,  we have bulk particles of charge 1 up to 
r - 2 ,  as well as a left-boundary particle of charge ( a - 1 ) / 2  and a right- 
boundary particle of charge b/2. The contour of a bulk particle of charge 
j consists of j up and j down steps, the contour of a left-boundary particle 
of a - 1 down steps, and the contour of a right-boundary particle of b up 

6 After having identified all particles, we implicity assume the step of (re)drawing the contour 
of the boundary particles with thick lines. 
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steps. Letting nj denote the number of bulk particles of charge j, we thus 
have the completeness relation 

r - - 2  

a + b - l + 2  ~ j n j = L + l  (3.8) 
j = l  

Using this relation, we can compute n~_2 given the occupation numbers 
n I . . . . .  rtr_ 3. For  this reason (and anticipating things to come), we define the 
column vector n = r(n~,..., nr_ 3), and when we say "a restricted lattice path 
has particle content C = n , "  we mean by this the particle content 
C =  {n~,..., nr_2} subject to the restriction (3.8). 

Having associated a configuration of particles with each path in 
rip(0, r), we define rip(n) as the subset of paths in rip(0, r) with particle 
content n. This puts us in a position to properly define what we mean by 
the Fermi-gas partition function as introduced in (3.6), 

Z( C; a, b)= Z(n; a, b)= ~. e x p [ - f l  ~ E( j ) ]  (3.9) 
r ip (n )  j = 1 

with energy function defined in (3.2). 
So far, we have repeatedly used the term Fermi gas, without any clear 

motivation. Clearly, we have defined all allowed configurations of our one- 
dimensional system of charged particles, as well its Hamiltonian or energy 
function, but the actual nature of the system remains rather elusive. 
However, in our actual computation of Z in the next subsection it turns 
out to be expedient to define rules of motion that allow one to obtain any 
configuration with content n from a given so-called minimal configuration 
with the same content. These rules of motion have a clear fermionic charac- 
ter, in that particles of the same charge cannot exchange position, unlike 
particles of different charge. 

3.3. C o m p u t a t i o n  of Z(n;  a, b)  

In this section we compute the partition function of the one-dimen- 
sional Fermi gas. Throughout  the section we assume the particle content to 
be n. 

To compute the sum over all particle configurations, we first select a 
particular configuration called the rain#hal configuration, 7 It will be defined 
purely graphically. 

7 From a statistical mechanics point of view ground-state configuration may be more 
appropriate, but we prefer to conform to our earlier naming in ref. 17. 
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Fig. 6. The restricted lattice path corresponding to the minimal configuration of particles. 
Here each bulk particle of charge j has to be copied nj times. The dashed lines are the 
baselines of the particles. 

Definition 7. The configuration shown in Fig. 6 is called the mini- 
real configuration. Here each bulk particle of charge j should be repeated nj 
times, i.e., 

Note that in the minimal configuration: 

�9 All (bulk) particles are positioned as much to the right and up as 
possible, the baseline of the particles of charge j having y coor- 
dinate equal to m i n ( b -  1, r - j - 2 ) .  

�9 The particles are positioned in order of decreasing charge. 

�9 Apart from the right-boundary particle, all particles are pure. 

3.3.1. Contr ibut ion of the Min imal  Conf igurat ion.  To com- 
pute the weight of the minimal configuration, we use that the energy Ej(X) 
of a pure hulk particle of charge j,  with origin at position x and endpoint 
at position x + 2j, is given by 

2 j - - I  

Es(x)=�89 ~ (k+x)=(j+x)(j-1) (3.10) 
k = l  
k ~ j  

Similarly, we get for the energy E ,  of the pure left-boundary particle with 
charge (a - 1 )/2, 

E,,=~(a- 1 ) ( a -  2) (3.11) 

A bit more work is required to obtain the energy Eb of the right-boundary 
particle with charge b, since its contour is broken into b segments all of 
length 1. Summing up the b different contributions leads to 

r - - 2  

Eb=�88 ~ j (b-r+j+l)n j  (3.12) 
j=r--b  
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Using the above three results, we compute the energy of the minimal con- 
figuration as 

r--2 n~ / 
Emin=Ea+Eb "1- Z 2 Ei a-Z+min(b ,r - j -1)  

j=l I=l 
r~2 ) 

+2j (1- -1)+2  ~ knk 
k=j.4-1 

r--2 (j r--2 ) r--2 
= ~ ( j - 1 ) n j  "nj+2 ~ kn~ + ( a + b - 2 )  ~ ( j - l ) n j  

j= t  k=j+l  j=l  
r--2 

+ ~ ( b - r + j + l ) n j + � 8 8  
j~r--b 

+ ~(b - 1 )(2a + b - 2) (3.13) 

To simplify this expression, we eliminate n r_ ~ using the completeness rela- 
tion (3.8). This yields 

r--3 (_~ k(r--j--2) 
'Emin ~ j Z  k-L r - -2  

~- j(r k -  2) 
k=/+I - - -2  r njnk 

_ - r - S r - j - 2  ) ( ' - ~ - ' j ( b - 1 )  ~3 ( r - b  1 ) ( r - j - 2 )  
\ j_~ r - 2  + t-L nj _ j ~ _ ~  ~ - 2  .Y~ J=l 

L- ' ( r -3)  + 2 L ( b -  l ) - ( a -  1 ) ( r - a -  1 ) + ( b -  1 ) ( r - b -  1) 
4(r - 2) 

(3.14) 

We now recall the definition of the inverse Cartan matrix of the Lie algebra 
At-3, 

C _ ~ = ~ k ( r - j - 2 ) / ( r - 2 ) ,  k<~j 
J'~ [ j ( r - k - 2 ) / ( r - 2 )  k>~j (3.t5) 

Using this, we finally obtain the following result. 

