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Abstract. An empirical exploration of five of Ramanujan’s intriguing false

theta function identities leads to unexpected instances of Bailey’s transform

which, in turn, lead to many new identities for both false and partial theta
functions.

1. Introduction

On page 13 of Ramanujan’s Lost Notebook [9] (c.f. [4, Section 9.3, pp. 227–232],
we find the following five identities:

∞∑
n=0

(−1)nqn(n+1)(q; q2)n
(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1)/2,(1.1a)

∞∑
n=0

(q; q2)2n q
n

(−q; q)2n+1
=
∞∑
n=0

(−1)nqn(n+1),(1.1b)

∞∑
n=0

(q; q2)n qn

(−q; q)2n+1
=
∞∑
n=0

(−1)nq3n(n+1)/2,(1.1c)

∞∑
n=0

(q;−q)2n qn

(−q; q)2n+1
=
∞∑
n=0

(−1)nq2n(n+1),(1.1d)

∞∑
n=0

(q;−q)n(−q2; q2)n qn

(−q; q)2n+1
=
∞∑
n=0

(−1)nq3n(n+1),(1.1e)

where (A; q)n = (1−A)(1−Aq) · · · (1−Aqn−1) and |q| < 1.
From the right-hand sides of these identities we see that each is an instance of

the false theta series (c.f. [10, §9])

(1.2)
∞∑
n=0

(−1)nqn(n+1)/2

with q replaced respectively by q, q2, q3, q4 and q6. However, this regularity is
completely obscured in the left-hand sides.
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2 ANDREWS AND WARNAAR

On the other hand, each of the five left-hand sides is of the form

(1.3)
∞∑
n=0

t1t2 · · · tn qn

(−q; q)2n+1
,

and one naturally asks: Did Ramanujan find all the instances of (1.3) in which the
resulting power series is a false theta series (not necessarily an instance of (1.2))?

A computer algebra search using MACSYMA revealed the instances z = 1, −1,
i, eπi/3, and e2πi/3 of the following identity which apparently escaped Ramanujan’s
attention:

∞∑
n=0

(−zq; q2)n(−z−1q; q2)n qn

(−q; q)2n+1
=
∞∑
n=0

1− z2n+1

1− z
z−nqn(n+1)(1.4)

=
∞∑
n=0

1 + z + z2 + · · ·+ z2n

zn
qn(n+1).

Once (1.4) has been discovered, the next questions are: (1) How do you prove
it, and (2) Where does it fit in the classical theory of q-series?

In Section 2, we lay the ground work for answers to these questions by considering
instances of a bilateral version of the classic Bailey Transform. In Section 3, we
derive four identities that will yield a number of applications of the results in
Section 2 to false and partial theta functions. In Section 4 we prove (1.1a)–(1.1d),
and in Section 5 we prove a number of related results including the Lost Notebook
entry [4, p. 239, Entry 9.5.3]

(1.5)
∞∑
n=0

qn

(−q; q2)n+1
=
∞∑
n=0

(−1)nq2n(3n+2)(1 + q4n+2),

the elegant

(1.6)
∞∑
n=1

(−q2; q2)n−1 q
n

(−q; q2)n(1 + q2n)
=
∞∑
n=1

n qn
2
,

and the rather curious

(1.7)
∞∑
n=0

(−q4; q4)n−1 q
n

(−q2; q2)n−1(−q; q2)n+1
= 1 +

∞∑
n=1

(−1)f(n)q2n,

where
f(n) = n+ k if 2k2 − 2k + 1 ≤ n ≤ 2k2 + 2k.

We conclude with a few comments about unexplored aspects of the Bailey Trans-
form.

2. The Bilateral Bailey Transforms

In [5, p. 1], W. N. Bailey first presented the basic result which has become
known as Bailey’s Transform [16, Section 2.4, pp. 58–74]. If

βn =
n∑
r=0

αrun−rvn+r and γn =
∞∑
r=n

δrur−nvr+n,

then
∞∑
n=0

αnγn =
∞∑
n=0

βnδn,
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subject to conditions on the four sequences αn, βn, γn and δn which make all the
infinite series absolutely convergent.

