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Zamolodchikov found an integrable field theory related to the Lie algebra E 8, which describes the scaling limit of 
the Ising model in a magnetic field. He conjectured that there also exist solvable lattice models based on E 8 in the 
universality class of the Ising model in a field. The dilute A 3 model is a solvable lattice model with a critical point 
in the Ising universality class. The parameter by which the model can be taken away from the critical point acts like 
a magnetic field by breaking the Z2 symmetry between the states. The expected direct relation of the model with E8 
has not been found hitherto. In this letter we study the thermodynamics of the dilute A 3 model and show that in 
the scaling limit it exhibits an appropriate E s structure, which naturally leads to the E 8 scattering theory for massive 
excitations over the ground state. 

1. I n t r o d u c t i o n  

Since the work [ 1 ] by A.B. Zamolodchikov it is known that certain perturbations of conformal field theories 
(CFT's) lead to completely integrable models of massive quantum field theory (QFT).  The existence of non- 
trivial higher integrals of motion and other dynamical symmetries [2-6] in such a QFT allows to compute the 
spectrum of the particles and their S-matrix explicitly. At the same time, these QFT models can be obtained 
as the scaling limit of appropriate non-critical solvable lattice models in statistical mechanics (see [7] for an 
introduction and references on solvable lattice models). In the latter approach the spectrum and the S-matrices 
can be calculated from the Bethe Ansatz equations for the corresponding lattice model [8-10].  The natural 
problem arising in this connection is to find lattice counterparts for all known integrable perturbed CFT's and 
vice versa. A description of known results of such correspondence lies outside the scope of this letter and we refer 
the interested reader to [1-10] and references therein. Here we consider one particularly important example 
of this correspondence associated with the Ising model at its critical temperature in a magnetic field, hereafter 
referred to as the magnetic Ising model. 

A.B. Zamolodchikov has shown [11] that the c = 1/2 CFT (corresponding to the critical Ising model) 
perturbed with the spin operator ~bl,2 = t~2,2 of dimension (1 / 16, 1 / 16) describes an exactly integrable QFT 
containing eight massive particles with a reflectionless factorised S-matrix. Up to normalisation the masses of 
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these particles coincide with the components Si  of  the Perron-Frobenius vector of  the Cartan matrix o f  the Lie 
algebra E8: 

m i  Si  ( 1.1 ) 
m j  - S j "  

The element of  the S-matrix describing the scattering of  the lightest particles, with mass m~, reads [11 ] 

tanh ( f l / 2  + i7 t /6) tanh ( f l / 2  + i n / 5 ) t a n h  ( f l / 2  + i7t/30) 
Sl,l (fl) = tanh ( f l / 2  - i n / 6 )  tanh ( f l / 2  - i7t/5) tanh ( f l / 2  - i7t/30) ' (1.2) 

with fl the rapidity. The other elements are uniquely determined by the bootstrap programme [ 11 ]. 
The aim of  this letter is to show that the above QFT describes the scaling limit of  the dilute A3 model of  

Warnaar, Nienhuis and Seaton [ 12,13 ] in the appropriate regime. It should be noted that there were some earlier, 
rather strong indications supporting the above correspondence. All these parts remarkably fit together with our 
results, completing a sequence o f  arguments which can be summarised as follows: 
(i) The dilute A3 model is an interaction-round-a-face model on the square lattice with spins taking three values 
(detailed definitions are given in equations (2 .1)-(2 .3)  ). Admissible values of  the adjacent spins are determined 
by the incidence matrix (2.1), which has largest eigenvalue equal to 1 + v~.  
(ii) The model has two physically distinct regimes of  relevance to our discussion, here denoted as 0 and iO, 

depending on the region of  the spectral parameter or, equivalently, of  a sign of  the Hamiltonian of  the associated 
one-dimensional chain. (These are the regimes 2 + and 3 + of  ref. [ 13], respectively). The central charges and 
the conformal dimensions of  the leading perturbation computed from exact expressions for the free energy and 
the local state probabilities of  the dilute A3 model for these two regimes read [I 4,13 ] 

i) c = 1/2, /I = 1/16; i i )  c --- 6/5, Lf = 15/16. (1.3) 