I . emma 1. The energy of the minimal configuration is given by 

r-3 
Emin = Z 

j,k=l 
L 16jr_b_ I [ ) --l 

L 1 1 ) 
• n k - - - ~ , . , - - ~ . r - ~ - ~ + - ~ k  . . . . .  , (3.16) 

822/84/1-2-5 
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3.3.2. Contr ibut ion of the Nonminimal  Conf igurat ions.  To 
compute the contribution to the partition function of the other configura- 
tions, we define rules of motion which generate all nonminimal configura- 
tions from the minimal one. These rules break up into several different 
elementary moves as follows. 

Def in i t ion  8. Let X =  { (x l ,y l )  , (x2,Y2) , (x3, y3) , (x4, Y4) } denote 
a sequence of four points on the contour of a configuration, each pair of 
consecutive points connected straight lines, such that the contour in 
between (x~,y~) and (x4, Y4) does not belong to a boundary particle. We 
may then replace this sequence by a new sequence of four points as follows: 

Move L,,: If y4 <~Y2 <3'3 <Y~, 

L,,(J0 = {(xl,y,),  ( x 2 -  1 ,y2+ 1), (x 3 -  1 ,y3+ 1), (x4,y4) } 

Move Ra: I f y 4 < y 2 < y a ~ < y l ,  

Ra(X) = {(xl ,y l ) ,  (x2+ 1 , y 2 -  1), (x3+ 1,y 3 -  1), (x4,y4)} 

Move Ld: Ify~ <Y3<Y2~<Y4, 

Ld(X) = {(x., y.),  ( x 2 -  1 , y 2 -  1), ( x 3 -  1 , y 3 -  1), (x4, y4)} 

Move R,,: Ify~ ~<Y3 <Y2 <Y4, 

R,,(X) = {(Xl,Yl) , (X2n t- l , y , +  1), (x3+ l , y 3 +  1), (X4, y4) } 

Besides these "bulk-type" moves we need some special boundary moves. 

Def in i t ion  9. Let X={(xl ,yl) , (x2,y2) ,  (x3,y3),(x4, y4)} be four 
points on the contour of a configuration, each pair of consecutive points 
connected by a straight line. We may then replace X as follows: 

Move L',,: Let (x l ,y l )=(xz-1 ,3:2+ 1). I f y z = y 4 < Y 3 < r - 2  and the 
contour between the first two points belongs to the left-boundary particle, 

LI,(X) = {(x2-- l , y 2 +  1), ( x 3 -  1 ,y3+ 1), ( x a -  1, y4+  1), (X4, y4) } 

where the contour between the last two points belongs to the left-boundary 
particle. 
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Move R~: Let ( x 4 , Y 4 ) = ( x 3 + l , y 3  - 1). If Yl =Y3<Y2 and the con- 
tour between the first two points belongs to the left-boundary particle, 

R~(X)=  { (x l ,y l ) ,  (x~ + 1, y , -  1), (x_,+ 1 , y 2 -  1), (x~+ 1 , y 3 -  1)} 

where the contour between the last two points belongs to the left-boundary 
particle. 

Move L'd: Let ( x l , ) q ) = ( x 2 - 1 , y z - 1 ) .  I f y2=y4<Y3 and the con- 
tour between the first two points belongs to the right-boundary particle, 

L 'd(X){(x2-  l , y z -  1), ( x 3 -  l, y 3 -  l), (x 4 - 1,2 4 - 1), (X4, y4) } 

where the contour between the last two points belongs to the right-bound- 
ary particle. 

Move R',: Let (x4, Y4)=(x3+l ,  y3+l) .  If y l = y 3 < y , _ < r - 2 ,  
Y3 < b - 1 ,  and the contour between the last two points belongs to the 
right-boundary particle, 

R',(X) = { ( x , , y , ) ,  (x~ + l , y ,  + 1), (x2+  1 ,y2+  1), (x3+ 1,y 3 + 1)} 

where the contour between the first two points belongs to the right-bound- 
ary particle. 

For  the graphical interpretation of this long list of moves, see Fig. 7. 
To fully appreciate these moves, we list its main characteristics in 

several lemmas, which are at the core of our fermionic computation of the 
one-dimensional configuration sums. 