For our purposes we require two bilateral versions of Bailey’s Transform.

Lemma 2.1 (Symmetric Bilateral Bailey Transform). If

(2.1) βn =
n∑

r=−n
αrun−rvn+r and γn =

∞∑
r=|n|

δrur−nvr+n

then

(2.2)
∞∑

n=−∞
αnγn =

∞∑
n=0

βnδn,

subject to conditions on the four sequences αn, βn, γn and δn which make all the
relevant infinite series absolutely convergent.

Proof. ∞∑
n=0

βnδn =
∞∑
n=0

δn

n∑
r=−n

αrun−rvn+r

=
∞∑

r=−∞
αr

∞∑
n=|r|

δnun−rvn+r

=
∞∑

r=−∞
αrγr. �

Lemma 2.2 (Asymmetric Bilateral Bailey Transform). Let m = max{n,−n− 1}.
If

(2.3) βn =
n∑

r=−n−1

αrun−rvn+r+1 and γn =
∞∑
r=m

δrur−nvr+n+1,

then
∞∑

n=−∞
αnγn =

∞∑
n=0

βnδn,

subject to conditions on the four sequences αn, βn, γn and δn which make all the
relevant infinite series absolutely convergent.

Proof. See the proof of Lemma 2.1. �

In the remainder of the paper we refer to pairs of sequences (αn, βn) satisfying
(2.1) or (2.3) as Bailey pairs, dropping the adjectives (a)symmetric and bilateral.
Similarly, we refer to pairs (γn, δn) satisfying (2.1) or (2.3) as conjugate Bailey
pairs.

3. Conjugate Bailey pairs

We shall obtain four conjugate Bailey pairs (γn, δn). The first two are related
to the Symmetric Bilateral Bailey Transforms and the last two to the Asymmetric
Transform.
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Theorem 1. If we take un = vn = 1/(q2; q2)n and

(3.1a) δn =
(q2; q2)2n qn

(−q; q)2n+1

in the Symmetric Bilateral Bailey Transform, then

(3.1b) γn = q|n|
∞∑
j=0

qj
2+(2|n|+1)j = q−n

2
∞∑

r=|n|

qr(r+1).

Proof. Let m = |n|. After substituting (3.1) as well as un = vn = 1/(q2; q2)n in
(2.1) we obtain the identity

∞∑
r=m

(q2; q2)2r qr

(−q; q)2r+1(q2; q2)r−m(q2; q2)r+m
= q−m

2
∞∑
r=m

qr(r+1).

To prove this we begin by shifting the summation index r to r +m on both sides.
Using (A; q)n+k = (A; q)k(Aqk; q)n this leads to

(3.2)
∞∑
r=0

(q4m+2; q2)2r qr

(−q2m+2; q)2r(q2; q2)r(q4m+2; q2)r
= (−q; q)2m+1

∞∑
r=0

qr(r+2m+1).

Instead of proving this we will establish the more general

(3.3)
∞∑
r=0

(a2; q2)2r qr

(−aq; q)2r(q2; q2)r(a2; q2)r
=

(−q; q)∞
(−aq; q)∞

∞∑
r=0

arqr
2
,

from which (3.2) follows by setting a = q2m+1.
Using (A; q)2n = (A; q2)n(Aq; q2)n and (A2; q2)n = (A; q)n(−A; q)n, and em-

ploying standard q-hypergeometric notation, (3.3) may also be stated as

3φ2

(
a,−a, aq
a2,−aq2

; q2, q
)

=
(−q; q)∞
(−aq; q)∞

∞∑
r=0

arqr
2
.

By virtue of the transformation [8, p. 100; Exercise 3.2]

3φ2

(
a,−a, b
a2, bz

; q,−z
)

=
(z; q)∞
(bz; q)∞

2φ1

(
b, bq

a2q
; q2, z2

)
, |z| < 1

this simplifies to

2φ1

(
aq, aq3

a2q2
; q4, q2

)
=

(−q2; q2)∞
(−aq; q2)∞

∞∑
r=0

arqr
2
.