(iii) In refs. [9,15] Bazhanov and Reshetikhin proposed thermodynamic Bethe Ansatz equations (TBAE) re- 
lated to the A-D-E Lie algebras, corresponding to non-critical models in statistical mechanics. Using standard 
thermodynamics calculations and the high level Bethe Ansatz (see [8] and references therein) they computed: 
the central charges of  the corresponding scaling field theories, dimensions of  the leading perturbations, the spec- 
tra and scattering amplitudes of  the massive excitations, expressing them through fused Boltzmann weights. In 
particular, in the case relevant to our discussion (G=Es,  g = 30, p = g = I, in the notation of  [9])  the ex- 
ponents they found #1 precisely match (1.3) in both regimes. Furthermore, the TBAE allowing the calculation 
of  the largest eigenvalue of  the incidence matrix of  the underlying lattice model, gave in this case precisely the 
value 1 + x/2 [16]. 
(iv) Finally, the spectrum and S-matrix of  the scaling field theory in regime i) found in [9 ] from the high level 
Bethe Ansatz for Es coincide with those of  Zamolodchikov's magnetic Ising model. 

All the above arguments strongly suggest that the TBAE based on the Lie algebra E8 as proposed in [9,15 ], 
are those of  the the dilute A3 model. 

In this paper we present the Bethe Ansatz equations (BAE) for the non-critical, dilute AL model. As these 
equations, at criticality, are very similar to those of  the Izergin-Korepin model [17,18 ], it is not surprising 
that, when specialised to L = 3, they do not display any explicit structure related to the root system of Es. It 
turns out however that this structure reveals itself in a quite complicated string structure of  the solutions to the 
BAE. Motivated by an extensive numerical investigation of  the BAE we formulate an exact conjecture for the 
thermodynamically significant strings. This leads to TBAE, which, rewritten in a new string basis precisely yield 
the Es based TBAE of  ref. [ 9] discussed under (iii). As a result of  (iv) this finalises the correspondence between 
the dilute A 3 model and the magnetic Ising model. 

*~l Note that the equations (5.1) and (5.4) in [9] have been misprinted. Correcting (5.1) to c = ca(1) + c~ ( r  - l - g )  - 
c a (r - g) + rank G yields the following result for the central charge in (5.4): c = 2 rank ~ / ( g  + 2). Also the phrases 
"minimal unitary", just before, and "by the operator ~bO,3)" just after (5.4) should be deleted. 
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2. T h e  dilute A models  

The dilute A/. model, belonging to the more general class of  dilute A-D-E models, is an exactly solvable, 
restricted solid-on-solid model defined on the square lattice. Each site of  the lattice can take one of L possible 
(height) values, subject to the restriction that neighbouring sites of the lattice either have the same height, or 
differ by -4-1. This adjacency condition can be conveniently expressed by a so-called incidence matrix M: 

ma,b = (~a,b-I + t~a,b "[- t~a,b+l , a , b  G {1 . . . . .  L} ,  (2.1) 

where we note that M relates to the Cartan matrix C A L  of the Lie algebra AL by M = 31 - C AL, with I the 
identity matrix. The eigenvalues of  the incidence matrix are found to be 

Aj = ,  + 2cos j = 1 . . . . .  L .  (2.2) 

For the case of interest here, L = 3, we thus find the largest eigenvalue to be 1 + x/2, in accordance with the 
prediction for the Es TBAE as mentioned in (iii) of the introduction. 