L e m m a  2. The elementary moves are reversible. That is, if there is 
a move of type M p from a configuration C to a configuration C', then 
there is a move of type 3~rp from C' to C. Here M = L  or R; s = u  or d; 
p - - . ,  ' or "; a n d / ~  = L, I2= R, zi = d, and d =  u. 

Fig. 7. 

(a) (b) 

R d R u 

(c) 

(a) The moves L,, and R,,. (b) The moves La and R,,. (c) The moves L', and R',,. (d) 
The moves L~t and R',,. 
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Proof. Let us show this for L , .  The other moves follow in similar 
manner. Let X be a sequence of four extrema as in Definition 8, satisfying 
y4<~y~_<y3<y~. Hence we can carry out L,, to obtain X ' = L , , ( X ) =  

r t t t r t p { (Xl, Y'I), (X2, Y2), (X3, Y3), (X4, Y4)}" From the definition of the move L,,, 
we find that y'4<~y~ - 1 < Y ' 3 - 1  <Yl-  We rewrite this to obtain y'4<y~ < 
y~ < y'~ and hence we can carry out the move R d to obtain Rd(X')  = X. | 

L e m m a  3. The moves leave the particle content n fixed. 

Proof. This follows immediately from the graphical representation of 
the moves shown in Fig. 7, where the dashed lines represent the baselines 
of the pure particles being moved. Note here that the graphical representa- 
tions of the moves R,, and Ld are the generic cases. Performing a move of 
type R,, to a sequence X as defined in Definition 8, with Y2 = Y 4 -  1, may 
lead to a "jump" of the baseline. A similar thing may happen when per- 
forming a move of type L d to a sequence with y_~ =Y4: 

L, I 

R o 

L e m m a  4. Given the minimal configuration, we cannot make any 
of the R-type moves. 

Proof we can only make moves of type R d if we have a sequence of 
X as in Definition 8, with Y4 < Y2. Clearly this does not occur. We can only 
make moves of type R,, if we have a sequence X, with Y2 < Y4- Again this 
does not occur. We cannot make a move of type R'd, since the left-bound- 
ary particle is in its pure form. Finally, we cannot make a move of type R',,, 
since all particles of charge j t> r - b - 1 have their peak at y = r - 2, and all 
particles of charge j ~< r - b - 1 have their endpoint at y = b - 1. II 

L e m m a  5. If a configuration is not the minimal one, we can always 
make a move of type R. 

Proof. By construction the minimal configuration is the only con- 
figuration that does not meet any of the conditions required for one of the 
R-type moves. In particular, all maxima (apart  from the initial point of the 
path) are of decreasing order and all minima of increasing order. This com- 
pletely fixes the path. If one of these two properties is broken somewhere 
along the path, we can always make an R-type move. I 



Fermionic Solution of ABF Model  69 

These first four lemmas can be combined to give the following 
proposition: 

Proposition 1. All nonminimal paths are generated by moves of 
type L from the minimal configuration. All nonminimal configurations can 
be reduced to the minimal configuration by moves of type R. 

Having established the above proposition, we can perform the actual 
calculation of the generation function cg of the moves of type L. Again we 
prepare some lemmas to obtain the desired result. 

L e m m a  6. Each move of type L generates a factor q. 

Proof. We show this for the typical case of move L,,. The total 
energy E of a sequence of extrema X is 

X 4 - -  1 

E= ~" j/2 (3.17) 
j = x l + l  
j ~" x 2 , x 3  

Similarly, the energy E' of the sequence X ' =  L.(X) is 

x 4  - -  1 

E' = ~, j/2 (3.17) 
j ~ x l + ]  

j-Tt: X2 - l , . v 3 - -  1 

Hence we find 

e - P l w - e l = q W - e = q  I (3.19) 

In the following it will be convenient to label the bulk particles in the 
minimal configuration, let t ingpj. /denote the/ th  particle of charge j, counted 
from the left. To now generate all nonminimal configurations, we give an 
ordering for carrying out the moves of type L. 

�9 The particle Pj.t is moved to the left using moves of type L, prior 
to any of the particles Pk .... with k ~<j, and with m > l if k =j .  

Assuming, this order (which will be justified later), we have the following 
result. 

Lemma 7. 

r - - 2  

m j = 2  E 
k = j +  1 

The maximal number of L-type moves pj. 1 can make is 

( k - j )  nk + m i n ( a -  1, r - j - 2 )  + min(b - 1, r - j - 2 )  

(3.20) 
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Proof. We prove this lemma in two steps. In the first step (3.20) is 
shown to be true for the minimal configuration, and in the second step it 
is shown that mj is invariant under having moved the particles Pk .... with 
k >j ,  prior to pj. i. 