For later reference we will replace a→ a/q and then rescale q2 to q, viz.,

(3.4) 2φ1

(
a, aq

a2
; q2, q

)
=

(−q; q)∞
(−a; q)∞

∞∑
r=0

arq(
r
2).

By Heine’s transformation [8, p. 359, Equation (III.2)]

2φ1

(
a, b

c
; q, z

)
=

(c/b; q)∞(bz; q)∞
(c; q)∞(z; q)∞

2φ1

(
abz/c, b

bz
; q,

c

b

)
(3.4) further simplifies to

∞∑
r=0

(a; q2)r
(aq; q2)r

ar =
∞∑
r=0

arq(
r
2), |a| < 1.
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Since
∞∑
r=0

arq(
r
2) =

∞∑
n=0

a2nqn(2n−1)(1 + aq2n)

this may be recognized as a special instance of the Rogers–Fine identity [7, Equation
(14.1)]

∞∑
n=0

(a; q)n
(b; q)n

zn =
∞∑
n=0

(a; q)n(azq/b; q)n
(b; q)n(z; q)n+1

(1− azq2n)(bz)nqn(n−1). �

Theorem 2. If we take un = vn = 1/(q2; q2)n and

(3.5a) δn = (q; q)2n qn

in the Symmetric Bilateral Bailey Transform, then

(3.5b) γn =
∞∑
r=0

q(
r+1
2 )+(2r+1)|n| = q−2n2 ∑

r=2|n|

q(
r+1
2 ).

Proof. Let m = |n|. After substituting (3.5) as well as un = vn = 1/(q2; q2)n in
(2.1) we are to prove the identity

∞∑
r=m

(q; q)2r qr

(q2; q2)r−m(q2; q2)r+m
= q−2m2

∞∑
r=2m

q(
r+1
2 ).

On the left we shift r → r +m and on the right r → r + 2m. Hence
∞∑
r=0

(q2m+1; q)2r qr

(q2; q2)r(q4m+2; q2)r
= (−q; q)2m

∞∑
r=0

q(
r+1
2 )+2rm.

This may readily be recognized as (3.4) with a = q2m+1. �

The next two theorems claim conjugate Bailey pairs corresponding to the Asym-
metric Bilateral Bailey transform.

Theorem 3. If we take un = vn = 1/(q2; q2)n and

(3.6a) δn =
(q2; q2)2n+1 q

n

(−q; q)2n+2

in the Asymmetric Bilateral Bailey Transform, then

(3.6b) γn =
∞∑
r=0

qr(r+2)+(2r+1)m = q−n(n+1)
∞∑
r=m

qr(r+2),

where m = max{n,−n− 1}.

Proof. First we observe that by un = vn and m = max{n,−n− 1} we have

(3.7) γn =
∞∑
r=m

δrur−nur+n+1 =
∞∑
r=m

δrur−mur+m+1.

Substituting (3.6) and un = 1/(q2; q2)n, and using that n(n+ 1) = m(m+ 1), this
yields

∞∑
r=m

(q; q)2r+1 q
r

(−q; q)2r+2(q2; q2)r−m(q2; q2)r+m+1
= q−m(m+1)

∞∑
r=m

qr(r+2).
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After the usual shift in summation indices this may be recognized as the a = q2m+2

instance of (3.3). �

Theorem 4. If we take un = vn = 1/(q2; q2)n and

(3.8a) δn = (q; q)2n+1 q
n

in the Asymmetric Bilateral Bailey Transform, then

(3.8b) γn =
∞∑
r=0

qr(r+3)/2+(2r+1)m = q−2n(n+1)
∞∑

r=2m

qr(r+3)/2,

where m = max{n,−n− 1}.

Proof. Substituting (3.8) and un = 1/(q2; q2)n into (3.7) and again using that
n(n+ 1) = m(m+ 1) yields

∞∑
r=m

(q; q)2r+1 q
r

(q2; q2)r−m(q2; q2)r+m+1
= q−2m(m+1)

∞∑
r=2m

qr(r+3)/2.