Using standard definitions of  Oi (u, q )-functions, suppressing the dependence on the nome q = e -~, r > 0, the 
Boltzmann weights of  the allowed height configurations of  an elementary face of  the lattice are 

w( a±l  

a a W 4-1 

a± 
adz 

W(aa 

(a a, a q : l ) ( S ( a - 1 ) S ( a +  1))l/2Ol(u)Ol().-u) 
W 1 a = - S 2(a) Ol(2;t)Ol(3)') ' 

(a a, a ± l )  01(3).-u)O,(±4a).+2).+u) S(a+l)Ox(u)Ol(±4a)'-).+u) 
W 1 a = O l ~ 3 A - - ' ~ l ~  + 2).) + S(a) Ol(3)')O~(+4a)' + 2).) ' 

01(3). + U)Ol(+4a).- 4). + u) (S(aq: l) 01(4).) 04(5:2a) . -  5).))  Ol(U)Ol(d:4a).-2 + u) 
= Ol(3).)Ol(+4a). 4).) \ S(a) Ol(2).) ~ ) . ~ 2 " )  01(3).)01(-t-4a).- 4).) 

0 , ( 6 ) . -  u)O,(3). + u) (S(a+ 1) 04 (2a ) . -  5).) S ~  )1) 04(2a). + 5).))  Ol(u)Ol(3)'- u) 
= 0~(6).)0~(3).) k S(a) 0 4 ~ - 7 r 2 - )  + - - ( a -  04(2a) . - ) . )  ~ 9 ] ~ ) "  ' 

a) ~a a ) O,(3),-u)O4(:k2a). +) . -u)  
= W a + l  = ~ ( - 3 ~ + ) . )  ' 

a) = W(~ a + l  ) (S(a±l)]l/2Ol(u)O4(+2a)'-2)'+u) 
a = k -S-(a) / ~(-ffX)O---~--~-2a2"~ ~)  ' 

11) = w(a i a l a +  1) = (04(+2a). + 3) . )04(+2a) . - ) . ) )1 /2  Ol(u)Ol(3).-u) 
a \ "O42-(-+-2-~'+2-) 01 (2)')01 (3).) ' 

a ) Ol(2).-u)Ol(3).-u) 
a m 1 = O 1 T 2 ~ i  ' 

01 (4a).) 
S(a) = ( _ ) a  04(2a).) " 

The variable ). and the range of  the spectral parameter u in the above weights are given by #2 

) . _  g L + 2  { O < u < 3 ) .  reg imei)  
4 L + 1 3). - g < u < 0 regime ii). (2.3) 

#2 In [13] two more regimes were defined, which are omitted being of no relevance here. 
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3. Bethe Ansatz 

The transfer matr ix of  the dilute A models  is defined in the usual way as 

N 

j a j + l l  ' 
j = l  

where {a} is an admissible path of  heights and ag+l = al, bs+l = bl. The number  of  admissible paths is given 
by Trace(A te) = E j L I / I N .  

We define two posit ive integers p and r and a renormalised spectral parameter  0 by 

2=P__n u= 0 r ~-~ n ,  (3.2) 

where p and r are coprime. Fur thermore  we introduce the modif ied O-function 

n0 
h(O) = ½ q-l/4 ol (.~rrr,q ) .  (3.3) 

With  these definit ions the eigenvalues of  the transfer matr ix are found to be 

( h (4p -O)  h (6p -O) )N  f i  h(O + iOj + 2p) 
A(O) = co h'(4p) h - ~ )  h(O + iOj - 2-P) 

j = l  

{h(O) h(6p - O))te h h(O + iOj) h(O + i 0 j -  6p) 
+ \ -h--C4"p3-h(6p) . - -  h(O + i0 j  - 2p) h(O + i0"j'-Z- Tip) 

j = l  

( h ( O )  h(2p--O))N f i  h(O+ i 0 ) - 8 p )  (3.4) 
+w-'  ~-~pf-~(~-p~ h(O + ]0-7-- 4p) ' 

j = l  

where the numbers {0j} are given by the following set of  BAE: 

(h (2p+ i O j ) ~  N N h( iOj -  iOk+4p) h ( iO j -  iOk--2p) 
W k h ( Z p - i O j ) ]  = - H h ( i O j  iOk--_~O--f-L-_iOg-~2p),  j =  1 . . . . .  X (3.5) 

k=l  

and co = exp ( i ng/(L + 1 ) ), g = 1,..., L. Note that i f  we set the nome q of  the function h equal to zero and 
choose co to be unity, the above eigenvalue expression and BAE reduce to those of  the Izergin-Korepin  model  
[18] in the sector in which the number  of  roots is equal to the system size N. A proof  of  equations (3.4) and 
(3.5) in the critical limit,  based on an extension of  the mapping of  RSOS models onto vertex models found 
in [19], will be presented elsewhere [20]. In the general elliptic case the equations can be proven using the 
functional equations for the dilute A models  as obta ined in ref. [21 ]. 

