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Abstract. In this paper it is shown that the one-dimensional configuration

sums of the solvable lattice models of Andrews, Baxter and Forrester and the

string functions associated with admissible representations of the affine Lie

algebra A
(1)
1 as introduced by Kac and Wakimoto can be exploited to yield

a very general class of conjugate Bailey pairs. Using the recently established

fermionic or constant-sign expressions for the one-dimensional configuration
sums, our result is employed to derive fermionic expressions for fractional-

level string functions, parafermion characters and A
(1)
1 branching functions.

In addition, q-series identities are obtained whose Lie algebraic and/or combi-

natorial interpretation is still lacking.

0. Notation

Throughout the paper the following notation is used. N are the positive integers,
Z+ the nonnegative integers, Np = {1, . . . , p}, Zp = {0, . . . , p − 1}. For n ∈ Z,(
n
2

)
= n(n− 1)/2.

1. The Bailey lemma

In an attempt to clarify Rogers’ second proof [60] of the Rogers–Ramanujan
identities, Bailey [19] was led to the following simple but important observation.

Lemma 1.1. If α = {αL}L≥0, . . . , δ = {δL}L≥0 are sequences that satisfy

(1.1) βL =
L∑
r=0

αruL−rvL+r and γL =
∞∑
r=L

δrur−Lvr+L,

then

(1.2)
∞∑
L=0

αLγL =
∞∑
L=0

βLδL.

The proof is straightforward and merely requires an interchange of sums. Of
course, in the above suitable convergence conditions need to be imposed to make
the definition of γ and the interchange of sums meaningful.
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2 A. SCHILLING AND S. O. WARNAAR

In applications of his transform, Bailey chose uL = 1/(q)L and vL = 1/(aq)L,
with the usual definition of the q-raising factorial,

(a)∞ = (a; q)∞ =
∞∏
k=0

(1− aqk)

and
(a)L = (a; q)L = (a)∞/(aqL)∞

for all L ∈ Z. With this choice, equation (1.1) reads

(1.3) βL =
L∑
r=0

αr
(q)L−r(aq)L+r

and

(1.4) γL =
∞∑
r=L

δr
(q)r−L(aq)r+L

.

A pair of sequences that satisfies (1.3) is called a Bailey pair relative to a. Similarly,
a pair satisfying (1.4) is called a conjugate Bailey pair relative to a.

Still following Bailey, one can employ the q-Saalschütz summation [43, Eq.
(II.12)] to establish that (γ, δ) with

γL =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)L(aq/ρ2)L
1

(q)M−L(aq)M+L

δL =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)M (aq/ρ2)M
(aq/ρ1ρ2)M−L

(q)M−L

(1.5)

provides a conjugate Bailey pair.
Unfortunately, Bailey outrightly rejected the above conjugate Bailey pair as too

complicated to yield any results of interest and focussed on the simpler case obtained
by letting M go to infinity. Doing so as well as letting the indeterminates ρ1 and
ρ2 tend to infinity yields

(1.6) γL =
aLqL

2

(aq)∞
and δL = aLqL

2
,

which substituted into (1.2) gives

(1.7)
1

(aq)∞

∞∑
L=0

aLqL
2
αL =

∞∑
L=0

aLqL
2
βL.

The proof of the Rogers–Ramanujan and many similar such q-series identities re-
quires the input of suitable Bailey pairs into (1.7). For example, from Rogers’ work
[60] one can infer the following Bailey pair relative to 1: α0 = 1 and

αL = (−1)LqL(3L−1)/2(1 + qL), βL =
1

(q)L
.(1.8)

Thus one finds
1

(q)∞

∞∑
L=−∞

(−1)LqL(5L−1)/2 =
∞∑
n=0

qn
2

(q)n
.
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The application of the Jacobi triple product identity

(1.9)
∞∑

r=−∞
(−1)rxrq(

r
2) = (x, q/x, q)∞

yields the first Rogers–Ramanujan identity
∞∑
n=0

qn
2

(q)n
=

1
(q, q4; q5)∞

.

Here and later in the paper we employ the condensed notation

(a1, . . . , ak; q)n = (a1, . . . , ak)n = (a1)n . . . (ak)n.

The second Rogers–Ramanujan identity
∞∑
n=0

qn(n+1)

(q)n
=

1
(q2, q3; q5)∞

follows in a similar fashion using the Bailey pair [60]

αL = (−1)LqL(3L+1)/2(1− q2L+1)/(1− q), βL =
1

(q)L

relative to q. By collecting as many Bailey pairs as possible, Slater compiled a list
of over a hundred Rogers–Ramanujan-type identities [65, 66]. (Apart from a few
exceptions Slater either used (1.7) or the analogous identity obtained from (1.5)
and (1.2) by taking M,ρ1 →∞ and letting ρ2 = −qk/2 with k a small nonnegative
integer.)

