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1.1 Introduction

Let f =
∑

n≥0 cn. The series f is called hypergeometric if the ratio cn+1/cn, viewed as a
function of n, is rational. A simple example is the Taylor series exp(z) =

∑∞
n=0 zn/n!. Similarly,

if the ratio of consecutive terms of f is a rational function of qn for some fixed q — known
as the base — then f is called a basic hypergeometric series. An early example of a basic
hypergeometric series is Euler’s q-exponential function eq(z) =

∑
n≥0 zn/

(
(1 − q) · · · (1 − qn)

)
.

If we express the base as q = exp(2πi/ω) then cn+1/cn becomes a trigonometric function in n,
with period ω. This motivates the more general definition of an elliptic hypergeometric series
as a series f for which cn+1/cn is a doubly-periodic meromorphic function of n.

Elliptic hypergeometric series first appeared in 1988 in the work of Date et al. on exactly
solvable lattice models in statistical mechanics [12]. They were formally defined and identi-
fied as mathematical objects of interest in their own right by Frenkel and Turaev in 1997 [19].
Subsequently, Spiridonov introduced the elliptic beta integral, initiating a parallel theory of
elliptic hypergeometric integrals [61]. Together with Zhedanov [62, 72] he also showed that
Rahman’s [43] and Wilson’s [74] theory of biorthogonal rational functions — itself a gener-
alization of the Askey scheme [33] of classical orthogonal polynomials — can be lifted to the
elliptic level.

All three aspects of the theory of elliptic hypergeometric functions (series, integrals and
biorthogonal functions) have been generalized to higher dimensions, connecting them to root
systems and Macdonald–Koornwinder theory. In [73] Warnaar introduced elliptic hyperge-
ometric series associated to root systems, including a conjectural series evaluation of type
Cn. This was recognized by van Diejen and Spiridonov [14, 15] as a discrete analogue of a
multiple elliptic beta integral (or elliptic Selberg integral). They formulated the corresponding
integral evaluation, again as a conjecture. This in turn led Rains [44, 46] to develop an ellip-
tic analogue of Macdonald–Koornwinder theory, resulting in continuous as well as discrete
biorthogonal elliptic functions attached to the non-reduced root system BCn. In this theory,
the elliptic multiple beta integral and its discrete analogue give the total mass of the biorthog-
onality measure.

Although a relatively young field, the theory of elliptic hypergeometric functions has al-
ready seen some remarkable applications. Many of these involve the multivariable theory.
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In 2009, Dolan and Osborn showed that supersymmetric indices of four-dimensional super-
symmetric quantum field theories are expressible in terms of elliptic hypergeometric integrals
[18]. Conjecturally, such field theories admit electric–magnetic dualities known as Seiberg du-
alities, such that dual theories have the same index. This leads to non-trivial identities between
elliptic hypergeometric integrals (or, for so called confining theories, to integral evaluations).
In some cases these are known identities, which thus gives a partial confirmation of the un-
derlying Seiberg duality. However, in many cases it leads to new identities that are yet to be
rigorously proved, see e.g. [20, 21, 67, 68, 69] and the recent survey [50]. Another application
of elliptic hypergeometric functions is to exactly solvable lattice models in statistical mechan-
ics. We already mentioned the occurrence of elliptic hypergeometric series in the work of
Date et al., but more recently it was shown that elliptic hypergeometric integrals are related to
solvable lattice models with continuous spin parameters [3, 65]. In the one-variable case, this
leads to a generalization of many well-known discrete models such as the two-dimensional
Ising model and the chiral Potts model. This relation to solvable lattice models has been ex-
tended to multivariable elliptic hypergeometric integrals in [2, 4, 65]. Further applications of
multivariable elliptic hypergeometric functions pertain to elliptic Calogero–Sutherland-type
systems [51, 64] and the representation theory of elliptic quantum groups [55].

In the current chapter we give a survey of elliptic hypergeometric functions associated
with root systems, comprised of three main parts. The first two form in essence an annotated
table of the main evaluation and transformation formulas for elliptic hypergeometric integrals
and series on root systems. The third and final part gives an introduction to Rains’ elliptic
Macdonald–Koornwinder theory (in part also developed by Coskun and Gustafson [10]). Due
to space limitations, applications will not be covered here and we refer the interested reader
to the above-mentioned papers and references therein.

Rather than throughout the text, references for the main results are given in the form of sep-
arate notes at the end of each section. These notes also contain some brief historical comments
and further pointers to the literature.

Acknowledgements: We thank Ilmar Gahramanov, Eric Rains, Michael Schlosser and Vy-
acheslav Spiridonov for valuable comments.

1.1.1 Preliminaries

Elliptic functions are doubly-periodic meromorphic functions on C. That is, a meromorphic
function g : C → C is elliptic if there exist ω1, ω2 with Im(ω1/ω2) > 0 such that g(z + ω1) =

g(z +ω2) = g(z) for all z ∈ C. If we define the elliptic nome p by p = e2πiω1/ω2 (so that |p| < 1)
then z 7→ e2πiz/ω2 maps the period parallelogram spanned by ω1, ω2 to an annulus with radii |p|
and 1. Given an elliptic function g with periods ω1 and ω2, the function f : C∗ → C defined
by

g(z) = f
(
e2πiz/ω2

)



1.1 Introduction 3

is thus periodic in an annulus:

f (pz) = f (z).

By mild abuse of terminology we will also refer to such f as an elliptic function. A more
precise description would be elliptic function in multiplicative form.

The basic building blocks for elliptic hypergeometric functions are

θ(z) = θ(z; p) =

∞∏
i=0

(1 − zpi)(1 − pi+1/z),

(z)k = (z; q, p)k =

k−1∏
i=0

θ(zqi; p),

Γ(z) = Γ(z; p, q) =

∞∏
i, j=0

1 − pi+1q j+1/z
1 − zpiq j ,

known as the modified theta function, elliptic shifted factorial and elliptic gamma function,
respectively. Note that the dependence on the elliptic nome p and base q will mostly be sup-
pressed from our notation. One exception is the q-shifted factorial (z; q)∞ =

∏
i≥0(1 − zqi)

which, to avoid possible confusion, will never be shortened to (z)∞.
For simple relations satisfied by the above three functions we refer the reader to [22]. Here

we only note that the elliptic gamma function is symmetric in p and q and satisfies

Γ(pq/z)Γ(z) = 1 and Γ(qz) = θ(z)Γ(z).

For each of the functions θ(z), (z)k and Γ(z), we employ condensed notation as exemplified
by

θ(z1, . . . , zm) = θ(z1) · · · θ(zm),(
az±

)
k = (az)k(a/z)k,

Γ
(
tz±w±

)
= Γ(tzw)Γ(tz/w)Γ(tw/z)Γ(t/zw).

In the trigonometric case p = 0 we have θ(z) = 1 − z, so that (z)k becomes a standard
q-shifted factorial and Γ(z) a rescaled version of the q-gamma function.

We also need elliptic shifted factorials indexed by partitions. A partition λ = (λ1, λ2, . . . )
is a weakly decreasing sequence of non-negative integers such that only finitely many λi are
non-zero. The number of positive λi is called the length of λ and denoted by l(λ). The sum
of the λi will be denoted by |λ|. The diagram of λ consists of the points (i, j) ∈ Z2 such that
1 ≤ i ≤ l(λ) and 1 ≤ j ≤ λi. If these inequalities hold for (i, j) ∈ Z2 we write (i, j) ∈ λ.
Reflecting the diagram in the main diagonal yields the conjugate partition λ′. In other words,
the rows of λ are the columns of λ′ and vice versa. A standard statistic on partitions is

n(λ) =
∑
i≥1

(i − 1)λi =
∑
i≥1

(
λ′i
2

)
.

For a pair of partitions λ, µ we write µ ⊂ λ if µi ≤ λi for all i ≥ 1. In particular, when l(λ) ≤ n
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and λi ≤ N for all 1 ≤ i ≤ N we write λ ⊂ (Nn). Similarly, we write µ ≺ λ if the interlacing
conditions λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · hold.

With t an additional fixed parameter, we will need the following three types of elliptic
shifted factorials index by partitions:

(z)λ = (z; q, t; p)λ =
∏

(i, j)∈λ

θ
(
zq j−1t1−i) =

∏
i≥1

(
zt1−i)

λi
,

C−λ (z) = C−λ (z; q, t; p) =
∏

(i, j)∈λ

θ
(
zqλi− jtλ

′
j−i),

C+
λ (z) = C+

λ (z; q, t; p) =
∏

(i, j)∈λ

θ
(
zqλi+ j−1t2−λ′j−i).

By θ(pz) = −z−1θ(z) it follows that (a)λ is quasi-periodic:(
pkz

)
λ =

[
(−z)−|λ|q−n(λ′)tn(λ)

]k
p−(

k
2)|λ| (z)λ, k ∈ Z. (1.1.1)

Again we use condensed notation so that, for example, (a1, . . . , ak)λ = (a1)λ · · · (ak)λ.