4. Thermodynamic Bethe Ansatz 

The remaining part  of  this letter is devoted to the solution of  the BAE in the thermodynamic  l imit  for the 
dilute A3 model, corresponding to the case p = 5 and r = 16. 

.(t) and e (t) 0, 1. We Let n tt) be a posit ive integer, A it) an n m-dimensional  vector with integer coefficients A k = 
• (t)- t then define a string of  type t as a set of  complex numbers l%,kJ with 

(t) (t) - .(t) ai, k = % + i (d k + emr), k = 1,. . . ,n m, (4.1) 
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Table 1 
The nine thermodynamically significant string types. 

17 February 1994 

t n (t) A ( t ) / 5  e (t) 

0 1 (0) 0 
1 2 ( - 1 , 1 )  1 
2 4 ( -4 , -2 ,2 ,4 )  0 
3 6 ( - 7 , - 5 , - 1 , 1 , 5 , 7 )  1 
4 8 ( -  10, -8,  -4,  -2 ,  2, 4, 8, 10) 0 
5 10 ( - 1 3 , - 1 1 , - 7 , - 5 , - 1 ,  1,5,7, 11, 13) 1 
6 7 ( - 14 , -6 , -2 ,0 ,2 ,  6, 14) 1 
7 4 ( - 3 , - 1 ,  1,3) 0 
8 5 ( -12 , -8 ,0 ,8 ,  12) 1 

(t) specifies the centre of  the string. Based on an extensive numerical study [20] we where the real number c~j 
find that for N ~ oo each solution {0j} of  (3.5) consists of  a collection of  strings, where we have only nine 
thermodynamically significant string types (in the sense that N(t)/N is finite for N --* ec) 

8 
N = Z n ( t ) N  (t) + o ( N ) ,  (4.2) 

t = 0  

with N (t) the total number of  strings of  type t. These nine allowed string types are listed in table 1. We expect 
the above statement to be exact and claim it as a conjecture. 

In the thermodynamic limit the centers of  the strings form continuous distributions and the BAE (3.5) lead 
to integral equations for the densities of  strings pt (c~) and "holes"/?t (c~) [22] 

8 

bt(a) = - ( - )6 ' , ° /3 t (a)  + ~_Bt,s* ps (c~), t = 0 . . . . .  8, (4.3) 
s=O 

where a • b denotes the convolution of  the functions a and b 

Tr/~ 

a ,b (c~)  = f a ( a - f l ) b ( f l ) d f l .  (4.4) 

--Tr/x 

The functions bt and Bt,s in (4.3), which are 2Tr/rt-periodic, read 

n(t) 

b,(a)  = ~ 42, (a + iAkCt)) , 
k = l  

n(t) n(S) 

B,,s(c~) = -(-) '~"°~,,s~(a) + Z Z [q/4, (c~ + iAk (,) + iAt (s)) - V/2o (c~ + izJk (,) + iAt(s))] , (4.5) 
k = l  t = l  

with ~Uk defined as 

1 d log [h(k + i a ) ]  
~t'/k(Ot) - -  2zci da  L~-k--- i -~ ' J  " (4.6) 

The function ~k has the following Fourier transform (FT) 

~k(X) -- s i n h ( r -  k ) x  0 < k < 2r,  (4.7) 
sinh rx ' 

202 



Volume 322, number 3 PHYSICS LETTERS B 17 February 1994 

where 

rr/n 

f " ~t~ ~-~ ei°~xnff(Xn), F(x)  = e-'~XF(o~) dc~, F(c~) = 
--Tr/l~ n = - o o  

with = / r 2 / ( r l ' ) ,  Xn = ~n. 