Let us start to calculate the number of L-type moves needed to 
exchange the position of two particles of charge k and j, k > j ,  with j posi- 
tioned immediately to the right of k. In such a configuration of two par- 
ticles we have a sequence X =  {(x~, )'1) ..... (xs, Ys)} of points connected by 
straight lines, with ),~ = y 3 = y 5  and y 2 = k  and y4=j .  From these condi- 
tions it follows that move L,, can be carried out k - j  times to the sequence 
{(x2, y,_) ..... (xs, Ys)}. This gives a new sequence X' = { (x'~, y'~) ..... (x~, y~)}, 
with )"l = Ys,' Y2' -= Y4' = k, and Y3'= k - j .  From these conditions it follows 
that move Ld can be carried out k - j  times to the sequence { (x'~, y'~) ..... 
(x~,y~)}. This gives the final sequence X " =  {(x';,y'[) ..... (x~,y~)}, with 

y,( . . . .  /, y~ = --Y3--) 5, .I'~ =j ,  and k. The total number of moves carried out is 
therefore 2 ( k - j ) .  Since in the minimal configuration there are nk particles 
of charge k to the left of pj.~, this gives a total contribution 
Zk=~+~ ( k - - j )  nk. Apart from this, we encounter the situation where 
immediately to the left of p). ~ we have a segment of the right-boundary par- 
ticle. In such an instant we can perform L'd, moving Pi. ~ one step down. By 
construction of the minimal configuration, this occurs m i n ( b -  1, r - j - 2 )  
times. Finally, after having descended all the way down and having 
exchanged position with all particles of charge >j ,  pj. ~ is positioned 
immediately to the right of the left-boundary particle. It can then move up 
exactly m i n ( a - l , r - j - 2 )  times using move L',,. Adding up all the 
contributions gives (3.20). 

To see that (3.20) is unaltered by first having moved some (or all) 
particles of charge greater than j, consider a sequence of four points 
X-~- { (Xl ,  Y i),  (x2 ,  Y2), ( x 3 , 2 3 ) ,  (x4 ,  Y4)} connected by straight lines. First, 
let y, >3'2 <3'3 >3'4 and let pj., be positioned immediately to the right of 
the sequence, i.e., the origin of pj,~ is at (x4 ,  Y4). Also, let the contour 
between the first two points not belong to the left-boundary particle. The 
total number of L-type steps p j. ~ can make is then 

( Y3 - -  Y4 - - J )  + ( Y3 - -  Y2 - - J )  + ( Y l - -  Y2 - - J )  = X4 - -  X l - -  3j  

which is independent of the positions of the points (x,_, y,_) and (x 3, Y3). 
Hence, carrying out any moves to X does not change the number of moves 
pj. ~ can make relative to X. If the contour between the first two points does 
belong to the left-boundary particle, this is changed to x 4 - x ~ - 3 j +  
r - 2 -  m a x ( r -  2 - j ,  Yl), which is still independent of the relative positions 
of (x2,y2) and (x3 ,  Y3). Second, let y l < Y 2 > Y 3 < y  4 and let pj.~ be 
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positioned immediately, to the left of the sequence, i.e., the endpoint o f p j .  
is at (Xl, Yt)- Also, let the contour between the last two points not belong 
to the left-boundary particle. The total number of R-type steps pj. ~ can 
make is then 

(Y2 - ) ' 1  - J )  + ( Y2 - Y3 - J )  + ( Y4 - -  Y3 --J) = x 4  - -  X l - -  3 j  

which is independent of the positions of the points (x2,y2) and ( X 3 ,  Y3)-  

Thanks to reversibility, the number of L-type moves pj. ~ can make relative 
to X is also x 4 - x 3 -  3j. If the contour between the last two points does 
belong to the right-boundary particle, this again changes by a term inde- 
pendent of the detailed positions of (x2, Y2) and (x3, Y3). | 

L e m m a  8. The maximal number of L-type moves pj . t  can make is 
kj. ~_ ~, with kj. ~_ ~ the actual number of steps taken by pj. i-~- 

At last! We finally encounter the fermionic nature of our lattice gas. 

Proo f .  Assume pj, i -  t has made k z t -  ~ moves. Obviously, (before) the 
first kj . /-]  moves, pj, ~ "sees" the same contour immediately to its left as 
pj, ~_ ~ did, when carrying out its leftward motion. Since pj. ~_ ~ and pj. ~ are 
identical particles, pj.~ can thus carry out at least kj. ~_ ~ moves. Let pj, 
indeed carry out kj, /-  t moves. After that we encounter the situation of two 
pure particles of charge j, with the endpoint of the first being the origin of 
the next. The rightmost of the two can neither carry out L ,  or La ,  since (in 
the notation of Definition 8) Yl =Y3. | 

We note that the above two lemmas justify the chosen ordering of 
carrying out the leftward moves. First of all, by Lemma 8 it follows that 
we indeed have to move p j, ~_ t before pj. ~. Furthermore, we have to move 
Pk,,, before pj, ~, k > j ,  since the elementary moves only allow for leftward 
motion of pure particles; see Fig. 7. Finally, we have seen in the proof of 
Lemma 7 that the number of moves the particles of charge j can make is 
independent of the actual configuration of particles of charge >j .  

Lemma 9. The contribution to the generating function c~ of the 
particles of charge j is given by 

~ . =  [ mj +n j ]  (3.21) 
L nj J 
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Proof. 
k-variables) 

From Lemmas 6-8 we get (dropping the subscripts j in the 

n 9 kl k , , j -  I 

~ ' =  E E "'" E q,, +,._+ ... +z% (3.22) 
klTO k2=0 knj=O 

We can (re)interpret this sum as the generating function of all partitions 
with largest part less than or equal to mj and number of parts less than or 
equal to nj. Thus we get (3.21); see, e.g., ref. 9. 