By dismissing the conjugate Bailey pair (1.5) Bailey missed a very powerful
mechanism for generating Bailey pairs. Namely, if we substitute the conjugate
pair (1.5) into (1.2) the resulting equation has the same form as the defining re-
lation (1.3) of a Bailey pair. This is formalized in the following theorem due to
Andrews [10, 11].

Theorem 1.2. Let (α, β) form a Bailey pair relative to a. Then so does (α′, β′)
with

α′L =
(ρ1)L(ρ2)L(aq/ρ1ρ2)L

(aq/ρ1)L(aq/ρ2)L
αL

β′L =
L∑
r=0

(ρ1)r(ρ2)r(aq/ρ1ρ2)r(aq/ρ1ρ2)L−r
(aq/ρ1)L(aq/ρ2)L(q)L−r

βr.

(1.10)

Again letting ρ1, ρ2 tend to infinity leads to the important special case

(1.11) α′L = aLqL
2
αL and β′L =

L∑
r=0

arqr
2

(q)L−r
βr,

which was also discovered by Paule [57] for a = 1 and a = q.
With this last result one finds that the Bailey pair of equation (1.8) can be

obtained by application of (1.11) with initial Bailey pair α0 = 1 and

(1.12) αL = (−1)Lq(
L
2)(1 + qL), βL = δL,0
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relative to 1. Here δi,j is the Kronecker-delta symbol. The Bailey pair (1.12) follows
after setting x = 1 in the q-binomial sum

L∑
r=−L

(−1)rxrq(
r
2)
[

2L
L− r

]
= (x, q/x)L,

where throughout this paper the following definition of the q-binomial coefficient
or Gaussian polynomial is used[

n

m

]
=

(qn−m+1)m
(q)m

for m ∈ Z+ and zero otherwise.
At this point one may wonder why Bailey and Slater put so much emphasis on

finding new Bailey pairs, but contented themselves with just the single conjugate
Bailey pair (1.4). After all, the defining relations (1.3) and (1.4) are very similar
and it is therefore not unreasonable to expect that conjugate pairs are as important
and as numerous as ordinary Bailey pairs. In fact, because Andrews’ Theorem 1.2 is
equivalent to equation (1.2) with conjugate Bailey pair (1.5), in modern expositions
of the Bailey lemma there often is no mention of conjugate Bailey pairs and equation
(1.2) at all, see e.g., Refs. [2, 10, 12, 13, 14, 17, 22, 30, 33, 40, 58, 59]. Instead,
(1.10) is referred to as the Bailey lemma and in the spirit of Slater, all focus is
on finding interesting Bailey pairs. These are then either iterated using (1.10) or
(1.11) to yield what is called a Bailey chain, or directly substituted into (1.7). The
only exception that we were able to trace in the literature is the conjugate Bailey
pair (|r| < 1)

(1.13) γL =
rL

(r)∞(aq)∞

∞∑
k=0

(−1)kq(
k
2)(r)k(aq2L+1)k

(q)k
and δL = rL

which can be found in the work by Bressoud [29] and Singh [64] (and which for
r = q we will meet again in Section 6).

This paper intends to revive the interest in conjugate Bailey pairs. In our ear-
lier papers [61, 62] we made a first step towards this goal by proving an infinite
series of conjugate Bailey pairs generalizing (1.6). Here we develop the theory of
conjugate Bailey pairs much further, exploiting the connection of Bailey’s lemma
with integrable systems and Lie algebras. We show that appropriate series of one-
dimensional configuration sums and A(1)

1 string functions can be identified with the
series δ and γ defining a conjugate Bailey pair. Here one-dimensional configuration
sums [16, 42], also known as hook-partition generating functions [15], are polyno-
mials that have arisen in statistical mechanics and partition theory. A well-known
example are the polynomials introduced by Schur [63] in his famous proof of the
Rogers–Ramanujan identities. The string functions that occur are associated to
the admissible representations of the affine Kac–Moody algebra A(1)

1 as introduced
by Kac and Wakimoto [49, 50].

Before we carry out the above program let us attempt to give an explanation of
the origin of our findings. An important notion in the theory of affine Lie algebras is
that of branching functions [47]. Here we consider the branching functions BN1,N2

associated to (A(1)
1 ⊕A(1)

1 ,A(1)
1 ) at levels N1, N2 and N1 +N2, respectively, where

N1 and N2 are rational numbers such that either N1 or N2 is a positive integer.
The branching functions obey the symmetry BN1,N2 = BN2,N1 . Following the work
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of Andrews [10] and Foda and Quano [40], the infinite hierarchy of conjugate Bailey
pairs of [61, 62] were used in [24] to derive q-series identities for the A(1)

1 branching
functions. Schematically the results of [24] read as follows:

(1.14) BN1,N2 =
∞∑
L=0

α
(N1)
L γ

(N2)
L =

∞∑
L=0

β
(N1)
L δ

(N2)
L ,

where N1 is rational, N2 integer, γ(N2)
L is a level-N2 string function, β(N1)

L a (nor-
malized) one-dimensional configuration sum and (α(N1), β(N1)), (γ(N2), δ(N2)) are a
Bailey and conjugate Bailey pair respectively. In the middle term of this identity
the symmetry between N1 and N2 is not at all manifest since it involves only the
(integer) level-N2 string functions and not the (fractional) level-N1 string functions.
This suggests that there should be more general conjugate Bailey pairs such that
one can also derive

(1.15) BN1,N2 =
∞∑
L=0

ᾱ
(N2)
L γ̄

(N1)
L =

∞∑
L=0

β̄
(N2)
L δ̄

(N1)
L ,

where now γ̄
(N1)
L is a fractional-level string function, (ᾱ(N2), β̄(N2)), (γ̄(N1), δ̄(N1))

are a Bailey and conjugate Bailey pair, and such that, manifestly,
∞∑
L=0

β
(N1)
L δ

(N2)
L =

∞∑
L=0

β̄
(N2)
L δ̄

(N1)
L .

This last equation is obviously satisfied if

(1.16) δ̄
(N1)
L = gLβ

(N1)
L and δ

(N2)
L = gLβ̄

(N2)
L ,

with gL independent of N1 and N2. Since β(N1)
L is a (normalized) one-dimensional

configuration sum we can now conclude that in the “yet to be found” conjugate
Bailey pair (γ̄(N1), δ̄(N1)) the sequence γ̄(N1) is a sequence of (fractional) level-
N1 string functions and the sequence δ̄(N1) is proportional to a sequence of one-
dimensional configuration sums. This is indeed in accordance with the announced
results. We also note that the above discussion establishes a duality between Bailey
and conjugate Bailey pairs through equation (1.16).

The remainder of the paper can be outlined as follows. In the next two sections
we review the one-dimensional configuration sums of the Andrews–Baxter–Forrester
models and the string functions associated with admissible representations of the
affine Lie algebra A(1)

1 . In Section 4 these are used to prove a very general class of
conjugate Bailey pairs stated in Corollary 4.2. In Section 5 we give fermionic or
constant-sign expressions for the one-dimensional configuration sums. This allows
us to apply the Bailey lemma, together with our new conjugate Bailey pairs, to
derive many new q-series results in Sections 6 and 8. In Section 6 we give fermionic
formulas for the fractional-level A(1)

1 string functions and parafermion characters.
In Section 8 we derive a new type of bose-fermi identities extending identities of
the form (1.14) and (1.15) for the A(1)

1 branching functions by allowing for both N1

and N2 to be rational numbers. To put this in the right context we first present a
discussion of the A(1)

1 branching functions in Section 7 proving a generalization of
a theorem of Kac and Wakimoto that expresses the branching functions in terms
of fractional-level string functions in accordance with (1.15).
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2. One-dimensional configuration sums

The one-dimensional configuration sums of the Andrews–Baxter–Forrester mod-
els were introduced in several stages in Refs. [63, 9, 16, 42].

Definition 2.1. For integers p, p′ with 1 ≤ p < p′, and b, s ∈ Np′−1, r ∈ Zp+1 and
L ∈ Z+ such that L+ s+ b is even, let

(2.1) X(p,p′)
r,s (L, b; q) = X(p,p′)

r,s (L, b)

=
∑
j∈Z

{
qj(pp

′j+p′r−ps)[ L
(L+s−b)/2−p′j

]
− q(pj+r)(p′j+s)

[
L

(L−s−b)/2−p′j
]}
.

The configuration sums possess two symmetries which will be used later. From
the definition it can be deduced immediately that

(2.2) X(p,p′)
r,s (L, b) = X

(p,p′)
p−r,p′−s(L, p

′ − b),

whereas

(2.3) X(p,p′)
r,s (L, b; q) = q

1
4 (L2−(b−s)2)X

(p′−p,p′)
b−r,s (L, b; 1/q)

follows by application of

(2.4)
[
n

m

]
1/q

= qm(m−n)

[
n

m

]
.

When the parameters p and p′ obey the additional restriction

(2.5) gcd(p, p′) = 1

the polynomials (2.1) were encountered by Forrester and Baxter [42] as the gener-
ating function of sets of restricted lattice path. Below we describe a slight extension
of their result. A lattice path interpretation of the one-dimensional configuration
sums X(p,p′)

r,s (L, b; q) for all 1 ≤ p < p′ can be found in [38].
Let P = (x0, . . . , xL+1) be a lattice path consisting of an ordered sequence of

L + 2 integers such that |xi+1 − xi| = 1 for 0 ≤ i ≤ L, x0 = s, xL = b, xL+1 = c

and xi ∈ Np′−1 for 1 ≤ i ≤ L. Denote the set of all such paths by Ps,b,cL . Assign a
weight |P | to P ∈ Ps,b,cL as follows

|P | =
L∑
i=1

iH(xi−1, xi, xi+1),

where

H(a, a∓ 1, a) = ±
⌊a(p′ − p)

p′

⌋
and H(a± 1, a, a∓ 1) =

1
2
.

