
Exercises

1. Dominance order. Recall that the dominance order (>) on the set {λ ` n} of partitions
of size n is defined by λ > µ if λ1 + · · ·+λi > µ1 + · · ·+µi for all i > 1. This is a total order
for n 6 5 and a partial order for all n > 6. Show that λ > µ if and only if λ′ 6 µ′.

2. The centralizer of the symmetric group. Show that

zλ :=
∏
i>1

imi mi! = |Zw|,

where mi = mi(λ) is the multiplicity of i (the number of parts equal to i) in λ, w ∈ Sn has
cycle type λ (i.e., w has mi cycles of length i), and Zw is the centralizer of w.

3. Gaussian polynomials. Let n,m be nonnegative integers. Then the Gaussian polyno-
mials or q-binomial coefficients are defined as

(1)

[
n+m

m

]
=

∑
λ⊆(mn)

q|λ|.

Here the sum is over all partitions λ that fit in a rectangle of height n and width m, i.e.,
partitions λ such that λ1 6 m and l(λ) 6 n.

(a) Show that
(i)
[
n
0

]
= 1 (initial condition);

(ii)
[
n+m
m

]
=
[
n+m
n

]
(symmetry);

(iii)
[
n+m
m

]
=
[
n+m−1

m

]
+ qn

[
n+m−1
m−1

]
= qm

[
n+m−1

m

]
+
[
n+m−1
m−1

]
(q-Pascal identities).

(b) Show that

(2)

[
n+m

m

]
=

m∑
k=0

qk
[
n+ k − 1

k

]
.

Remark. One similarly shows the q-Chu–Vandermonde or Durfee rectangle identity[
n+m

m

]
=

n∑
`=0

q`(`+k)
[
m− k
`

][
n+ k

`+ k

]
,

where k is an arbitrary integer, and k = 0 corresponds to the Durfee square identity.
(The Durfee square of a partition is the largest square contained in its diagram.)

(c) Use (a) to construct the first six rows of the q-Pascal triangle and check that
[
5
2

]
computed this way matches the definition (1).

1



2

(d) Let (a; q)n := (1−a)(1−a q) · · · (1−a qn−1) denote a q-shifted factorial or q-Pochhammer
symbol. Use (a) to show that[

n

m

]
=

(qn−m+1; q)m
(q; q)m

.

(e) Let [n] := (1− qn)/(1− q) = 1 + q + · · ·+ qn−1 and [n]! := [1][2] . . . [n]. Show that[
n+m

m

]
=

[n+m]!

[n]! [m]!
and lim

q→1

[
n

k

]
=

(
n

k

)
.

4. Plethystic notation. The aim of this question is to prove the q-binomial theorem

(3)
∑
k>0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

using symmetric functions and plethystic notation. There are many alternative proofs, some
of which are simpler, but hopefully this demonstrates the power of plethystic manipulations.

(a) To get a better feel for (3) show that, for n a nonnegative integer, it implies
(i) the q-binomial expansion

n∑
k=0

q(
k
2)
[
n

k

]
wn−kzk =

n−1∏
i=0

(w + qiz);

(ii)

1 +
∑
k>1

[
n+ k − 1

k

]
zk =

1

(z; q)n
.

Remark. One can use (i) to prove Jacobi’s triple product identity

∞∑
k=−∞

(−z)kq(
k
2) = (z; q)∞(q/z; q)∞(q; q)∞

by replacing n 7→ 2n followed by k 7→ k + n and using

(q−nz; q)2n = q−(n+1
2 )(−z)n(z; q)n(q/z; q)n.

The triple product identity plays a key role in the theory of elliptic functions, and is
the simplest example of a denominator identity for affine Kac–Moody Lie algebras,

corresponding to A
(1)
1 (affine sl2).

(b) To prepare for the proof of (3) use plethystic notation to show that the generating
function σz[X] :=

∑
k>0 hk[X] zk satisfies

(i) σz[X + Y ] = σz[X]σz[Y ] and thus hk[X + Y ] =
∑k

i=0 hi[X]hk−i[Y ];

(ii) σz[1] = 1
1−z so hn[1] = 1;
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(iii) σz[
a

1−q ] = 1
(az;q)∞

.

(c) Now prove (3) by showing that both sides are equal to σz[
1−a
1−q ].

Hint. For the left-hand side of (3) argue that it suffices to check equality with σz[
1−a
1−q ]

for a number of suitably chosen values of a and use part (b) to manipulate the alphabet
on which hr acts to recognise (2).