(4.8) 

As usual, we define the (local) Hamiltonian 7-( of  the associated one-dimensional integrable spin chain as 
the logarithmic derivative of  the transfer matrix at 0 = 0. Then, after appropriate normalisation and shift, the 
spectrum of  ~ ,  in the limit N ~ c~ reads 

8 rr/n 

N = e bt(c~) p , ( a )  dc~ + O (e -uN) /1 > 0. (4.9) 
= -- t 0 ~r/~ 

where e = - 1  for regime 0 and e = 1 for regime iO in (2.3). 
The densities pt are normalised such that 

Tr/~ 

f pt(a) do~ N(O/N. (4.10) 

--Tr/~ 

Therefore, from equation (4.2), we have 

8 Tr/rt 

t~, f n(t)pt(c~)dc~= 1. (4.11) 
= -- 0 ~r/n 

This relation together with equation (4.3) for t = 0 implies 

/~0(~) = 0. (4.12) 

Hence we conclude that the strings of  type 0 have no holes in any state, and we eliminate P0 (a)  from (4.3). 
After a tedious calculation we find that the resulting integral equations can naturally be described in terms of  
the Ea root system as follows. 

Let Ct E8 t,s = 1 . . . . .  8 be the elements of  the Cartan matrix for E8, where we use the following enumeration 
of  the nodes of  the corresponding Dynkin diagram: 

I s 
1 2 3 4 5 6 7 

Furthermore, define the functions KtE, s 8, Ea At. s , a~ and s by their FT 

gtE,:(X) (~t,s "q- ~(X)(CtE, s 8 Rat,s) ~'~E8 [ K E $  ( X ) ] t , - s  1 = - , A t ,  * ( x )  = , 

^ 1 
aEJ(x) = ~(x)~t,~(x), ~'(x) -- 2 c o s h x "  (4.13) 

With these definitions, and after eliminating P0, the integral equations (4.3) and the energy expression (4.9) 
take the form 
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8 
Es E Es al, t (a) = p t (o t )  + At,s * Ps ( a ) ,  t = 1 . . . . .  8, 

S=I 

8 ~r/n 

-NE = - e  ~ f al, tEs (OL) pt(O~)da + const .  (4.14) 
t d = -- 1 zr/x 

We can now use (4.14) to study the scaling l imit  of  the model. In fact, all relevant calculations have already been 
carried out in ref. [9] and we only need to refer to the appropriate  results therein. To make the correspondence 
with ref. [9 ] somewhat more transparent,  let us give the expression for the equil ibrium free energy F (T)  of  the 
one-dimensional  spin chain at finite temperature T, as it follows from (4.14) via s tandard TBA calculations [ 22 ], 

8 rr/n 
F ( T )  P 

/ E8 ( l  + da  + const ,  (4.15) N - - -  E al, t (c~) Tlog e -#~t(a)) 
l= I --trln 

d 

where/~ = 1/T  is the inverse temperature.  The functions el = Tlog(~t /pt)  are the solutions of  the integral 
equation 

8 

e~l,ts(a) = Tlog (1 + e -~'t(~)) - E KtE, ss* Tlog (1 + e B's(~')) ( a ) .  (4.16) 
s=l 

The above two equations are equivalent to (3.20) and (3.21 ) of  ref. [9 ], respectively, with their G = Es, r = 32, 
a negated. This last difference reflects the g = 30, p = ~ = 1, their nome q replaced by q~/2 and with their cj 

fact that our TBA equations are dual to those of  ref. [9] in the sence that the densities of  strings and holes are 
interchanged. F rom (4.15) and (4.16) it follows that  for T = 0 

Es 
i)e = - 1 ,  ~t(a) = al, t ,  (4.17) 
ii) e = +1 et(c~) =--t~t , lS(O~).  