1.1.2 Elliptic Weyl denominators

Suppressing their p-dependence we define

∆A(x1, . . . , xn+1) =
∏

1≤i< j≤n+1

x j θ(xi/x j),

∆C(x1, . . . , xn) =

n∏
j=1

θ(x2
j )

∏
1≤i< j≤n

x j θ(xix±j ),

which are essentially the Weyl denominators of the affine root systems A(1)
n and C(1)

n [29, 37].
Although we have no need for the theory of affine root systems here, it may be instructive to
explain the connection to the root system C(1)

n (the case of A(1)
n is similar). The Weyl denom-

inator of an affine root system R is the formal product
∏

α∈R+
(1 − e−α)m(α), where R+ denotes

the set of positive roots and m is a multiplicity function. For C(1)
n , the positive roots are

m δ, m ≥ 1,

m δ + 2εi, m ≥ 0, 1 ≤ i ≤ n,

m δ − 2εi, m ≥ 1, 1 ≤ i ≤ n,

m δ + εi ± ε j, m ≥ 0, 1 ≤ i < j ≤ n,

m δ − εi ± ε j, m ≥ 1, 1 ≤ i < j ≤ n,

where ε1, . . . , εn are the coordinate functions on Rn and δ is the constant function 1. The roots
m δ have multiplicity n, while all other roots have multiplicity 1. Thus, the Weyl denominator
for C(1)

n is
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∞∏
m=0

((
1 − e−(m+1)δ)n

n∏
i=1

(
1 − e−m δ−2εi

)(
1 − e−(m+1)δ+2εi

)
×

∏
1≤i< j≤n

(
1 − e−m δ−εi−ε j

)(
1 − e−(m+1)δ+εi+ε j

)(
1 − e−m δ−εi+ε j

)(
1 − e−(m+1)δ+εi−ε j

))
.

It is easy to check that this equals (p; p)n
∞ x0

1x−1
2 · · · x

1−n
n ∆C(x1, . . . , xn), where p = e−δ and

xi = e−εi .
We will consider elliptic hypergeometric series containing the factor ∆A(xqk) or ∆C(xqk),

where xqk =
(
x1qk1 , x2qk2 , . . . , xrqkr

)
, the ki∈ Z being summation indices, and r = n + 1 in the

case of An and r = n in the case of Cn. We refer to these as An and Cn series, respectively.
In the case of An, the summation variables typically satisfy a restriction of the form k1 +

· · · + kn+1 = N. Eliminating kn+1 gives series containing the A(1)
n−1 Weyl denominator times∏n

i=1 θ(axiqki+|k|), where a = q−N/xn+1; these will also be viewed as An series.
Similarly, An integrals contain the factor

1∏
1≤i< j≤n+1 Γ(zi/z j, z j/zi)

, (1.1.2a)

where z1 · · · zn+1 = 1, while Cn integrals contain

1∏n
i=1 Γ

(
z±2

i
)∏

1≤i< j≤n Γ(z±i z±j )
. (1.1.2b)

If we denote the expression (1.1.2b) by g(z) then it is easy to verify that, for k ∈ Zn,

g(zqk)
g(z)

=

( n∏
i=1

q−nki−(n+1)k2
i z−2(n+1)ki

i

)
∆C(zqk)
∆C(z)

.

A similar relation holds for the A-type factors. This shows that the series can be considered as
discrete analogues of the integrals. In fact in many instances the series can be obtained from
the integrals via residue calculus.

It is customary to attach a “type” to hypergeometric integrals associated with root systems,
although different authors have used slightly different definitions of type. As the terminology
will be used here, in type I integrals the only factors containing more than one integration
variable are (1.1.2), while type II integrals contain twice the number of such factors. For
example, C(II)

n integrals contain the factor
∏

i< j Γ(tz±i z±j )/Γ(z±i z±j ). It may be noted that, under
appropriate assumptions on the parameters,

lim
q→1

lim
p→0

∏
i< j

Γ(qt±zi±z j )
Γ(q±zi±z j )

= lim
q→1

∏
i< j

(q±zi±z j ; q)∞
(qt±zi±z j ; q)∞

=
∏
i< j

(1 − z±i z±j )t =
∏
i< j

(
(zi + z−1

i ) − (z j + z−1
j )

)2t
.

For this reason Cn beta integrals of type II are sometimes referred to as elliptic Selberg inte-
grals. There are also integrals containing an intermediate number of factors. We will refer to
these as integrals of mixed type.
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1.2 Integrals

Throughout this section we assume that |q| < 1. Whenever possible, we have restricted the
parameters in such a way that the integrals may be taken over the n-dimensional complex torus
Tn. However, all results can be extended to more general parameter domains by appropriately
deforming Tn.

When n = 1 all the stated An and Cn beta integral evaluations reduce to Spiridonov’s elliptic
beta integral.

1.2.1 An beta integrals

We will present four An beta integrals. In each of these the integrand contains a variable zn+1

which is determined from the integration variables z1, . . . , zn by the relation z1 · · · zn+1 = 1. To
shorten the expressions we define the constant κA

n by

κA
n =

(p; p)n
∞(q; q)n

∞

(n + 1)!(2π i)n .

For 1 ≤ i ≤ n + 2, let |si| < 1 and |ti| < 1, such that S T = pq, where S = s1 · · · sn+2 and
T = t1 · · · tn+2. Then we have the type I integral

κA
n

∫
Tn

∏n+2
i=1

∏n+1
j=1 Γ(siz j, ti/z j)∏

1≤i< j≤n+1 Γ(zi/z j, z j/zi)
dz1

z1
· · ·

dzn

zn
=

n+2∏
i=1

Γ(S/si,T/ti)
n+2∏
i, j=1

Γ(sit j). (1.2.1)

Next, let |s| < 1, |t| < 1, |si| < 1 and |ti| < 1 for 1 ≤ i ≤ 3, such that sn−1tn−1s1s2s3t1t2t3 = pq.
Then we have the type II integral

κA
n

∫
Tn

∏
1≤i< j≤n+1

Γ(sziz j, t/ziz j)
Γ(zi/z j, z j/zi)

3∏
i=1

n+1∏
j=1

Γ(siz j, ti/z j)
dz1

z1
· · ·

dzn

zn

=



N∏
m=1

(
Γ
(
smtm) ∏

1≤i< j≤3

Γ
(
sm−1tmsis j, smtm−1tit j

) 3∏
i, j=1

Γ
(
sm−1tm−1sit j

))
×Γ

(
sN−1s1s2s3, tN−1t1t2t3

) 3∏
i=1

Γ
(
sN si, tN ti

)
, n = 2N,

N∏
m=1

(
Γ(smtm)

∏
1≤i< j≤3

Γ
(
sm−1tmsis j, smtm−1tit j

)) N+1∏
m=1

3∏
i, j=1

Γ
(
sm−1tm−1sit j

)
×Γ

(
sN+1, tN+1) ∏

1≤i< j≤3

Γ
(
sN sis j, tN tit j

)
, n = 2N + 1.

(1.2.2)

Let |t| < 1, |ti| < 1 for 1 ≤ i ≤ n+3 and |t| < |si| < |t|−1 for 1 ≤ i ≤ n, where t2t1 · · · tn+3 = pq.
Then,
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κA
n

∫
Tn

∏
1≤i< j≤n+1

1
Γ(zi/z j, z j/zi, t2ziz j)

n+1∏
j=1

( n∏
i=1

Γ(ts±i z j)
n+3∏
i=1

Γ(ti/z j)
) dz1

z1
· · ·

dzn

zn

=

n∏
i=1

n+3∏
j=1

Γ(ts±i t j)
∏

1≤i< j≤n+3

1
Γ(t2tit j)

, (1.2.3)

which is an integral of mixed type.
Finally, let |t| < 1, |si| < 1 for 1 ≤ i ≤ 4 and |ti| < 1 for 1 ≤ i ≤ n + 1 such that

tn−1s1 · · · s4T = pq, where T = t1 · · · tn+1. Then we have a second mixed-type integral:

κA
n

∫
Tn

∏
1≤i< j≤n+1

Γ(tziz j)
Γ(zi/z j, z j/zi)

n+1∏
j=1

( 4∏
i=1

Γ(siz j)
n+1∏
i=1

Γ(ti/z j)
) dz1

z1
· · ·

dzn

zn

=


Γ(T )

4∏
i=1

Γ(tN si)
Γ(tNT si)

∏
1≤i< j≤n+1

Γ(ttit j)
4∏

i=1

n+1∏
j=1

Γ(sit j), n = 2N,

Γ(tN+1,T )
Γ(tN+1T )

∏
1≤i< j≤4

Γ(tN sis j)
∏

1≤i< j≤n+1

Γ(ttit j)
4∏

i=1

n+1∏
j=1

Γ(sit j), n = 2N + 1.

(1.2.4)

1.2.2 Cn beta integrals

We will give three Cn beta integrals. They all involve the constant

κC
n =

(p; p)n
∞(q; q)n

∞

n!2n(2π i)n .

Let |ti| < 1 for 1 ≤ i ≤ 2n + 4 such that t1 · · · t2n+4 = pq. We then have the following Cn beta
integral of type I

κC
n

∫
Tn

∏
1≤i< j≤n

1
Γ(z±i z±j )

n∏
j=1

∏2n+4
i=1 Γ(tiz±j )

Γ(z±2
j )

dz1

z1
· · ·

dzn

zn
=

∏
1≤i< j≤2n+4

Γ(tit j). (1.2.5)

Next, let |t| < 1 and |ti| < 1 for 1 ≤ i ≤ 6 such that t2n−2t1 · · · t6 = pq. We then have the type
II Cn beta integral

κC
n

∫
Tn

∏
1≤i< j≤n

Γ(tz±i z±j )

Γ(z±i z±j )

n∏
j=1

∏6
i=1 Γ(tiz±j )

Γ(z±2
j )

dz1

z1
· · ·

dzn

zn
=

n∏
m=1

(
Γ(tm)
Γ(t)

∏
1≤i< j≤6

Γ(tm−1tit j)
)
. (1.2.6)

This is the elliptic Selberg integral mentioned in the introduction.
At this point it is convenient to introduce notation for more general Cn integrals of type II.