5. The Hopf-algebra structure of Λ. In this exercise we examine the algebraic structure
of the ring of symmetric functions. All tensor products are over K := Z.

(a) Show that Λ is a commutative (unital associative) K-algebra with the usual product
m : Λ⊗Λ −→ Λ, f [X] g[Y ] 7−→ f [X] g[X] in plethystic notation, and unit e : K −→ Λ
defined by 1 7−→ 1[X] ≡ 1 extended K-linearly.
This structure can be nicely captured using string diagrams. Think of ‘time’ as
increasing upwards, and depict (note that K is not drawn)

m : e : id : γ :

with γ : Λ⊗Λ −→ Λ⊗Λ the permutation f [X] g[Y ] 7−→ f [Y ] g[X] = g[X] f [Y ]. The
axioms of a (unital associative) algebra and commutativity then take the form

(4) = = = , = .

For example, the left-most diagram encodes Λ ∼= Λ⊗K id⊗ e−−−→ Λ⊗ Λ
m−→ Λ. Such an

equality of string diagrams is often alternatively expressed as a commutative diagram.
(b) Show that Λ also is a cocommutative (counital coassociative) coalgebra, with co-

product µ : Λ −→ Λ ⊗ Λ given by f [X] 7−→ f [X + Y ] and counit ε : Λ −→ K,
f [X] 7−→ f [0]. Here the axioms are given by flipping all diagrams in (4) upside down
and interpreting

µ : , ε : .

Do this using plethystic notation as well as by explicit computations for the power-
sum basis pλ.
Remark. Elements f ∈ Λ whose coproduct satisfies µ(f) = f ⊗ 1 + 1⊗ f , such as the
power sums pr, are called primitive.
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(c) Show that the preceding structures are compatible, making Λ a bialgebra: µ and ε
are algebra homomorphisms (equivalently, m and e are coalgebra morphisms),

= , = , = .

(d) Show that the bialgebra-structure of Λ extends to that of a Hopf algebra, with an-
tipode S : Λ −→ Λ, f [X] 7−→ f [−X] extended as an (anti)homomorphism. Here the
latter, depicted, say, as

S : ∼ , must obey ∼ = = ∼ .

Again do this using plethystic notation as well as by explicit calculation on the power-
sum basis pλ.
Remark. Viewed as equipped with this structure, Λ is commonly denoted by Symm.
Remark. Quantum integrability is related to quantum groups, which are sometimes
defined as Hopf algebras that are quasitriangular, i.e., cocommutative up to conju-
gation by an invertible element of the tensor product of the Hopf algebra with itself,
called the R-matrix, that behaves in a certain nice way under µ ⊗ id and id ⊗ µ to
guarantee it obeys the Yang–Baxter equation. Cocommutative Hopf algebras, such
as Λ, are either viewed as boring examples (R = 1⊗1) or excluded from the definition
of a quantum group.

(e) Show that Λ is self dual with respect to the scalar product on Λ ⊗ Λ given by
〈f1[X] g1[Y ], f2[X] g2[Y ]〉 := 〈f1[X], f2[X]〉〈g1[Y ], g2[Y ]〉 where the right-hand side
features the Hall scalar product on Λ. That is, the algebra and coalgebra struc-
ture of Λ are dual in the sense that 〈f [X + Y ], g[X]h[Y ]〉 = 〈f [X], g[X]h[X]〉 and
〈f [0], n〉 = 〈f [X], n 1[X]〉, where the scalar product on K is given by multiplication.

6. Principal specialisation. Recall that the hook-length of a square s = (i, j) ∈ λ is given
by h(s) = λi + λj − i− j + 1. Show that

(5)
∏

h∈H (λ)

(1− qh) =
n∏
i=1

(qn−i+1; q)λi
∏

16i<j6n

1− qj−i

1− qλi−λj+j−i
,
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where H (λ) denotes the multiset of hook-lengths of λ, n is any integer such that n > l(λ)
and (a; q)m = (1− a)(1− aq) · · · (1− aqm−1). Use (5) to prove that

(6) sλ

[
1− a
1− q

]
= qn(λ)

∏
(i,j)∈λ(1− aqj−i)∏
h∈H (λ)(1− qh)

= qn(λ)
∏

i>1(aq
1−i; q)λi∏

h∈H (λ)(1− qh)
,

where n(λ) :=
∑

i>1(i − 1)λi. For a = qn and l(λ) 6 n this is known as the principal
specialisation formula for Schur functions.