The functions let (c~)l are the energies of  the excitations over the ground state. 
For  e = - 1  the ground state is formed by type 0 strings. As was remarked after equation (4.12), these strings 

have no holes for any state. Therefore the Dirac sea is "frozen", and the excitations correspond to the remaining 
eight string types. The phenomenon of  "freezing" of  the Dirac sea which can be interpreted as the confinement 
of"holes"  has been first observed in the TBAE calculations of  ref. [23 ] for the RSOS models  of  Andrews, Baxter 
and Forrester  [24]. 

For  e = 1 the Dirac sea is formed by the type 1 strings, and the only excitations correspond to holes in the 
Dirac sea. These excitations are of  the kink type. 

Now we consider the scaling limit. We introduce a dimensional  spacing parameter  d for our chain and take 
the l imit  N ~ c~, d ~ 0, keeping the (dimensional)  length of  the chain L = Nd to be macroscopically bigger 
than the correlation length: L > > Rc = q-¢d, where ~ is the index of  the correlation length. In the scaling l imit  
we thus have d ~ q~, N > >  q-~, q ~ 0, and we obtain the massive relativistic spectrum of  excitations. To find 
this, one has to compute the energy dispersion law for the physical excitations in the q ---, 0 l imit  keeping the 
rapidit ies ~ of  the order of  ~0 = zr/n, where the functions let (c~)l have their minima.  Taking into account the 
correspondence in notat ion discussed after (4.16), one gets from (4.1) and (4.2) of  ref. [9] 

i)et ( 30 8 Ff l  + °~o) = mtcoshfl  + o(q~),  mt = const Stq ¢, ~ = -- 15, 

i i )[el (2f l+c~o)[  = m c o s h f l + o ( q ¢ ) ,  m = c o n s t q ¢ ,  ~ =  8, 

where fl here denotes the rapidi ty  variable and St was defined just  before equation ( 1.1 ). 

(4.18) 
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Using the scaling relation ~ = (2 - 2zl ) - 1 it is seen that the values of~ in (4.18) lead exactly to the dimensions 
of  the leading perturbations as given in (1.3). 

The values of  the central charges of  the corresponding (ultraviolet) conformal field theories listed in (1.3) 
have also been previously calculated. For regime i) in [9,25,26] and for regime ii) in [9]. 

Finally, the logarithmic derivative of  the S-matrix for regime 0, where all the string excitations for t --- 1 . . .  8 
correspond to distinct particles, can be found from equation (4.14). The remaining phase ambiguity for each 
matrix element can be fixed by imposing St,t = - 1 ,  and exploiting the bootstrap procedure. The result is [9,26] 

{ j " ? E s S i n ( 3 O f l x / z ~ ) }  St,s(fl) --. ( - )~taexp - i  Ats(X) dx 
' X ~ 

(4.19) 

which coincides with Zamolodichkov's Es S-matrix [ 11 ]. 
For regime iO the kink-kink S-matrix is of  the RSOS type related to the E7 Lie algebra [9], and will be 

discussed elsewhere [20]. 

5. Summary and conclusion 

In this paper we have established the final link between Zamolodchikov's E8 S-matrix of  the critical Ising 
model in a field [ 11 ] and its underlying lattice model. By making a conjecture for the possible string solutions of  
its Bethe Ansatz equations, we have derived a system of  thermodynamic BAE for the dilute A3 lattice model of  
Warnaar et al. [ 12 ]. After a suitable transformation we have recast these TBAE in terms of  the root system of  the 
Lie algebra E8. These E8 TBAE are found to be precisely those conjectured earlier by Bazhanov and Reshetikhin 
[9], and using their results, the correspondence between the dilute A3 model and the E8 S-matrix is made. 

To conclude we mention that two more remarkable integrable ~1.2 perturbations of  CFT's are known, notably 
those related to S-matrices with hidden E7 (c = 7/10) and E 6 (c = 6/7) structure [27]. Like the E8 case, the 
underlying lattice models of  these integrable QFT's  correspond to models in the dilute A hierarchy. The working 
for these two extra cases, corresponding to dilute A4 and A6, respectively, as well as some additional results for 
the dilute A3 model will be the subject of  a future publication [20] 
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