For m a non-negative integer, let |t| < 1 and |ti| < 1 for 1 ≤ i ≤ 2m + 6 such that

t2n−2t1 · · · t2m+6 = (pq)m+1. (1.2.7)

We then define

J(m)
Cn

(t1, . . . , t2m+6; t) = κC
n

∫
Tn

∏
1≤i< j≤n

Γ(tz±i z±j )

Γ(z±i z±j )

n∏
j=1

∏2m+6
i=1 Γ(tiz±j )

Γ(z±2
j )

dz1

z1
· · ·

dzn

zn
. (1.2.8)
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Note that (1.2.6) gives a closed-form evaluation for the integral J(0)
Cn

. As outlined in [46, Ap-
pendix], J(m)

Cn
can be continued to a single-valued meromorphic function in the parameters ti

and t subject to the constraint (1.2.7). For generic values of the parameters this continuation is
obtained by replacing the integration domain with an appropriate deformation of Tn. We can
now state the second Cn beta integral of type II as

J(n−1)
Cn

(t1, . . . , t4, s1, . . . , sn, pq/ts1, . . . , pq/tsn; t)

= Γ(t)n
n∏

l=1

∏
1≤i< j≤4

Γ
(
tl−1tit j

) n∏
i=1

4∏
j=1

Γ(sit j)
Γ(tsi/t j)

, (1.2.9)

where tn−2t1t2t3t4 = 1. In this identity it is necessary to work with an analytic continuation of
(1.2.8) since the inequalities |ti|, |t| < 1 are incompatible with tn−2t1t2t3t4 = 1 for n ≥ 2.

1.2.3 Integral transformations

We now turn to integral transformations, starting with integrals of type I. For m a non-negative
integer we introduce the notation

I(m)
An

(s1, . . . , sm+n+2; t1, . . . , tm+n+2) = κA
n

∫
Tn

∏m+n+2
i=1

∏n+1
j=1 Γ(siz j, ti/z j)∏

1≤i< j≤n+1 Γ(zi/z j, z j/zi)
dz1

z1
· · ·

dzn

zn
,

where |si| < 1 and |ti| < 1 for all i,
∏m+n+2

i=1 siti = (pq)m+1 and z1 · · · zn+1 = 1. We also define

I(m)
Cn

(t1, . . . , t2m+2n+4) = κC
n

∫
Tn

∏
1≤i< j≤n

1
Γ(z±i z±j )

n∏
j=1

∏2m+2n+4
i=1 Γ(tiz±j )

Γ(z±2
j )

dz1

z1
· · ·

dzn

zn
,

where |ti| < 1 for all i and t1 · · · t2m+2n+4 = (pq)m+1. The An integral satisfies

I(m)
An

(s1, . . . , sm+n+2; t1, . . . , tm+n+2) = I(m)
An

(s1ζ, . . . , sm+n+2ζ; t1/ζ, . . . , tm+n+2/ζ)

for ζ an (n + 1)-th root of unity, whereas the Cn integral is invariant under simultaneous nega-
tion of all of the ti. We further note that (1.2.1) and (1.2.5) provide closed-form evaluations of
I(0)
An

and I(0)
Cn

, respectively.
For the integral I(m)

An
, the following transformation reverses the roles of m and n:

I(m)
An

(s1, . . . , sm+n+2; t1, . . . , tm+n+2)

=

m+n+2∏
i, j=1

Γ(sit j) · I
(n)
Am

(
λ

s1
, . . . ,

λ

sm+n+2
;

pq
λt1

, . . . ,
pq

λtm+n+2

)
, (1.2.10)

where λm+1 = s1 · · · sm+n+2, (pq/λ)m+1 = t1 · · · tm+n+2. Moreover, for t1 · · · t2m+2n+4 = (pq)m+1,
there is an analogous transformation of type C:

I(m)
Cn

(t1, . . . , t2m+2n+4) =
∏

1≤i< j≤2m+2n+4

Γ(tit j) · I
(n)
Cm

( √
pq

t1
, . . . ,

√
pq

t2m+2n+4

)
. (1.2.11)
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It is easy to check that I(m)
A1

(t1, . . . , tm+3; tm+4, . . . , t2m+6) = I(m)
C1

(t1, . . . , t2m+6). Thus, combin-
ing (1.2.10) and (1.2.11) leads to

I(1)
An

(s1, . . . , sn+3; t1, . . . , tn+3)

=
∏

1≤i< j≤n+3

Γ(S/sis j,T/tit j) · I
(1)
Cn

(s1/v, . . . , sn+3/v, t1v, . . . , tn+3v), (1.2.12)

where S = s1 · · · sn+3, T = t1 · · · tn+3 and ν2 = S/pq = pq/T . Since I(1)
Cn

is symmetric, (1.2.12)
implies non-trivial symmetries of I(1)

An
, such as

I(1)
An

(s1, . . . , sn+3; t1, . . . , tn+3) =

n+2∏
i=1

Γ(sitn+3, tisn+3, S/sisn+3,T/titn+3)

× I(1)
An

(s1/v, . . . , sn+2/v, sn+3vn; t1v, . . . , tn+2v, tn+3/vn), (1.2.13)

where, with the same definitions of S and T as above, S T = (pq)2 and νn+1 = S tn+3/pqsn+3.

J(1)
Cn

(t1, . . . , t8; t) =

n∏
m=1

( ∏
1≤i< j≤4

Γ(tm−1tit j)
∏

5≤i< j≤8

Γ(tm−1tit j)
)

× J(1)
Cn

(t1v, . . . , t4v, t5/v, . . . , t8/v; t), (1.2.14)

where t2n−2t1 · · · t8 = (pq)2 and v2 = pqt1−n/t1t2t3t4 = tn−1t5t6t7t8/pq. Iterating this transfor-
mation yields a symmetry of J(1)

Cn
under the Weyl group of type E7 [46].

We conclude with a transformation between Cn and Cm integrals of type II:

J(m+n−1)
Cn

(t1, . . . , t4, s1, . . . , sm+n, pq/ts1, . . . , pq/tsm+n; t)

= Γ(t)n−m
∏

1≤i< j≤4

∏n
l=1 Γ

(
tl−1tit j

)∏m
l=1 Γ

(
tl+n−m−1tit j

) m+n∏
i=1

4∏
j=1

Γ(sit j)
Γ(tsi/t j)

× J(m+n−1)
Cm

(t/t1, . . . , t/t4, s1, . . . , sm+n, pq/ts1, . . . , pq/tsm+n; t), (1.2.15)

where t1t2t3t4 = tm−n+2.

1.2.4 Notes

For p = 0 the integrals (1.2.1), (1.2.2), (1.2.5) and (1.2.6) are due to Gustafson [23, 24], the
integral (1.2.4) to Gustafson and Rakha [25] and the transformation (1.2.13) to Denis and
Gustafson [13]. None of the p = 0 instances of (1.2.3), (1.2.9)–(1.2.12), (1.2.14) and (1.2.15)
were known prior to the elliptic case.

For general p, van Diejen and Spiridonov conjectured the type I Cn beta integral (1.2.5)
and showed that it implies the elliptic Selberg integral (1.2.6) [14, 15]. A rigorous derivation
of the classical Selberg integral as a special limit of (1.2.6) is due to Rains [45]. Spiridonov
[62] conjectured the type I An beta integral (1.2.1) and showed that, combined with (1.2.5), it
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implies the type II An beta integral (1.2.2), as well as the integral (1.2.4) of mixed type. He
also showed that (1.2.1) implies (1.2.13). The first proofs of the fundamental type I integrals
(1.2.1) and (1.2.5) were obtained by Rains [46]. For subsequent proofs of (1.2.1), (1.2.5)
and (1.2.6), see [63], [49, 63] and [27], respectively. In [46] Rains also proved the integral
transformations (1.2.10), (1.2.11) and (1.2.14), and gave further transformations analogous
to (1.2.14). The integral (1.2.3) of mixed type is due to Spiridonov and Warnaar [70]. The
transformation (1.2.15), which includes (1.2.9) as its m = 0 case, was conjectured by Rains
[47] and also appears in [67]. It was first proved by van der Bult in [8] and subsequently
proved and generalized to an identity for the “interpolation kernel” (an analytic continuation
of the elliptic interpolation functions R∗λ of Section 1.4) in [48].

Several of the integral identities surveyed here have analogues for |q| = 1. In the case of
(1.2.1), (1.2.3) and (1.2.5) these were found in [17], and the unit-circle analogue of (1.2.6) is
given in [17].

In [62] Spiridonov gives one more Cn beta integral, which lacks the p ↔ q symmetry
present in all the integrals considered here, and is more elementary in that it follows as a
determinant of one-variable beta integrals.

In [47] Rains conjectured several quadratic integral transformations involving the inter-
polation functions R∗λ. These conjectures were proved in [9, 48]. In special cases, they simplify
to transformations for the function J(2)

Cn
.