7. Inverse branching rule. According to the branching rule for Schur functions,

(7) sλ[X + 1] =
∑
µ≺λ

sµ[X].

Prove the combinatorial identity

(8)
∑
µ′≺λ′
µ�ν

(−1)|λ/µ| = δλν ,

and use this to show that

sλ[X − 1] =
∑
µ′≺λ′

(−1)|λ/µ|sµ[X].

For example

s(3,1)[X − 1] = s(3,1)[X]− s(3)[X]− s(2,1)[X] + s(2)[X].

8. Kostant’s multiplicity formula. Kostant’s formula is an explicit (computationally
not very efficient; Freudenthal’s recursion formula is much more practical) expression for the
weight multiplicities of irreducible representations of semi-simple Lie algebras, expressing the
multiplicities as an alternating sum over what is known as the ‘Kostant partition function’.
In this question we look at a combinatorial analogue of this formula in the case of gln.
Recall that the Kostka number Kλα counts the number of semistandard Young tableaux of
shape λ and weight α, i.e., sλ =

∑
µKλµmµ.

(a) Show that hµ =
∑

λKλµsλ and thus hλ =
∑

µ Pλµmµ, where Pλµ :=
∑

ωKωλKωµ will
play the role of Kostant partition function.

(b) Using the RSK correspondence it may be shown that Pαβ (for α and β (weak) com-
positions) counts the number of matrices with nonnegative integer entries such that
the ith row-sum is βi and the jth column-sum is αj.
Count P(2,1),(1,1,1) by listing all pairs of semistandard tableaux contributing to the sum
and by listing the relevant integer matrices.

(c) Use the Jacobi–Trudi formula to show that for µ a partition of length n,∑
w∈Sn

sgn(w)Kλ,w(µ+δ)−δ = δλµ,

where δ := (n− 1, . . . , 1, 0).
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(d) For λ a partition of length n, prove the Kostant multiplicity formula

Kλµ =
∑
w∈Sn

sgn(w)Pw(λ+δ)−δ,µ

and use it to compute K(2,1),(1,1,1).

9. Vertex operators. For n an integer define the linear operator αn : Λ→ Λ by

(9) α−nsµ =
∑

λ`|µ|+n
λ/µ=border strip

(−1)height(λ/µ)sλ

and

αnsλ =
∑

µ`|λ|−n
λ/µ=border strip

(−1)height(λ/µ)sµ

for n > 0.

(a) Show that αn and α−n are adjoint with respect to the Hall scalar product on Λ.
(b) Prove that the αn satisfy the commutation relations of the Heisenberg algebra, i.e.,

[αn, αm] = nδn,−m.
Hint. Use the representation of a partition in terms of its 0/1-sequence/edge se-
quence/code/Maya diagram. For example, the 0/1-sequence of the partition (5, 4, 4, 1)
is

0

0
1

0
1 1 1

0

0
1

0
1 1

←→ . . . 000101110010111 . . .

(c) Prove that the vertex operators

Γ±(z) := exp

(∑
n>1

zn

n
α±n

)
obey the commutation relation

Γ+(w)Γ−(z) =
1

1− zw
Γ−(z)Γ+(w).

(d) Prove that

(10) pnsµ =
∑

λ`|µ|+n
λ/µ=border strip

(−1)height(λ/µ)sλ.
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Remark. For λ, µ ` n let χλ(µ) be the character of the irreducible representation of
Sn indexed by λ evaluated at (elements of Sn in the conjugacy class indexed by) µ.
From (d) and pµ =

∑
λ χλ(µ)sλ it follows that

χλ(µ) =
∑

T∈BST(λ,µ)

(−1)height(T ).

where BST(λ, µ) is the set of borderstrip tableaux of shape λ and weight µ, i.e., the
set of tableaux of shape λ and weight µ such that the µi boxes filled with the letter
i form a borderstrip, and where the height of a borderstrip tableau is the sum of the
heights of the individual borderstrips making up the tableau. This is known as the
Murnaghan–Nakayama rule.

(e) Use (d) to prove
(i) the ‘Pieri rule’

Γ−(z)sµ[X] = σz[X]sµ[X];

(ii) the ‘branching rule’

Γ+(z)sλ[X] = sλ[X + z];

(iii) the skew Schur function identity

sλ/µ(z1, . . . , zn) =
〈
Γ+(z1) . . .Γ+(zn)sλ, sµ

〉
.
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