Combining the above lemma with Lemma 1, we can state our second 
proposition as follows. 

P r o p o s i t i o n  2. The partition function of the one-dimensional 
Fermi gas is given by 

, -3 , -3 [mj+n21 ----~ Z(n; a,b)=q em~n I-I ~.=qZ,,~o [-I (3.23) 
j =  1 j =  n j  

with Em~n given by (3.16) and mj by (3.20). 

To recast this result into a simpler from, we eliminate the n-variables 
in favor of the m-variables. To do so we use the simple formulas 

--min(p, q -  1) + 2min(p, q) - rain(p, q +  1) =fie, q, 

-m in (p ,  q -  1)+ 2min(p, q ) = p  + fp, q, 

p,q- l>~O 

O~<p~<q+l 

(3.24) 

to get 

- m j _ ,  + 2 m i - m j +  , = L f z ,  + fj.,._~_, + J j . , - b - , - 2 n j ,  j =  1,..., r - 3  

(3.25) 

with m o =m,._ 2 = 0. To obtain the j =  1 case of the above equation we 
made use of the completeness relation (3.8). Introducing the ( r - 3 ) -  
dimensional vectors m and e i with entries (m) i = mj and (ej)k = fz k, we can 
rewrite (3.25) as 

n = � 8 9  + e . . . .  1 + e , _ b - I  - -  C m )  (3.26) 

Substituting this into Eq. (3.16) and (3.23), we arrive at the following 
simple result. 
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Proposition 3. The partition function of the Fermi gas of content 
, reads 

r-3 � 8 9  
( , /4) . :o.-(~/ . )  ..... ' l-I [ Z ( n ; a , b ) = q  - - -  

with m obtained through Eq. (3.26). 

4- e~_._, 4- er_,,_ l)j] 
/ mj 

(327) 

3.4. Computation of EL(a,  b)  

Having computed the partition function of our Fermi gas, it is only a 
trivial step to obtain the grand-canonical partition function EL(a, b), 
defined in (3.6). In particular, 

EL(a, b) = ~  Z(n; a, b) (3.28) 
n 

Since our final result (3.27) for Z is entirely expressed through the 
m-variables, it is natural to also express the above sum over n in terms of 
a sum over m. From (3.20) and the fact that the occupation numbers nj 
cannot be negative, we get 

mj = min(a - 1, r - j -  2) + min(b - I, r - j -  2) + 27/>/o, j =  1,..., r -  3 

(3.29) 

Hence we obtain the grand-canonical partition function as 

EL(a, b) = ~(ol  q( i / 4 ) m T C m  _ ( I / 2 )  . . . . . .  I 

m 

• 
j =  1 mj 

where the (0)'in the sum over m denotes the restriction (3.29). 

(3.30) 

3.5. Computation of XL(a, b) 

To finally obtain the one-dimensional configuration sum XL(a,  b), 
we have to carry out the sum (3.5), where we recall that E L ( a , b ) : =  
3L(a, b, 0, r). 
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To get the expression for Z t ( a - i t ,  b - I t ,  O, r - i t ) ,  we have to make  
the substitutions a ~ a - i t ,  b ~ b - i t ,  and r ~ r - i t  in (3.30). This exactly 
gives back (3.30) apart  from the fact that  the restriction on the sum 
changes to 

( m i n ( a -  1, r - j - 2 )  

m j = ~  + m i n ( b - l , r - j - 2 ) - 2 p + 2 Z > _ . o ,  

(0, 
j =  1 ..... r - - i t - 3  

j = r - - i t - - 2  ..... r - - 3  

(3.31) 

Denot ing this restriction as (it), we can write 

m i n ( a , b ) -  I 
XL(a. b ) =  Z Z',') q ( l / 4 ) m T C m - - , l / 2 )  . . . . . .  , 

I t = 0  m 

3[ 1 x 1--[ � 8 9  +e, .  . . . .  l+e , .  , _ l ) j  
j= l  mj 

Combining the sum over m restricted to (ll) and the sum over it gives 

(3.32) 

XL( a, b) = ~ '  ql l/4),.rc., _ ( l/._) ... . . . .  , 

m 

r3[  1 x 1-[ ( J m + L e l  +e , ._ , ,_ l  + e r  . . . .  I)j 
j= l  mj 

with the prime denot ing yet another  restriction, 

(3.33) 

mj - min(a  - 1, i" - j  - 2) + min(b - 1, r - j  - 2), j = l  ..... r - 3  

(3.34) 

Unfortunately,  we have not  found an elegant way to prove this simplifica- 
tion and we defer it till the appendix. 

To rewrite the above form of  the restriction in the form conjectured in 
refs. 5 and 10 we note the identity 

min(p,  q )  ~ t~p+ l . q " } - ( ~  p +  3, q " [ - t ~ p +  5, q"[- . . .  