Motivated by quantum field theories on lens spaces, Spiridonov [66] evaluated certain finite
sums of Cn integrals, both for type I and type II. In closely related work, Kels and Yamazaki
[32] obtained transformation formulas for finite sums of An and Cn integrals of type I.

As mentioned in the introduction, the recent identification of elliptic hypergeometric inte-
grals as indices in supersymmetric quantum field theory by Dolan and Osborn [18] has led to
a large number of conjectured integral evaluations and transformations [20, 21, 67, 68, 69]. It
is too early to give a survey of the emerging picture, but it is clear that the identities stated in
this section are a small sample from a much larger collection of identities.

1.3 Series

In this section we give the most important summation and transformation formulas for elliptic
hypergeometric series associated to An and Cn. In the n = 1 case all summations except
for (1.3.7) simplify to the elliptic Jackson summation of Frenkel and Turaev. Similarly, most
transformations may be viewed as generalizations of the elliptic Bailey transformation.
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1.3.1 An summations

The following An elliptic Jackson summation is a discrete analogue of the multiple beta inte-
gral (1.2.1):

∑
k1,...,kn+1≥0

k1+···+kn+1=N

∆A(xqk)
∆A(x)

n+1∏
i=1

∏n+2
j=1 (xia j)ki

(bxi)ki

∏n+1
j=1 (qxi/x j)ki

=
(b/a1, . . . , b/an+2)N

(q, bx1, . . . , bxn+1)N
, (1.3.1a)

where b = a1 · · · an+2x1 · · · xn+1. Using the constraint on the summation indices to eliminate
kn+1, this identity can be written less symmetrically as

∑
k1,...,kn≥0
|k|≤N

∆A(xqk)
∆A(x)

n∏
i=1

(
θ(axiqki+|k|)
θ(axi)

(axi)|k|
∏n+2

j=1 (xib j)ki

(aqN+1xi, aqxi/c)ki

∏n
j=1(qxi/x j)ki

)
(q−N , c)|k|∏n+2
i=1 (aq/bi)|k|

q|k|

= cN
n∏

i=1

(aqxi)N

(aqxi/c)N

n+2∏
i=1

(aq/cbi)N

(aq/bi)N
, (1.3.1b)

where b1 · · · bn+2cx1 · · · xn = a2qN+1. By analytic continuation one can then deduce the com-
panion identity

N1,...,Nn∑
k1,...,kn=0

(
∆A(xqk)
∆A(x)

n∏
i=1

(
θ(axiqki+|k|)
θ(axi)

(axi)|k|(dxi, exi)ki

(aqNi+1xi)|k|(aqxi/b, aqxi/c)ki

)
×

(b, c)|k| q|k|

(aq/d, aq/e)|k|

n∏
i, j=1

(q−N j xi/x j)ki

(qxi/x j)ki

)
=

(aq/cd, aq/bd)|N |
(aq/d, aq/bcd)|N |

n∏
i=1

(aqxi, aqxi/bc)Ni

(aqxi/b, aqxi/c)Ni

,

(1.3.1c)

where bcde = a2q|N |+1.
For the discrete analogue of the type II integral (1.2.2) we refer the reader to the Notes at

the end of this section.
Our next result corresponds to a discretization of (1.2.3):

∑
k1,...,kn+1≥0

k1+···+kn+1=N

∆A(xqk)
∆A(x)

∏
1≤i< j≤n+1

1
(xix j)ki+k j

n+1∏
i=1

q(ki
2)xki

i
∏n

j=1(xia±j )ki

(bxi, q1−N xi/b)ki

∏n+1
j=1 (qxi/x j)ki

=
(
−bqN−1)N

∏n
i=1(ba±i )N

(q)N
∏n+1

i=1 (bx±i )N
. (1.3.2)

Mimicking the steps that led from (1.3.1a) to (1.3.1c), the identity (1.3.2) can be rewritten as
a sum over an n-dimensional rectangle, see [53]. Some authors have associated (1.3.2) and
related results with the root system Dn rather than An.

Finally, the following summation is a discrete analogue of (1.2.4):
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∑
k1,...,kn+1≥0,

k1+···+kn+1=N

∆A(xqk)
∆A(x)

∏
1≤i< j≤n+1

qkik j (xix j)ki+k j

n+1∏
i=1

∏4
j=1(xib j)ki

xki
i
∏n+1

j=1 (qxi/x j)ki

=


(Xb1, Xb2, Xb3, Xb4)N

XN(q)N
, n odd,

(X, Xb1b2, Xb1b3, Xb1b4)N

(Xb1)N(q)N
, n even,

(1.3.3)

where X = x1 · · · xn+1 and qN−1b1 · · · b4X2 = 1.

1.3.2 Cn summations

The following Cn elliptic Jackson summation is a discrete analogue of (1.2.5):

N1,...,Nn∑
k1,...,kn=0

∆C(xqk)
∆C(x)

n∏
i=1

(bxi, cxi, dxi, exi)ki qki

(qxi/b, qxi/c, qxi/d, qxi/e)ki

n∏
i, j=1

(q−N j xi/x j, xix j)ki

(qxi/x j, qN j+1xix j)ki

=

∏n
i, j=1(qxix j)Ni∏

1≤i< j≤n(qxix j)Ni+N j

(q/bc, q/bd, q/cd)|N |∏n
i=1(qxi/b, qxi/c, qxi/d, q−Ni e/xi)Ni

, (1.3.4)

where bcde = q|N |+1.
The discrete analogues of the type II integrals (1.2.6) and (1.2.9) are most conveniently

expressed in terms of the series

r+1V
(n)
r (a; b1, . . . , br−4) =

∑
λ

( n∏
i=1

θ(at2−2iq2λi )
θ(at2−2i)

(at1−n, b1, . . . , br−4)λ
(qtn−1, aq/b1, . . . , aq/br−4)λ

×
∏

1≤i< j≤n

(
θ(t j−iqλi−λ j , at2−i− jqλi+λ j )

θ(t j−i, at2−i− j)

(t j−i+1)λi−λ j (at3−i− j)λi+λ j

(qt j−i−1)λi−λ j (aqt1−i− j)λi+λ j

)
q|λ|t2n(λ)

)
, (1.3.5)

where the summation is over partitions λ = (λ1, . . . , λn) of length at most n. Note that this
implicitly depends on t as well as p and q. When br−4 = q−N with N ∈ Z≥0, this becomes a
terminating series, with sum ranging over partitions λ ⊂ (Nn). The series (1.3.5) is associated
with Cn since

n∏
i=1

θ(at2−2iq2λi )
θ(at2−2i)

∏
1≤i< j≤n

θ(t j−iqλi−λ j , at2−i− jqλi+λ j )
θ(t j−i, at2−i− j)

= q−n(λ) ∆C(xqλ)
∆C(x)

,

with xi =
√

at1−i.
Using the above notation, the discrete analogue of (1.2.6) is

10V
(n)
9

(
a; b, c, d, e, q−N)

=
(aq, aq/bc, aq/bd, aq/cd)(Nn)

(aq/b, aq/c, aq/d, aq/bcd)(Nn)
, (1.3.6)

where bcdetn−1 = a2qN+1. This is the Cn summation mentioned in the introduction.
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Next, we give a discrete analogue of (1.2.9):

2r+8V
(n)
2r+7

(
a; t1−nb,

a
b
, c1qk1 , . . . , crqkr ,

aq
c1
, . . . ,

aq
cr
, q−N

)
=

(aq, qtn−1)(Nn)

(bq, aqtn−1/b)(Nn)

r∏
i=1

(cib/a, citn−1/b)(kn
i )

(ci, citn−1/a)(kn
i )

, (1.3.7)

where the ki are non-negative integers such that k1 + · · · + kr = N. As the summand contains
the factors (ciqki )λ/(ci)λ, this is a so-called Karlsson–Minton-type summation.

Finally, we have the Cn summation

N∑
k1,...,kn=0

∆C(xqk)
∆C(x)

n∏
i=1

(x2
i , bxi, cxi, dxi, exi, q−N)ki

(q, qxi/b, qxi/c, qxi/d, qxi/e, qN+1x2
i )ki

qki

=
∏

1≤i< j≤n

θ(qN xix j)
θ(xix j)

n∏
i=1

(qx2
i , q

2−i/bc, q2−i/bd, q2−i/cd)N

(qxi/b, qxi/c, qxi/d, q−Ne/xi)N
, (1.3.8)

where bcde = qN−n+2. There is a corresponding integral evaluation [62], which was mentioned
in §1.2.4.

1.3.3 Series transformations

Several of the transformations stated below have companion identities (similar to the different
versions of (1.3.1)) which will not be stated explicitly.

The following An Bailey transformation is a discrete analogue of (1.2.13):

N1,...,Nn∑
k1,...,kn=0

(
∆A(xqk)
∆A(x)

n∏
i=1

(
θ(axiqki+|k|)
θ(axi)

(axi)|k|(exi, f xi, gxi)ki

(aqNi+1xi)|k|(aqxi/b, aqxi/c, aqxi/d)ki

)
×

(b, c, d)|k| q|k|

(aq/e, aq/ f , aq/g)|k|

n∏
i, j=1

(q−N j xi/x j)ki

(qxi/x j)ki

)

=
(a
λ

)|N | (λq/ f , λq/g)|N |
(aq/ f , aq/g)|N |

n∏
i=1

(aqxi, λqxi/d)Ni

(λqxi, aqxi/d)Ni

×

N1,...,Nn∑
k1,...,kn=0

(
∆A(xqk)
∆A(x)

n∏
i=1

(
θ(λxiqki+|k|)
θ(λxi)

(λxi)|k|(λexi/a, f xi, gxi)ki

(λqNi+1xi)|k|(aqxi/b, aqxi/c, λqxi/d)ki

)
×

(λb/a, λc/a, d)|k| q|k|

(aq/e, λq/ f , λq/g)|k|

n∏
i, j=1

(q−N j xi/x j)ki

(qxi/x j)ki

)
, (1.3.9)

where bcde f g = a3q|N |+2 and λ = a2q/bce. For be = aq the sum on the right trivializes and
the transformation simplifies to (1.3.1c).