By a shift in the summation indices this may be recognized as the a = q2m+2

instance of (3.4). �

4. Ramanujan’s False Theta Identities

Theorem 1 now allows us to give uniform proofs of (1.1a)–(1.1d). Namely, by
combining the Symmetric Bilateral Bailey Transform with Theorem 1, we obtain

Theorem 5. If for n a nonnegative integer

(4.1) βn =
n∑

r=−n

αn
(q2; q2)n−r(q2; q2)n+r

,

then

(4.2)
∞∑
n=0

(q2; q2)2n qn βn
(−q; q)2n+1

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

subject to conditions on αn and βn that make the series absolutely convergent.

Proof. We use the conjugate Bailey pair (γn, δn) of Theorem 1 in the Symmetric
Bilateral Bailey Transform with un = vn = 1/(q2; q2)n. Hence

∞∑
n=0

(q2; q2)2n qn βn
(−q; q)2n+1

=
∞∑
n=0

βnδn

=
∞∑

n=−∞
αnγn

=
∞∑

n=−∞
αnq

−n2
∞∑

j=|n|

qj(j+1)

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

. �
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Before proceeding we remark that the Bailey pair (4.1) may readily be related
to the more standard definition of such pairs [2, 3, 17]. Specifically, if we define
α0 = α0 and, for n > 0, αn = αn + α−n, then (αn, βn) is a Bailey pair with
a = 1 and q → q2. From this comment it follows that we may utilize L. J. Slater’s
compendium of Bailey pairs [14], as well as other sources [5, 2], to obtain false theta
identities.

Theorem 6. Identity (1.1a) is valid, i.e.,

(4.3)
∞∑
n=0

(−1)nqn(n+1)(q; q2)n
(−q; q)2n+1

=
∞∑
n=0

(−1)nqn(n+1)/2.

Proof. We apply Theorem 5 with [14, G(4)]

αn = (−1)nqn(n+1)/2 and βn =
(−1)nqn

2
(q; q2)n

(q2; q2)2n
.

Thus

∞∑
n=0

(−1)nqn(n+1)(q; q2)n
(−q; q)2n+1

=
∞∑
n=0

(q2; q2)2nqnβn
(−q; q)2n+1

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

=
∞∑
j=0

qj(j+1)

j∑
n=−j

(−1)nq−(n
2).

It is an easy exercise in mathematical induction on j to show that

(4.4)
j∑

n=−j
(−1)nq−(n

2) = (−1)jq−(j+1
2 )

and (4.3) follows. �

Theorem 7. Identities (1.1b) and (1.4) are valid.

Proof. Clearly (1.1b) is the special case z = −1 of (1.4). Furthermore with

(4.5a) αn = znqn
2

in (4.1), we see that

(4.5b) βn =
n∑

r=−n

znqn
2

(q2; q2)n−r(q2; q2)n+r
=

(−zq; q2)n(−z−1q; q2)n
(q2; q2)2n
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by [1, p. 49, Ex. 1]. Consequently, by Theorem 5,
∞∑
n=0

(−zq; q2)r(−z−1q; q2)n qn

(−q; q)2n+1
=
∞∑
n=0

(q2; q2)2n qn βn
(−q; q)2n+1

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

=
∞∑
j=0

qj(j+1)

j∑
n=−j

zn

=
∞∑
j=0

1− z2j+1

1− z
z−jqj(j+1). �

In passing we note that for z = 1 the identity (1.4) simplifies to
∞∑
n=0

(−q; q2)n qn

(−q2; q2)n(1 + q2n+1)
=
∞∑
n=0

(2n+ 1)qn(n+1)

which is similar to (1.6). Also, for z = q2, the sum on the right of (1.4) telescopes
and we obtain

(1− q)
∞∑
n=0

(−q; q2)n qn

(−q2; q2)n+1
= 1.

Theorem 8. Identity (1.1c) is valid.

Proof. We apply Theorem 5 with [14, G(1)]

αn = (−1)nqn(3n+1)/2 and βn =
(q; q2)n

(q2; q2)2n
.