"q- (~ l , q "71- (~ 3, q "[- t~ 5, q "9l - " ' "  (3.35) 

for p, q >/0. Using this twice, once setting setting p = a - 1 and q = r - j -  2, 
and once setting p = b - 1  and q = r - j - 2 ,  we get mj =(Q~.b)j ,  with Q,,,b 
given by (2.2). 
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We can thus conclude this section by formulating our main result as 
a theorem. 

Theorem 1. For  all a = 1 ..... r -  1, b = 1, ..., r -  2, and 
L -  l a -  b l e  27/>.o, the one-dimensional configuration sum (1.5) is given by 

XL(a , b) = 2 q (l/4)mrCm-(l/2) ....... ' 

m~Qa.h 

x 1-I ( J m  + Lel  + e,._~,_ j + e, ._,_ j): 
j =  t mj 

(3.36) 

where Q. .b is given by (2.2). 

4. B O S O N I C  S O L U T I O N  OF T H E  ABF  M O D E L  

In this section we recall the method for computing the sum (1.5) to 
obtain (up to a prefactor) the right-hand side of Melzer's identities (2.1). 
This alternative approach to the sum (1.5) is the one originally taken by 
Andrews, Baxter, and Forrester ~ ~-'~ and is given here mainly for reasons of 
completeness. 

As a first step we introduce a function YL(a, b) defined exactly as for 
XL(a, b) in (1.5), but with O'L+ 1 = b - - 2  instead of O'L+ t =b .  We can then 
immediately infer the recurrence relations 

XL(a,b)=YL_l(a ,b+l)+qL/ZXL_da,  b--1), l<<.b<~r-2 (4.1) 

YL(a ,b)=XL_l (a ,b- - l )+qL/2yL_, (a ,b+l ) ,  2 < ~ b ~ < r - 1  (4.2) 

subject to the initial and boundary conditions 

Xo(a, b)=Yo(a, b ) = 5 , . b  (4.3) 

XL(a, O) = YL(a, r) = 0 (4.4) 

To state the solution to these equations, we quote the following theorem 
established by Andrews, Baxter, and Forrester: ct2~ 

T h e o r e m  2. For 
let XL(a, b, c): =XL(a, b) 
c = b - 1. Then 

L>~O, 1 <~a, b, c<~r- 1, c = b +  1, L +a-b=-O,  
if c = b + l  and XL(a,b,c): = Y L ( a , b )  if 
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Xt(a, b, c) 

=q,a-b,(a-c,/4 ~ {qj~r,r--llj+,',b+c--I,/2--,,'--Ila,[ 
+ :  _ + �89 

L 

+ a - b )  - r j  

(4.5) 

To prove this, we note that (4.5) satisfies (4.1), thanks to 

+qm ,46, 

Similarly, the proof that (4.5) satisfies (4.2) follows by application of 

+ [N- 
To show that the initial condition (4.3) holds, note (1.3) as well as the 
range of a and b. This gives j = 0 as the only nonvanishing term in the sum, 
and hence Xo(a, b, c)=6~,.b. Finally, XL(a, 0 ) = 0  follows from (4.5) upon 
substitution of b = 0, c = 1 and making the change of variables j ~ - j  in 
the first term within the curly braces. Analogously, YL(a, r) follows from 
(4.5) upon substituting b = r, c = r - 1  and making the change of variables 
j ~ - j -  1 in the first term within the braces. | 

To obtain the desired expression for Xt(a, b), we set c = b + 1 in (4.5), 
yielding 

j=_~ �89 + a - b ) - r j  

L 
-q"r-"J+b'~~ [ � 8 9  } (4.8) 

Combined with Theorem 1 at the end of Section 3, this proves Melzer's 
polynomial identities (2. I ). 

In conclusion to this section we make two remarks about the solution 
(4.8). First, the introduction of the auxiliary function YL(a, b) could have 
been avoided, since from the definition (1.5) one can obtain recurrences 
that only involve the function XL(a, b). In particular, 

"qL/2XL_ i(a, b - 1 ) + q~L - ll/2XL - z(a, b + 1 ) 

XL(a,b)=. +(1--qL-l )XL_2(a,b) ,  b = l  ..... r - - 3  (4.9) 

qL/2XL_l(a,b--1)+Xr_2(a,b), b = r - 2  
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with the same conditions on XL(a, b) as in (4.3) and (4.4). The price to be 
paid for this is that, in order to show that (4.8) solves these relations, we 
need double application of (4.6) and (4.7). Interestingly, though, in terms 
of the fermionic left-hand side of (2.1), the recurrences (4.9) seem to be 
more natural; see e.g., ref. 11. 