The next transformation, which relates an An and a Cn series, is a discrete analogue of
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(1.2.12):

N1,...,Nn∑
k1,...,kn=0

∆C(xqk)
∆C(x)

n∏
i=1

(bxi, cxi, dxi, exi, f xi, gxi)ki qki

(qxi/b, qxi/c, qxi/d, qxi/e, qxi/ f , qxi/g)ki

n∏
i, j=1

(q−N j xi/x j, xix j)ki

(qxi/x j, qN j+1xix j)ki

=

∏n
i, j=1(qxix j)Ni∏

1≤i< j≤n(qxix j)Ni+N j

(λq/e, λq/ f , q/e f )|N |∏n
i=1(λqxi, qxi/e, qxi/ f , q−Ni g/xi)Ni

×

N1,...,Nn∑
k1,...,kn=0

(
∆A(xqk)
∆A(x)

n∏
i=1

(
θ(λxiqki+|k|)
θ(λxi)

(λxi)|k|(exi, f xi, gxi)ki

(λqNi+1xi)|k|(qxi/b, qxi/c, qxi/d)ki

)
×

(λb, λc, λd)|k| q|k|

(λq/e, λq/ f , λq/g)|k|

n∏
i, j=1

(q−N j xi/x j)ki

(qxi/x j)ki

)
, (1.3.10)

where bcde f g = q|N |+2 and λ = q/bcd. For bc = q this reduces to (1.3.4).
The discrete analogue of (1.2.10) provides a duality between An and Am elliptic hypergeo-

metric series:

∑
k1,...,kn+1≥0

k1+···+kn+1=N

∆A(xqk)
∆A(x)

n+1∏
i=1

∏m+n+2
j=1 (xia j)ki∏m+1

j=1 (xiy j)ki

∏n+1
j=1 (qxi/x j)ki

=
∑

k1,...,km+1≥0
k1+···+km+1=N

∆A(yqk)
∆A(y)

m+1∏
i=1

∏m+n+2
j=1 (yi/a j)ki∏n+1

j=1 (yix j)ki

∏m+1
j=1 (qyi/y j)ki

, (1.3.11)

where w1 · · ·wm+1 = x1 · · · xn+1a1 · · · am+n+2. For m = 0 this reduces to (1.3.1a).
We next give a discrete analogue of (1.2.11). When Mi and Ni for i = 1, . . . , n are non-

negative integers and bcde = q|N |−|M|+1, then

N1,...,Nn∑
k1,...,kn=0

(
∆C(xqk)
∆C(x)

n∏
i=1

(bxi, cxi, dxi, exi)ki qki

(qxi/b, qxi/c, qxi/d, qxi/e)ki

×

n∏
i=1

m∏
j=1

(qM j xiy j, qxi/y j)ki

(xiy j, q1−M j xi/y j)ki

n∏
i, j=1

(q−N j xi/x j, xix j)ki

(qxi/x j, qN j+1xix j)ki

)

= q−|N ||M|
(q/bc, q/bd, q/cd)|N |

(q−|N |bc, q−|N |bd, q−|N |cd)|M|

m∏
i=1

n∏
j=1

(q−N j yi/x j)Mi

(yi/x j)Mi

×

∏n
i, j=1(qxix j)Ni

∏
1≤i< j≤m(yiy j)Mi+M j∏m

i, j=1(yiy j)Mi

∏
1≤i< j≤n(qxix j)Ni+N j

∏m
i=1(byi, cyi, dyi, q1−Mi/yie)Mi∏n

i=1(qxi/b, qxi/c, qxi/d, q−Ni e/xi)Ni

×

M1,...,Mm∑
k1,...,km=0

(
∆C(q−1/2yqk)
∆C(q−1/2y)

m∏
i=1

(yi/b, yi/c, yi/d, yi/e)ki qki

(byi, cyi, dyi, eyi)ki

×

m∏
i=1

n∏
j=1

(qN j yix j, yi/x j)ki

(yix j, q−N j yi/x j)ki

m∏
i, j=1

(q−M j yi/y j, q−1yiy j)ki

(qyi/y j, qM j yiy j)ki

)
. (1.3.12)
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Recalling the notation (1.3.5), we have the following discrete analogue of (1.2.14):

12V
(n)
11

(
a; b, c, d, e, f , g, q−N)

=
(aq, aq/e f , λq/e, λq/ f )(Nn)

(λq, λq/e f , aq/e, aq/ f )(Nn)
12V

(n)
11

(
λ;
λb
a
,
λc
a
,
λd
a
, e, f , g, q−N

)
, (1.3.13)

where bcde f gtn−1 = a3qN+2 and λ = a2q/bcd.
Finally, the following Karlsson–Minton-type transformation is an analogue of (1.2.15):

2r+8V
(n)
2r+7

(
a; bt1−n,

aq−M

b
, c1qk1 , . . . , crqkr ,

aq
c1
, . . . ,

aq
cr
, q−N

)
=

(aq, tn−1q)(Nn)

(bq, tn−1aq/b)(Nn)

(bq, tn−1bq/a)(Mn)

(b2q/a, tn−1q)(Mn)

r∏
i=1

(bci/a, tn−1ci/b)(kn
i )

(ci, tn−1ci/a)(kn
i )

× 2r+8V
(n)
2r+7

(b2

a
; bt1−n,

bq−N

a
,

bc1qk1

a
, . . . ,

bcrqkr

a
,

bq
c1
, . . . ,

bq
cr
, q−M

)
, (1.3.14)

where the ki are non-negative integers such that k1 + · · · + kr = M + N.

1.3.4 Notes

For p = 0 the An summations (1.3.1), (1.3.2) and (1.3.3) are due to Milne [39], Schlosser
[58] (see also also [5]), and Gustafson and Rakha [25], respectively. The p = 0 case of the
Cn summation (1.3.4) was found independently by Denis and Gustafson [13], and Milne and
Lilly [40]. The p = 0 case of the Cn summation (1.3.8) is due to Schlosser [59]. The p = 0
case of the transformation (1.3.9) was obtained, again independently, by Denis and Gustafson
[13], and Milne and Newcomb [41]. The p = 0 cases of (1.3.10) and (1.3.11) are due to
Bhatnagar and Schlosser [6] and Kajihara [30], respectively. The p = 0 instances of (1.3.6),
(1.3.7), (1.3.12), (1.3.13) and (1.3.14) were not known prior to the elliptic cases.

For general p, the An summations (1.3.1) and (1.3.2) were first obtained by Rosengren [53]
using an elementary inductive argument. A derivation of (1.3.1) from (1.2.1) using residue
calculus is given in [62] and a similar derivation of (1.3.2) from (1.2.3) in [70]. The summation
(1.3.3) was conjectured by Spiridonov [62] and proved, independently, by Ito and Noumi [28]
and by Rosengren [56].

As mentioned in the introduction, Warnaar [73] conjectured the Cn summation (1.3.6). He
also proved the more elementary Cn summation (1.3.8). Van Diejen and Spiridonov [14, 16]
showed that the Cn summations (1.3.4) and (1.3.6) follow from the (at that time conjectural)
integral identities (1.2.5) and (1.2.6). This in particular implied the first proof of (1.3.6) for
p = 0. For general p, the summations (1.3.4) and (1.3.6) were proved by Rosengren [52,
53], using the case N = 1 of Warnaar’s identity (1.3.8). Subsequent proofs of (1.3.6) were
given in [10, 26, 44, 46]. The proofs in [10, 44] establish the more general sum (1.4.14) for
elliptic binomial coefficients. In [46] the identity (1.3.6) arises as a special case of the discrete
biorthogonality relation (1.4.27) for the elliptic biorthogonal functions R̃λ.

The transformations (1.3.9) and (1.3.10) were obtained by Rosengren [53], together with
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two more An transformations that are not surveyed here. The transformation (1.3.11) was
obtained independently by Kajihara and Noumi [31] and Rosengren [54]. Both these papers
contain further transformations that can be obtained by iterating (1.3.11). The transformation
(1.3.12) was proved by Rains (personal communication, 2003) by specializing the parame-
ters of [46, Theorem 7.9] to a union of geometric progressions. It appeared explicitly in [34,
Theorem 4.2] using a similar approach to Rains. The transformation (1.3.13) was conjectured
by Warnaar [73] and established by Rains [44] using the symmetry of the expression (1.4.16)
below. The transformation (1.3.14) is stated somewhat implicitly by Rains [47]; it includes
(1.3.7) as a special case.

A discrete analogue of the type II An beta integral (1.2.2) has been conjectured by Spiri-
donov and Warnaar in [71]. Surprisingly, this conjecture contains the Cn identity (1.3.6) as a
special case.

The summation formula (1.3.8) can be obtained as a determinant of one-dimensional sum-
mations. Further summations and transformations of determinantal type are given in [57]. The
special case t = q of (1.3.6) and (1.3.13) is also closely related to determinants, see [60].