Thus
∞∑
n=0

(q; q2)nqn

(−q; q)2n+1
=
∞∑
n=0

(q2; q2)2nqnβn
(−q; q)2n+1

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

=
∞∑
j=0

qj(j+1)

j∑
n=−j

(−1)nq(
n+1

2 )

=
∞∑
j=0

(−1)jq3j(j+1)/2,

by (4.4) with q replaced by 1/q. �

Theorem 9. Identity (1.1d) is valid.

Proof. We apply Theorem 5 with [14, H(2)]

αn = (−1)nqn(2n+1) and βn =
1

(−q;−q)2n
.
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So
∞∑
n=0

(q;−q)2nqn

(−q; q)2n+1
=
∞∑
n=0

(q2; q2)2n qn βn
(−q; q)2n+1

=
∞∑
j=0

qj(j+1)

j∑
n=−j

αnq
−n2

=
∞∑
j=0

qj(j+1)

j∑
n=−j

(−1)nqn(n+1)

=
∞∑
j=0

(−1)jq2j(j+1),

by (4.4) with q replaced by 1/q2. �

Identity (1.1e) apparently does not follow as easily from Theorems 1–4.

5. Further applications

Each of the Theorems 2–4 can be combined with the relevant Bailey transform
to produce analogs of Theorem 5. In each case the proof is a mirror image of that
given for Theorem 5, and is consequently omitted.

Theorem 10. If for n a nonnegative integer

βn =
n∑

r=−n

αn
(q2; q2)n−r(q2; q2)n+r

,

then
∞∑
n=0

(q; q)2n qn βn =
∞∑
j=0

q(
j+1
2 )

b j
2 c∑

n=−b j
2 c

αnq
−2n2

,

subject to the usual absolute convergent conditions.

Theorem 11. If for n a nonnegative integer

(5.1) βn =
n∑

r=−n−1

αr
(q2; q2)n−r(q2; q2)n+r+1

,

then

(5.2)
∞∑
n=0

(q2; q2)2n+1 q
n βn

(−q; q)2n+2
=
∞∑
j=0

qj(j+2)

j∑
n=−j−1

αnq
−n(n+1),

and
∞∑
n=0

(q; q)2n+1 q
n βn =

∞∑
j=0

qj(j+3)/2

b j
2 c∑

n=−b j
2 c−1

αnq
−2n(n+1),

subject to the usual absolute convergent conditions.
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The number of possible further applications of Theorems 5, 10 and 11 is huge.
Indeed each of these theorems will take a Bailey pair and produce a new identity.
In light of the enormous number of known Bailey pairs (c.f. [2, 5]), we will only
provide a minimal sample in this section.

Our first example is one of the elegant formulas from Ramanujan’s Lost Notebook
[4, p. 239, Entry 9.5.3].

Theorem 12. Identity (1.5) is valid.

Proof. In Theorem 5 we use the Bailey pair [14, C(1)]

α2m = (−1)mq2m(3m+1), α2m+1 = 0

βn =
1

(q2; q2)n(q2; q4)n
.

Then

∞∑
n=0

qn

(−q; q2)n+1
=
∞∑
j=0

qj(j+1)

b j
2 c∑

m=−b j
2 c

α2mq
−4m2

=
∞∑
j=0

qj(j+1)

b j
2 c∑

m=−b j
2 c

(−1)mq2m(m+1)

=
∞∑
j=0

(−1)b
j
2 cqj(j+1)+2b j

2 c(b
j
2 c+1)

=
∞∑
j=0

(−1)jq2j(3j+2)(1 + q4j+2). �

As the next result reveals, there is no need to restrict ourselves to single fold
series.

Theorem 13. We have

∞∑
n,j=0

qj(2j+1)+n(q2; q2)n+j

(−q; q)2n+2j+1(q2; q2)j(q2; q2)n
=
∞∑
n=0

(−1)nqn(5n+3)(1 + q4n+2).