A second remark we wish to make is that like the fermionic result 
(2.1), also (4.8) has a nice interpretation in terms of restricted lattice paths. 
To see this, note that in order to obtain the generating function for the 
restricted lattice paths, we can first compute the generating function G/ . (~)  
of restricted lattice paths without the restriction 0 <~y <~r -2 .  Since all 
paths that go below y---0 and above y = r -  2 have now incorrectly been 
included, we have to subtract the generating function GL(~) of paths that 
somewhere go below y = 0 ,  as well as the generating function GL(T) of 
paths that somewhere go above y = r - 2 .  However, we are again in error, 
since paths that go below y = 0 as well as above y = r - 2  have been sub- 
tracted twice. To correct this, we add GL(~, T) and Go(T, +), which are, 
respectively, the generating function of all paths that somewhere go above 
y = r - 2 after having gone below y = 0 and the generating function of all 
paths that somewhere go below y = 0 after having gone above y = r - 2 .  
Again this is no good, and we keep continuing the process of adding and 
subtracting generating functions. In formula this reads 

with 

X~(a, b)= y~ {6~(J,T.--+T)+G~(T~.-. T+) 
j>~0 ~ 

2j 2 j + 2  

- GL(J,T "�9 '~,L) -- GL(']',L "" �9 .[,T)} (4.10) 
2 j + l  2 j + ]  

GL(+T.. +T) 
2j 

the generating function of all lattice paths that contain a sequence of 
extrema { (x l ,y l ) ,  (x2, y2), ..., (x2j, y2j)}, with x i > x  k for j >  k, y2~_] <0,  
and Y2k > r -  2, and with the other generating functions defined similarly. 
Of course, since we consider paths of fixed, finite length, the above series 
only contains a finite number of nonzero terms. Computing the functions 
Gz., we obtain 



78 Warnaar 

Gz(J,T..',~T) r - '  "/~"~"-t~j-rb+~"-')m "~ L ] 
l ( L - a + b ) - - r j  2j 

{,ljlr(r_l)j+rb_(r_l)a)[l L ]  
GL(T.L �9 - - TI) =J,.b q (L + a - b ) - r j  2j 

E ] GL(~T...~T.L) = f,,_~ qW.-,,j+b~l,j+~,~ I( L - a  - b )  - r j  
2j+! 

GL(TI. �9 �9 �9 ,~T) = f .~ ~ q"~- l ~j+ 1 ~ - b ~ j  + l I+ ~,) 

2j+l 

(4.11) 

L ] (4.12) 
x l ( L + a + b ) _ r ( j + l  ) 

for all j t> 0. Substitution in (4.10) correctly reproduces the expression (4.8). 
We remark that the above method for computing XL(a, b) is merely a 
rewording of the sieving technique developed by Andrews in the context of 
partition theory; see, e.g., ref. 9. For the details of the calculation leading 
to (4.11) we refer the reader to ref. 9, Chapter 9, and ref. 24. 

5. S U M M A R Y  AND DISCUSSION 

In this paper we have computed, using the combinatorial technique 
developed in part I, all one-dimensional configuration sums of the ( r - 1 ) -  
state ABF model. In contrast to the earlier results of Andrews, Baxter, and 
Forrester, our expressions are of so-called fermionic type, and provide a 
new proof of polynomial identities conjectured by Melzer. In the limit of an 
infinitely large lattice, these identities imply the fermionic expressions for 
the Ir--l.rl Zb,,, (q) Virasoro characters as conjectured by the Stony Brook 
group. Using the Andrews-Bailey construction, we also proved fermionic 
expressions for several nonunitary minimal Virasoro characters. 

In conclusion to this paper we make a few comments. First, motivated 
by the ground-breaking papers of the Stony Brook group, 15" 19,2o,25,26) a 
vast literature has arisen containing numerous claims for identities of the 
Rogers-Ramanujan type. el~ 27-34) We expect that our fermionic method for 
computing generating functions of restricted lattice paths can be applied to 
obtain proofs of several of these conjectures. Other recently developed 
approaches toward either proof or increased understanding of Fermi-Bose 
character identities can be found, e.g., in refs. 6, 7, 1 l, and 35--47. 
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A second remark is that in the q = 1 limit, Melzer's identities reduce to 
identities for the number of L-step paths on the Ar_l Dynkin diagram, 
with fixed initial and final positions. Viewed in this way, it turns out that 
Melzer's identities are in fact a special one-dimensional case of polynomial 
identities for q-deformed path counting on arbitrary d-dimensional cuboids. 
In the limit of infinitely long paths, these "cuboid" identities decouple into 
products of Virasoro character identities. The simplest example beyond 
Melzer's case is the q-deformation of a path-counting formula on a 
"railroad" of length r - 3 ,  reading 

. . . . . .  . . . .  1 m ------ Qa ,  h / / 1  1 j ~ 2 111j 

j = _ ~  2 ( r - l ) j + b - a  2 

-q' lr-l lJ+b'lrJ+"'[2(r_l)L+b+a]2} (5.1) 

fo ra ,  b = l ,  r - 2  and L/>0. Here N .... [,,,]2 are q-deformed trinomial coef- 
ficients defined a s  1481 

IN] = ~ q~,k+,,,,[Nl[N-k l 
m 2 k~o k J [ k + m J  (5.2) 

A discussion for the case of arbitrary cuboids will be presented else- 
where.(49 ) 