Transformations related to the sum (1.3.3) are discussed in [56]. In their work on elliptic
Bailey lemmas on root systems, Bhatnagar and Schlosser [7] discovered two further elliptic
Jackson summations for An, as well as corresponding transformation formulas. For none of
these an integral analogue is known. Langer, Schlosser and Warnaar [36] proved a curious An

transformation formula, which is new even in the one-variable case.

1.4 Elliptic Macdonald–Koornwinder theory

A function f on (C∗)n is said to be BCn-symmetric if it is invariant under the action of the hy-
peroctahedral group (Z/2Z) oSn. Here the symmetric group Sn acts by permuting the variables
and Z/2Z by replacing a variable with its reciprocal. The interpolation functions

R∗λ(x1, . . . , xn; a, b; q, t; p), (1.4.1)

introduced independently by Rains [44, 46] and by Coskun and Gustafson [10], are BCn-
symmetric elliptic functions that generalize Okounkov’s BCn interpolation Macdonald poly-
nomials [42] as well as the Macdonald polynomials of type A [38]. They form the building
blocks of Rains’ more general BCn-symmetric functions [44, 46]

R̃λ(x1, . . . , xn; a : b, c, d; u, v; q, t; p).

The R̃λ are an elliptic generalization of the Koornwinder polynomials [35], themselves a gen-
eralization to BCn of the Askey–Wilson polynomials [1]. The price one pays for ellipticity
is that the functions R∗λ and R̃λ are neither polynomial nor orthogonal. The latter do however
form a biorthogonal family, and for n = 1 they reduce to the continuous biorthogonal func-
tions of Spiridonov (elliptic case) [62] and Rahman (the p = 0 case) [43] and, appropriately
specialized, to the discrete biorthogonal functions of Spiridonov and Zhedanov (elliptic case)
[72] and Wilson (the p = 0 case) [74].
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There are a number of ways to define the elliptic interpolation functions. Here we will
describe them via a branching rule. The branching coefficient cλµ is a complex function on
(C∗)7, indexed by a pair of partitions λ, µ. It is defined to be zero unless λ � µ, in which case

cλµ(z; a, b; q, t,T ; p) =
(aTz±, pqa/bt)λ
(aTz±, pqa/bt)µ

(pqz±/bt,T )µ
(pqz±/b, tT )λ

×
∏

(i, j)∈λ
λ′j=µ

′
j

θ(qλi+ j−1t2−i−λ′j aT/b)

θ(pqµi− j+1tµ
′
j−i)

∏
(i, j)∈λ
λ′j,µ

′
j

θ(qλi− jtλ
′
j−i+1)

θ(pqµi+ jt−i−µ′j aT/b)

×
∏

(i, j)∈µ
λ′j=µ

′
j

θ(pqλi− j+1tλ
′
j−i)

θ(qµi+ j−1t1−i−µ′j aT/b)

∏
(i, j)∈µ
λ′j,µ

′
j

θ(pqλi+ jt1−i−λ′j aT/b)

θ(qµi− jtµ
′
j−i+1)

. (1.4.2)

From (1.1.1) and the invariance under the substitution z 7→ z−1 it follows that cλµ is a BC1-
symmetric elliptic function of z. The elliptic interpolation functions are uniquely determined
by the branching rule

R∗λ(x1, . . . , xn+1; a, b; q, t; p) =
∑
µ

cλµ(xn+1; a, b; q, t, tn; p)R∗µ(x1, . . . , xn; a, b; q, t; p), (1.4.3)

subject to the initial condition R∗λ(– ; a, b; q, t; p) = δλ,0. It immediately follows that the inter-
polation function (1.4.1) vanishes if l(λ) > n. From the symmetry and ellipticity of the branch-
ing coefficient it also follows that the interpolation functions are BC1-symmetric and elliptic
in each of the xi. Sn-symmetry (and thus BCn-symmetry), however, is not manifest and is a
consequence of the non-trivial fact that∑

µ

cλµ(z; a, b; q, t,T ; p)cµν(w; a, b; q, t,T/t; p) (1.4.4)

is a symmetric function in z and w; see also the discussion around (1.4.17) below.
In the remainder of this section x = (x1, . . . , xn). Comparison of their respective branching

rules shows that Okounkov’s BCn interpolation Macdonald polynomials P∗λ (x; q, t, s) and the
ordinary Macdonald polynomials Pλ(x; q, t) arise in the limit as

P∗λ (x; q, t, s) = lim
p→0

(
−s2t2n−2)−|λ|q−n(λ′)t2n(λ) (tn)λ

C−λ (t)
R∗λ

(
stδx; s, p1/2b; q, t; p

)
,

and

Pλ(x; q, t) = lim
z→∞

z−|λ| lim
p→0

(
−atn−1)−|λ|q−n(λ′)t2n(λ) (tn)λ

C−λ (t)
R∗λ(zx; a, p1/2b; q, t; p),

where δ = (n − 1, . . . , 1, 0) is the staircase partition of length n − 1, stδx = (stn−1x1, . . . , st0xn)
and zx = (zx1, . . . , zxn).

Many standard properties of Pλ(x; q, t) and P∗λ (x; q, t, s) have counterparts for the elliptic
interpolation functions. Here we have space for only a small selection. Up to normalization,
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Okounkov’s BCn interpolation Macdonald polynomials are uniquely determined by symmetry
and vanishing properties. The latter carry over to the elliptic case as follows:

R∗µ(aqλtδ; a, b; q, t; p) = 0 (1.4.5)

if µ 1 λ. For q, t, a, b, c, d ∈ C∗ the elliptic difference operator D(n)(a, b, c, d; q, t; p), acting on
BCn-symmetric functions, is given by

(
D(n)(a, b, c, d; q, t; p) f

)
(x) =

∑
σ∈{±1}n

f
(
qσ/2x

) n∏
i=1

θ
(
axσi

i , bxσi
i , cxσi

i , dxσi
i )

θ
(
x2σi

i
) ∏

1≤i< j≤n

θ
(
txσi

i xσ j

j
)

θ
(
xσi

i xσ j

j
) ,

where qσ/2x = (qσ1/2x1, . . . , qσn/2xn). Then

D(n)(a, b, c, d; q, t; p)R∗λ
(
x; aq1/2, bq1/2; q, t; p

)
=

n∏
i=1

θ
(
abtn−i, acqλi tn−i, bcq−λi ti−1) · R∗λ(x; a, b; q, t; p) (1.4.6)

provided that tn−1abcd = p. Like the Macdonald polynomials, there is no simple closed-form
expression for the elliptic interpolation functions. When indexed by rectangular partitions of
length n, however, they do admit a simple form, viz.

R∗(Nn)(x; a, b; q, t; p) =

n∏
i=1

(ax±i )N

(pqx±i /b)N
. (1.4.7)

The principal specialization formula for the elliptic interpolation functions is

R∗λ(ztδ; a, b; q, t; p) =
(tn−1az, a/z)λ

(pqtn−1z/b, pq/bz)λ
. (1.4.8)

The R∗λ satisfy numerous symmetries, all direct consequence of symmetries of the branching
coefficients cλµ. Two of the most notable ones are

R∗λ(x; a, b; q, t; p) = R∗λ(−x;−a,−b; q, t; p) (1.4.9a)

=

(qtn−1a
b

)2|λ|
q4n(λ′)t−4n(λ)R∗λ(x; 1/a, 1/b; 1/q, 1/t; p). (1.4.9b)

Specializations of R∗µ give rise to elliptic binomial coefficients. Before defining these we
introduce the function

∆λ(a|b1, . . . , bk) =
(pqa)2λ2

C−λ (t, pq)C+
λ (a, pqa/t)

(b1, . . . , bk)λ
(pqa/b1, . . . , pqa/bk)λ

,

where the dependence on q, t and p has been suppressed and where 2λ2 is shorthand for the
partition (2λ1, 2λ1, 2λ2, 2λ2, . . . ). Explicitly, for λ such that l(λ) ≤ n,

∆λ(a|b1, . . . , bk) =

( (−1)kak−3qk−3t
b1 · · · bk

)|λ|
q(k−4)n(λ′)t−(k−6)n(λ) (at1−n, aqt−n, b1, . . . , bk)λ

(qtn−1, tn, aq/b1, . . . , aq/bk)λ
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×

n∏
i=1

θ(at2−2iq2λi )
θ(at2−2i)

∏
1≤i< j≤n

(
θ(t j−iqλi−λ j , at2−i− jqλi+λ j )

θ(t j−i, at2−i− j)

(t j−i+1)λi−λ j (at3−i− j)λi+λ j

(qt j−i−1)λi−λ j (aqt1−i− j)λi+λ j

)
,

so that

r+1V
(n)
r (a; b1, . . . , br−4) =

∑
λ

(b3, . . . , br−4, qtn−1b1b2)λ
(aq/b3, . . . , aq/br−4, at1−n/b1b2)λ

∆λ

(
a
∣∣∣∣tn, b1, b2,

at1−n

b1b2

)
.