Proof. In Theorem 5 we require Bressoud’s Bailey pair [2, p. 280, Eqs. (5.6) and
(5.7) with a = 1, q → q2]:

α2m = (−1)mqm(5m+1), α2m+1 = 0

βn =
1

(q2; q2)2n

n∑
j=0

(q2; q2)nq2j
2

(q2; q2)j(q2; q2)n−j
.
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Then
∞∑
n=0

qn

(−q; q)2n+1

n∑
j=0

(q2; q2)nq2j
2

(q2; q2)j(q2; q2)n−j

=
∞∑
j=0

qj(j+1)

b j
2 c∑

m=−b j
2 c

α2mq
−4m2

=
∞∑
j=0

qj(j+1)

b j
2 c∑

m=−b j
2 c

(−1)mqm(m+1)

=
∞∑
j=0

(−1)b
j
2 cqj(j+1)+b j

2 c(b
j
2 c+1)

=
∞∑
j=0

(−1)jqj(5j+3)(1 + q4j+2).

Changing the order of the sums on the left and changing n→ n+ j completes the
proof. �

As our second-last example we prove identity (1.7).

Theorem 14. Identity (1.7) is true.

Proof. We recall the Bailey pair [15, I(14)]

α2m = (−1)mq2m(2m+1), α2m+1 = 0

βn =
(−q4; q4)n−1(−q2; q2)n

(−q2, n− 1, q2)(q2; q2)2n
.

Following the previous two proofs we get

(5.3)
∞∑
n=0

(−q4; q4)n−1 q
n

(−q2; q2)n−1(−q; q2)n+1
=
∞∑
j=0

qj(j+1)

b j
2 c∑

m=−b j
2 c

(−1)mq2m.

One can simply perform the sum over m leading to
∞∑
n=0

(−q4; q4)n−1 q
n

(−q2; q2)n−1(−q; q2)n+1
=

1
1 + q2

(
1 + 2q

∞∑
n=0

(−1)nq4n(n+1)

)
,

but this does not capture the strange expansion of the series under consideration.
Instead we draw a little table of the first few terms occurring on the right-hand

side of (5.3). Each row corresponds to a fixed j-value (0, 1, 2, 3, 4) and has m
ranging from −b j2c to b j2c:

1
q2

−q4 q6 −q8
−q10 q12 −q14

q16 −q18 q20 −q22 q24 .
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Once the pattern has been observed the proof is elementary. Writing the summand
on the right of (5.3) as (−1)mq2Ej,m (so that Ej,m = j(j + 1)/2 +m), it is readily
checked that

Ej+1,−b j
2 c

= Ej,b j
2 c

+ 1.

This shows that all even powers of q occur on the right of (5.3). It only remains
to establish the sign of an arbitrary term q2n in the series. To determine this, note
that consecutive terms have opposite sign except the terms corresponding to E2j,j

and E2j+1,−j . We thus get

1 +
∞∑
n=1

(−1)f(n)q2n

with
f(n) = n+ j if E2j−1,1−j ≤ n ≤ E2j,j . �

So far all in all our applications we have employed Theorem 5, and in our last
example we explore one of the many applications of Theorem 11.

Theorem 15. We have
∞∑
n=0

(−zq2; q2)n(−z−1q2; q2)n qn

(−q; q)2n+2
=
∞∑
n=0

1− z2n+2

1− z2
z−nqn(n+2)

=
∞∑
n=0

1 + z2 + z4 + · · ·+ z2n

zn
qn(n+2).

For z = 1 this give rise to (1.6) and for z = −1 to
∞∑
n=1

(q2; q2)2n−1 q
n

(−q; q)2n
=
∞∑
n=1

n(−1)n−1qn
2
.

Proof. From the q-binomial theorem [8, Equation (II.4)]

1φ0(q−n; —; q, z) = (zq−n; q)n
one may deduce that the following companion to the Bailey pair (4.5) satisfies
equation (5.1):

αn = znqn
2
, βn =

(−zq; q2)n(−z−1q; q2)n+1

(q2; q2)2n+1
.