A final remark is that the result (3.36) proven in this paper has nice 
partition-theoretic interpretations. One  follows from the work of Andrews 
et al.J z4~ stating that the one-dimensional configuration sum Xz(a, b) is the 
generating function of all partitions into at most 1 (L + a - b )  parts, each 
part <~�89 such that the hook differences on the ( 1 - b ) t h  
diagonal are >~b -a +l  and those on the ( r - b - 2 ) t h  diagonal are 
~< b -  a. Another interpretation follows by viewing a restricted lattice path 
with total energy E as a partition of 2 E =  21 + 22 + --- +2M, with 2j the 
j t h  x-position counted from the right, where the path has no extremum. 
With this map from paths to partitions, Xz(a, b; q'-) is the generating func- 
tion of partitions into parts 21,2 2 . . . . .  2M,  with 2~t< . - -  < 4 ' ] . 2 < 4 1  ~<L, and 

1 -b<<.u j -d j<~r-b-2 ,  

u M - d ~ t = a - b ,  a - b -  1 

Vj= 1 .... , M  (5.3) 

Here uj is the number of parts 2, = a - b + k for k ~<j and dj is the number 
of parts 2k ~ a -- b + k for k ~<j. 
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APPENDIX A. PROOF OF EQUIVALENCE OF (3.321 
AND 13.331 

In this appendix we prove that (3.32) can be simplified to yield the 
final result (3.33) for the one-dimensional configuration sums. 

The problem with this step is that the following statement turns out to 
be false: 

min{a,  b) --  I 

Z Z '" )  = Z ' (A.1) 
II = 0 m m 

where (p) denotes the restriction (3.31) and the prime the restriction (3.34). 
In particular, the number  of vectors m which are in accordance with the 
restriction (3.34) exceed the number of vectors m in accordance with the 
restriction (3.31) summed over/z.  What  we will show now is that each of 
the additional m's allowed by the sum on the right-hand side gives a 
vanishing contribution. 

Let us assume that min(a, b) = M +  1, so that we have M +  1 terms in 
the sum over ~t. Let us further define S~, as the set of m-vectors allowed by 
the restriction (3.31). In other words, m ~ St, 

m nlr_M_ 3 >~ M--I~ 
mr_M+k_3>~M--kt--k+l,  k = l  ..... M - p  

m r _ t , _  2 . . . . .  m r _  3 = 0  (A.2) 

mj = min(a - 1, r - j  - 2) -t- min(b - 1, r - j  - 2), j = 1 ..... r - 3 

Note that S ,  c~ S, = ~ for/~ :~ v. We now use that [,,N] is nonvanishing for 
0 ~<m ~< N only. From this and the summand of (3.32), we infer 

O<~mi<~�89 . . . .  i.j+6,._b_l,j), j = 2  ..... r - - 3  

(A.3) 

with mr_ 2 = 0. From this one immediately sees that 

mj>~m k for j < k  (A.4) 

However, interestingly enough, this condition is not yet good enough for 
our purposes. Instead we need to use the fact that rain(a, b ) =  M +  1. This 
combined with (A.3) gives rise to the following ordering for all 
j = r - M - I  ..... r - 3 :  

if mj>~l~mj_~>~k+l ,  k = l  ..... M - r + j + 2  (A.5) 

in addition to (A.4). 
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In the following we use the notation A u B = C to mean A u B___ C 
and 

~ f ( m ) =  ~ f ( m )  (A.6) 
m E A  m ~ B  m~C 

w i t h f ( m)  the summand in (3.32). 
We now proceed by induction. We set 

T o - - S ~ ,  and claim that T~ is given by 
T,, = T,,_ l w SM .. . .  with 

f 
m I m r _ M + n _  3 >1 0 

m r _ M + n _ 2 =  . . .  = m r _ 3 = O  

mj = m i n ( a -  1, r - j - 2 )  + m i n ( b -  1, r - j - 2 )  
(A.7) 

For n = 0 this is correct by construction. To show the induction step, set 
p = M - n  - 1 in (A.2). This yields 

t 
m l  , . . . ,  m r - - M - - 3  >1 11 "{- l 

mr_M+k_3>>.n--k+2, k = l  ..... n + l  

lTlr_M+,,1_ 1 = . . .  = m r _ 3 = 0  

mj = m i n ( a -  1, r - j - 2 )  + m i n ( b -  1, r - j - 2 )  

(A.8) 

Using the conditions (A.4) and (A.5) with j=  r -  M +  n - 2 ,  we can com- 
bine the above two equations to find that T,,+I is given by (A.7) with n 
replaced by n + 1. This proves our claim (A.7) and we obtain the desired 
expression for TM by setting 17 = M in (A.7). This indeed gives the restric- 
tion (3.34) we set out to prove. | 
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Note Added. After completing this manuscript I received a preprint 
by A. Schilling 15~ in which (2.1) as well as (2.4) are proven as special cases 

polynomial i~nti t ies  for finitized branching functions of the cosets 
su(2)M X SU(2)N/SU(2)N+M. The result of ref. 50 is based on recursion 
techniques and generalizes the work of BerkovichJ 11) 
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