(1.4.10)
The elliptic binomial coefficients

(
λ
µ

)
[a,b]

=
(
λ
µ

)
[a,b];q,t;p

may now be defined as(
λ

µ

)
[a,b]

= ∆µ(a/b|tn, 1/b) R∗µ
(
x1, . . . , xn; a1/2t1−n, ba−1/2; q, t; p

)∣∣∣
xi=a1/2qλi t1−i , (1.4.11)

where on the right n can be chosen arbitrarily provided that n ≥ l(λ), l(µ). Apart from their
n-independence, the elliptic binomial coefficients are also independent of the choice of square
root of a. Although

(
λ
0

)
[a,b]

= 1 they are not normalized like ordinary binomial coefficients,
and (

λ

λ

)
[a,b]

=
(1/b, pqa/b)λ

(b, pqa)λ

C+
λ (a)

C+
λ (a/b)

. (1.4.12)

The elliptic binomial coefficients vanish unless µ ⊂ λ, are elliptic in both a and b, and in-
variant under the simultaneous substitution (a, b, q, t) 7→ (1/a, 1/b, 1/q, 1/t). They are also
conjugation symmetric: (

λ

µ

)
[a,b];q,t;p

=

(
λ′

µ′

)
[aq/t,b];1/t,1/q;p

. (1.4.13)

A key identity is(
λ

ν

)
[a,c]

=
(b, ce, cd, bde)λ
(cde, bd, be, c)λ

(1/c, bd, be, cde)ν
(bcde, e, d, b/c)ν

∑
µ

(c/b, d, e, bcde)µ
(bde, ce, cd, 1/b)µ

(
λ

µ

)
[a,b]

(
µ

ν

)
[a/b,c/b]

(1.4.14)
for generic parameters such that bcde = aq. The c → 1 limit of

(
λ
ν

)
[a,c]

(c)λ/(1/c)ν exists and
is given by δλν. Multiplying both sides of (1.4.14) by (c)λ/(1/c)ν and then letting c tend to 1
thus yields the orthogonality relation∑

µ

(
λ

µ

)
[a,b]

(
µ

ν

)
[a/b,1/b]

= δλµ. (1.4.15)

For another important application of (1.4.14) we note that by (1.4.8)(
(Nn)
µ

)
[a,b]

= ∆µ
(
a/b|tn, 1/b, aqN t1−n, q−N)

.

Setting λ = (Nn) and ν = 0 in (1.4.14) and recalling (1.4.10) yields the Cn Jackson summa-
tion (1.3.6). Also (1.3.8) may be obtained as a special case of (1.4.14) but the details of the
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derivation are more intricate, see [44]. As a final application of (1.4.14) it can be shown that

(b, b′e)λ
(b′de, bd)λ

(b′de, b f /c)ν
(b/c, b′de/ f )ν

∑
µ

(c/b, d, e, bb′de, b′g/c, b′ f /c)µ
(bb′de/c, b′e, b′d, 1/b, f , g)µ

(
λ

µ

)
[a,b]

(
µ

ν

)
[a/b,c/b]

(1.4.16)

is symmetric in b and b′, where bb′de = aq and cde = f g. Setting λ = (Nn) and ν = 0
results in the transformation formula (1.3.13). Now assume that bcd = b′c′d′. Twice using the
symmetry of (1.4.16) it follows that∑

µ

(c, d, aq/c′, aq/d′)λ
(c, d, aq/c′, aq/d′)µ

(c′/b, d′/b, aq/bc, aq/bd)µ
(c′/b, d′/b, aq/bc, aq/bd)ν

×
(1/b, aq/b)ν

(1/b, aq/bb′)µ

(b′, aq)µ
(b′, aq/b)λ

(
λ

µ

)
[a,b]

(
µ

ν

)
[a/b,b′]

(1.4.17)

is invariant under the simultaneous substitution (b, c, d) ↔ (b′, c′, d′). The branching coeffi-
cient (1.4.2) may be expressed as an elliptic binomial coefficient as

cλµ(z; a, b; q, t,T ; p) =
(aTz±, pqa/bt, t)λ

(aTz±, pqa/bt, 1/t)µ

(pqz±/bt,T, pqaT/b)µ
(pqz±/b, tT, pqaT/bt)λ

(
λ

µ

)
[aT/b,t]

, (1.4.18)

so that, up to a simple change of variables and the use of (1.1.1), the z,w-symmetry of (1.4.4)
corresponds to the b = b′ case of the symmetry of (1.4.17). To conclude our discussion of the
elliptic binomial coefficients we remark that they also arise as connection coefficients between
the interpolation functions. Specifically,

R∗λ(x; a, b; q, t; p)

=
∑
µ

(
λ

µ

)
[tn−1a/b,a/a′]

(a/a′, tn−1aa′)λ
(a′/a, tn−1aa′)µ

(pqtn−1a/b, pq/ab)µ
(pqtn−1a′/b, pq/a′b)λ

R∗µ(x; a′, b; q, t; p). (1.4.19)

Let a, b, c, d, u, v, q, t be complex parameters such that t2n−2abcduv = pq, and λ a partition
of length at most n. Then the BCn-symmetric biorthogonal functions R̃λ are defined as

R̃λ(x; a :b, c, d; u, v; q, t; p)

=
∑
µ⊂λ

(
λ

µ

)
[1/uv,t1−n/av]

(pq/bu, pq/cu, pq/du, pq/uv)µ
(tn−1ab, tn−1ac, tn−1ad, tn−1av)µ

R∗µ(x; a, u; q, t; p). (1.4.20)

By (1.4.15) this relation between the two families of BCn elliptic functions can be inverted.
We also note that from (1.4.19) it follows that

R̃λ
(
x; a :b, c, d; u, t1−n/b; q, t; p

)
=

(pq/au, pqtn−1a/u)λ
(b/a, tn−1ab)λ

R∗µ(x; b, u; q, t; p), (1.4.21)

so that the interpolation functions are a special case of the biorthogonal functions. Finally,
from Okounkov’s binomial formula for Koornwinder polynomials [42] it follows that in the
p→ 0 limit the R̃λ simplify to the Koornwinder polynomials Kλ(x; a, b, c, d; q, t):
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Kλ
(
x; a, b, c, d; q, t) = lim

p→0

(
atn−1)−|λ|tn(λ) (tn, tn−1ab, tn−1ac, tn−1ad)λ

C−λ (t)C+
λ (abcdt2n−2/q)

× R̃λ
(
x; a :b, c, d; up1/2, vp1/2, q, t; p

)
.

Most of the previously-listed properties of the interpolation functions have implications for
the biorthogonal functions. For example, using (1.4.8) and (1.4.14) one can prove the principal
specialization formula

R̃λ(btδ; a :b, c, d; u, v; q, t; p) =
(tn−1bc, tn−1bd, t1−n/bv, pqtn−1a/u)λ
(tn−1ac, tn−1ad, t1−n/av, pqtn−1b/u)λ

. (1.4.22)

Another result that carries over is the elliptic difference equation (1.4.6). Combined with
(1.4.20) it yields

D(n)(a, u, b, pt1−n/uab; q, t; p
)
R̃∗λ

(
x; aq1/2 :bq1/2, cq−1/2, dq−1/2; uq1/2, vq−1/2, q, t; p

)
=

n∏
i=1

θ
(
abtn−i, autn−i, butn−i) · R̃λ(x; a :b, c, d; u, v, q, t; p). (1.4.23)

The Koornwinder polynomials are symmetric in the parameters a, b, c, d. From (1.4.20)
it follows that R̃λ is symmetric in b, c, d but the choice of normalization breaks the full S4

symmetry. Instead,

R̃λ(x; a :b, c, d; u, v; q, t; p) = R̃λ(x; b :a, c, d; u, v; q, t; p)R̃λ(btδ; a :b, c, d; u, v; q, t; p).
(1.4.24)

For partitions λ, µ such that l(λ), l(µ) ≤ n the biorthogonal functions satisfy evaluation sym-
metry:

R̃λ(atδqµ; a :b, c, d; u, v; q, t; p) = R̃µ(âtδqλ; â : b̂, ĉ, d̂; û, v̂; q, t; p), (1.4.25)

where

â =
√

abcd/pq, âb̂ = ab, âĉ = ac, âd̂ = ad, aû = âu, av̂ = vâ.

Given a pair of partitions λ, µ such that l(λ), l(µ) ≤ n, define

R̃λµ(x; a :b, c, d; u, v; t; p, q) = R̃λ(x; a :b, c, d; u, v; p, t; q)R̃µ(x; a :b, c, d; u, v; q, t; p).