Substituting this in (5.2) and replacing z → zq, we obtain
∞∑
n=0

(−zq2; q2)n(−z−1; q2)n+1 q
n

(−q; q)2n+2
=
∞∑
j=0

1− z2j+2

1− z
z−j−1qj(j+2).

Dividing both sides by (1 + z−1) gives the desired result. �

6. Conclusion

This paper provides a new direction for the Bailey transform. In works such
as [2], the emphasis has been on picking up new Bailey pairs (αn, βn), and the
conjugate Bailey pairs (γn, δn) have been restricted to one specific instance. There
have been several investigations of alternatives to the standard conjugate Bailey
pairs (see e.g., [6, 13, 11, 12]); however none seem to capture the type of results
given in (1.1a)–(1.1d).
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In this initial work, we have restricted ourselves to false theta series applica-
tions. However, the Hecke type series involving indefinite quadratic forms clearly
fall within the purview of these methods and will be dealt with in a subsequent
investigation.

References

[1] G. E. Andrews, The Theory of Partitions, Encycl. of Math. and Its Appl., Vol. 2, Addison-

Wesley, Reading, 1976. (Reissued: Cambridge University Press, 1985) 4
[2] G. E. Andrews, Multiple series Rogers–Ramanujan type identities, Pacific J. Math. 114

(1984), 267–283. 4, 5, 5, 6

[3] G. E. Andrews, Bailey’s transform, lemma, chains and tree, in Special Functions 2000:
Current Perspective and Future Directions, pp. 1-22, J. Bustoz et al. eds., Kluwer Academic

Publishers, Dordrecht, 2001. 4

[4] G. E. Andrews and B. C. Berndt, Ramanujan’s Lost Notebook, Vol. 1, Springer, New York,
2005. 1, 1, 5

[5] W. N. Bailey, Identities of the Rogers-Ramanujan type, Proc. London Math. Soc. (2) 50

(1949), 1–10. 2, 4, 5
[6] D. M. Bressoud, Some identities for terminating q-series, Math. Proc. Camb. Phil. Soc. 89

(1981), 211–223. 6

[7] N. J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Mono-
graphs, Vol. 27, AMS, Providence, Rhode Island, 1888. 3

[8] G. Gasper and M. Rahman, Basic Hypergeometric Series, 2nd ed., Encycl. of Math and Its
Appl., Vol. 96, Cambridge University Press, Cambridge, 2004. 3, 3, 5

[9] S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa, New Delhi, 1988.

1
[10] L. J. Rogers, On two theorems of combinatory analysis and some allied identities, Proc.

London Math. Soc. (2) 16 (1917), 315–336. 1

[11] A. Schilling and S. O. Warnaar, A higher level Bailey lemma: proof and application, Ra-
manujan J. 2 (1998), 327–349. 6

[12] A. Schilling and S. O. Warnaar, Conjugate Bailey pairs. From configuration sums and

fractional-level string functions to Bailey’s lemma, Contemp. Math. 297 (2002), 227–255.
6

[13] U. B. Singh, A note on a transformation of Bailey, Quart. J. Math. Oxford Ser. (2) 45

(1994), 111–116. 6
[14] L. J. Slater, A new proof of Rogers’ transformations of infinite series, Proc. London Math.

Soc. (2) 53 (1951), 460–475. 4, 4, 4, 4, 5
[15] L. J. Slater, Further identities of the Rogers–Ramanujan type, Proc. London Math. Soc. (2)

54 (1952), 147–167. 5
[16] L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge,

1966. 2

[17] S. O. Warnaar, 50 Years of Bailey’s lemma, in Algebraic Combinatorics and Applications,

pp. 333–347, A. Betten et al. eds., Springer, Berlin, 2001. 4

The Pennsylvania State University, University Park, PA 16802

Department of Mathematics and Statistics, The University of Melbourne, VIC 3010,

Australia


	1. Introduction
	2. The Bilateral Bailey Transforms
	3. Conjugate Bailey pairs
	4. Ramanujan's False Theta Identities
	5. Further applications
	6. Conclusion
	References