Note that R̃λµ(x; a :b, c, d; u, v; t; p, q) is invariant under the simultaneous substitutions λ ↔
µ and p ↔ q. The functions R̃λµ(x; a :b, c, d; u, v; t; p, q) form a biorthogonal family, with
continuous biorthogonality relation

κC
n

∫
Cλν,µω

R̃λµ(z1, . . . , zn; t1 : t2, t3, t4; t5, t6; t; p, q)R̃νω(z1, . . . , zn; t1 : t2, t3, t4; t6, t5; t; p, q)

×
∏

1≤i< j≤n

Γ(tz±i z±j )

Γ(z±i z±j )

n∏
j=1

∏6
i=1 Γ(tiz±j )

Γ(z±2
j )

dz1

z1
· · ·

dzn

zn

= δλνδµω

n∏
m=1

(
Γ(tm)
Γ(t)

∏
1≤i< j≤6

Γ(tm−1tit j)
)
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×
1

∆λ(1/t5t6|tn, tn−1t0t1, tn−1t0t2, tn−1t0t3, t1−n/t0t5, t1−n/t0t6; p, t; q)

×
1

∆µ(1/t5t6|tn, tn−1t0t1, tn−1t0t2, tn−1t0t3, t1−n/t0t5, t1−n/t0t6; q, t; p)
. (1.4.26)

Here, Cλν,µω is a deformation of Tn which separates sequences of poles of the integrand tend-
ing to zero from sequences tending to infinity. The location of these poles depends on the
choice of partitions, see [46] for details. Provided |t| < 1 and |ti| < 1 for 1 ≤ i ≤ 6 we can
take C00,00 = Tn so that for λ = µ = ν = ω = 0 one recovers the type C(II)

n integral (1.2.6).
The summation (1.3.6), which is the discrete analogue of (1.2.6), follows in a similar manner
from the discrete biorthogonality relation∑

µ⊂(Nn)

∆µ
(
t2n−2a2|tn, tn−1ac, tn−1ad, tn−1au, tn−1av, q−N)
× R̃λ(aqµtδ; a :b, c, d; u, v; t; p, q)R̃ν(aqµtδ; a :b, c, d; v, u; t; p, q)

=
δλν

∆λ(1/uv|tn, tn−1ab, tn−1ac, tn−1ad, t1−n/au, t1−n/av)

×
(b/a, pq/uc, pq/ud, pq/uv)(Nn)

(pqtn−1a/u, tn−1bc, tn−1bd, tn−1bv)(Nn)
, (1.4.27)

where t2n−2abcduv = pq and qN tn−1ab = 1. The discrete biorthogonality can also be lifted
to the functions R̃λµ but since the resulting identity factors into two copies of (1.4.27) — the
second copy with q replaced by p and N by a second discrete parameter M — this is no more
general than the above.

The final result listed here is a (dual) Cauchy identity which incorporates the Cauchy iden-
tities for the Koornwinder polynomials, BCn interpolation Macdonald polynomials and ordi-
nary Macdonald polynomials:∑

λ⊂(Nn)

∆λ
(
q1−2N/uv|tn, q−N , q1−N t1−n/av, a/u

)
× R̃λ(x; a :b, c, d; qNu, qN−1v; q, t; p)R̃λ̂(y; a :b, c, d; tnu, tn−1v; t, q; p)

=
(a/u, pq1−N/au, pq1−N/bu, pq1−N/cu, pq1−N/du, pq2−2N/uv)(Nn)

(tn−1ab, tn−1ac, tn−1ad, qN−1tn−1av)(Nn)

×

n∏
i=1

N∏
j=1

θ(x±i y j)
n∏

i=1

1
(ux±i )m

N∏
j=1

1
(p/uy j, y j/u; 1/t, p)n

, (1.4.28)

where x = (x1, . . . , xn), y = (y1, . . . , yN), λ̂ = (n − λ′m, . . . , n − λ
′
1) and abcduvq2m−2t2n−2 = p.

1.4.1 Notes

Instead of R∗λ(x1, . . . , xn, a, b; q, t; p), Rains denotes the BCn-symmetric interpolation func-
tions as R∗(n)

λ (x1, . . . , xn, a, b; q, t; p), see [44, 46, 47]. An equivalent family of functions is
defined by Coskun and Gustafson in [10] (see also [11]). They refer to these as well-poised
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Macdonald functions, denoted as Wλ(x1, . . . , xn; q, p, t, a, b). The precise relation between the
two families is given by

Wλ
(
x1/a, . . . , xn/a; q, p, t, a2, a/b

)
=

( t1−nb2

q2

)|λ|
q−2n(λ′)t2n(λ) (tn)λ

C−λ (t)
(qtn−2a/b; q, t2; p)2λ

(qa/tb)λ C+
λ (qtn−2a/b)

R∗λ(x1, . . . , xn; a, b; q, t; p).

Similarly, Rains writes R̃(n)
λ (x1, . . . , xn; a : b, c, d; u, v; q, t; p) for the biorthogonal functions

instead of R̃λ(x1, . . . , xn; a : b, c, d; u, v; q, t; p), see again [44, 46, 47].
The branching rule (1.4.3) is the k = 1 instance of [44, Eq. (4.40)] or the µ = 0 case of [10,

Eq. (2.14)]. The vanishing property (1.4.5) is [46, Corollary 8.12] combined with (1.4.21),
or [10, Theorem 2.6]. The elliptic difference equation (1.4.6) is [44, Eq. (3.34)]. The formula
(1.4.7) for the interpolation function indexed by a rectangular partition of length n is the λ = 0
case of [44, Eq. (3.42)] or [10, Corollary 2.4]. The principal specialization formula (1.4.8) is
[44, Eq. (3.35)]. The symmetry (1.4.9a) is [44, Eq. (3.39)] and the symmetry (1.4.9b) is [44,
Eq. (3.38)] or [10, Proposition 2.8]. The definition of the elliptic binomial coefficients (1.4.11)
is due to Rains, see [44, Eq. (4.1)]. Coskun and Gustafson define so-called elliptic Jackson
coefficients

ωλ/µ(z; r; a, b) = ωλ/µ(z; r, q, p; a, b),

see [10, Eq. (2.38)]. Up to normalization these are the elliptic binomials coefficients:

ωλ/µ(z; r; a, b) =
(1/z, az)λ

(qbz, qb/az)λ

(qbz/r, qb/azr, bq, r)µ
(1/z, az, qb/r2, 1/r)µ

(
λ

µ

)
[b,r]

.

The value of the elliptic binomials (1.4.12) is [44, Eq. (4.8)]. It is equivalent to [10, Eq. (2.9)]
and also [10, Eq. (4.23)]. The conjugation symmetry (1.4.13) of the elliptic binomial coeffi-
cients is [44, Corollary 4.4]. The summation (1.4.14) is [44, Theorem 4.1], and is equivalent
to the “cocycle identity” [10, Eq. (3.7)] for the elliptic Jackson coefficients. The orthogonality
relation (1.4.15) is [44, Corollary 4.3] or [10, Eq. (4.16)]. The symmetry of (1.4.16) is [44,
Theorem 4.9] or [10, Eq. (3.8)], and the symmetry of (1.4.17) is [44, Corollary 4.11]. The
expression (1.4.18) for the branching coefficients is a consequence of [44, Corollary 4.5] or
[10, Lemma 3.11]. The connection coefficient identity (1.4.19) is [44, Corollary 4.14]. It is
equivalent to the “Jackson sum” [10, Eq. (3.6)] for the well-poised Macdonald functions Wλ.

Definition (1.4.20) of the birthogonal functions is [44, Eq. (5.1)], its principal specialization
(1.4.22) is [44, Eq. (5.4)] and the difference equation (1.4.23) is [44, Lemma 5.2]. The param-
eter and evalation symmetries (1.4.24) and (1.4.25) are [44, Theorem 5.1] and [44, Theorem
5.4], respectively. The important biorthogonality relation (1.4.26) is a combination of [46,
Theorem 8.4] and [46, Theorem 8.10]. Its discrete analogue (1.4.27) is [44, Theorem 5.8], see
also [44, Theorem 8.11]. Finally, the Cauchy identity (1.4.28) is [44, Theorem 5.11].

The BCn-symmetric interpolation functions satisfy several further important identities not
covered in the main text, such as a “bulk” branching rule [44, Theorem 4.16] which extends
(1.4.3), and a generalized Pieri rule [44, Theorem 4.17]. In [11] Coskun applies the elliptic
binomial coefficients (elliptic Jackson coefficients in his language) to formulate an elliptic
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Bailey lemma of type BCn. The interpolation functions further admit a generalization to skew
interpolation functions [47]

Rλ/µ([v1, . . . , v2n]; a, b; q, t; p), µ ⊆ λ.

These are elliptic functions, symmetric in the variables v1, . . . , v2n, such that [47, Theorem
2.5]

R∗λ(x1, . . . , xn; a, b; q, t; p) =
(pqa/tb)λ

(tn)λ
R∗λ/0

([
t1/2x±1 , . . . , t

1/2x±n
]
; tn−1/2a, t1/2b; q, t; p

)
.

They also generalize the n-variable skew elliptic Jackson coefficients [10, Eq. (2.43)]

ωλ/µ(x1, . . . , xn; r, q, p; a, b)

of Coskun and Gustafson:

ωλ/µ
(
rn−1/2x1/a, . . . , rn−1/2xn/a; r; a2r1−2n, ar1−n/b

)
=

(
−

b3

q3a

)|λ|−|µ|
q3n(µ′)−3n(λ′)t3n(λ)−3n(µ)r−n|µ| (aq/br)λ

(aqr−n−1/b)µ

(r)µ
(r)λ

× R∗λ/µ
([

r1/2x±1 , . . . r
1/2x±n

]
; a, b; q, t; p

)
.

A very different generalization of the interpolation functions in given in [48] in the form
of an interpolation kernel Kc(x1, . . . , xn; y1, . . . , yn; q, t; p). By specialising yi = qλi tn−ia/c
with c =

√
tn−1ab for all 1 ≤ i ≤ n one recovers, up to a simple normalising factor,

R∗λ(x1, . . . , xn; a, b; q, t; p). In the same paper Rains uses this kernel to prove quadratic trans-
formation formulas for elliptic Selberg integrals.

Also for the biorthogonal functions we have omitted a number of further results, such as
a “quasi”-Pieri formula [44, Theorem 5.10] and a connection coefficient formula of Askey–
Wilson type [44, Theorem 5.6], generalizing (1.4.19).
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