Here bxc denotes the integer part of x. Forrester and Baxter studied the generating
function

DL(s, b, c; q) =
∑

P∈Ps,b,cL

q|P |

and proved for c ∈ Np′−1 that [42, Thm 2.3.1]

(2.6) DL(s, b, c; q) = q
1
4L(c−b)(c+b−1−2r)+ 1

4 (s−b)(s+b−1−2r)X(p,p′)
r,s (L, b),
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where r is given by

r =
b+ c− 1

2
−
⌊c(p′ − p)

p′

⌋
(2.7)

=
b− c+ 1

2
+
⌊cp
p′

⌋
.(2.8)

For p′ = p+ 1 this result was first obtained in [16].
Later in this paper the configuration sum X

(p,p′)
0,s (L, 1) will play a prominent

role. Using the standard q-binomial recurrences[
n

m

]
=
[
n− 1
m− 1

]
+ qm

[
n− 1
m

]
=
[
n− 1
m

]
+ qn−m

[
n− 1
m− 1

]
it readily follows that[

L

a

]
−
[

L

a− 1

]
= qa

[
L

a

]
− qL−a+1

[
L

a− 1

]
.

One thus finds the relation

(2.9) X
(p,p′)
0,s (L, 1) = q

1
2 (L−s+1)X

(p,p′)
1,s (L, 1).

The corresponding lattice path interpretation forX(p,p′)
0,s (L, 1) is easily found. When

p′ > 2p it is included in the Forrester–Baxter result (2.6) since b = 1 and c = 2
yields r = 0. When p′ < 2p we need to allow for paths with c = 0. Then b = 1 and,
using (2.7), r = 0. To see that the corresponding generating function is indeed

(2.10) DL(s, 1, 0; q) = q
1
4 s(s−1)X

(p,p′)
0,s (L, 1)

we compute DL(s, 1, 2; q)/DL(s, 1, 0; q). On the one hand, by the one-to-one cor-
respondence (s, x2, . . . , xL−2, 2, 1, 2) ↔ (s, x2, . . . , xL−2, 2, 1, 0) between paths in
Ps,1,2L and Ps,1,0L , and the fact that H(2, 1, 2) = 0 and H(2, 1, 0) = 1/2 one finds
DL(s, 1, 2; q)/DL(s, 1, 0; q) = q−L/2. On the other hand, by (2.6) and (2.9) we get

DL(s, 1, 2; q)
DL(s, 1, 0; q)

= q
1
4 (s−1)(s−2)

X
(p,p′)
1,s (L, 1)

DL(s, 1, 0; q)
= q

1
4 s(s−1)− 1

2L
X

(p,p′)
0,s (L, 1)

DL(s, 1, 0; q)
.

Combining the last two results clearly implies (2.10).
By the symmetry (2.2) we also need X

(p,p′)
p,s (L, p′ − 1). For p′ > 2p its lattice

path interpretation follows again from the Forrester–Baxter result, as b = p′ − 1
and c = p′ − 2 yields r = p. When p′ < 2p we need to allow for paths with c = p′.
Then b = p′ − 1 and, using (2.8), r = p. By a calculation similar to the one above
it is then readily shown that DL(s, p′ − 1, p′; q) is indeed given by (2.6).

The expressions (2.1) have also been studied extensively in the theory of par-
titions, see e.g. [5, 15, 26, 31, 32, 44]. Here we quote the most general result,
obtained in [15]. Let λ be a partition and λ′ its conjugate. The (i, j)-th node of
λ is the node (or box) in the ith row and jth column of the Ferrers diagram of
λ. The dth diagonal of λ is formed by the nodes with coordinates (i, i − d). The
hook difference at node (i, j) is defined as λi − λ′j . Theorem 1 of [15] states that
the generating function of partitions λ with at most (L + s − b)/2 parts, largest
part not exceeding (L− s+ b)/2, and hook differences on the (1− r)th diagonal at
least r− s+ 1 and on the (p− r− 1)th diagonal at most p′ − p+ r− s− 1 is given
by X

(p,p′)
r,s (L, b). Here the following two conditions apply [15], 1 ≤ r ≤ p − 1 and
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0 ≤ b − r ≤ p′ − p. When r = 0 one has to impose the additional condition that
the largest part exceeds (L − s − b)/2. Similarly, the case r = p can be included
provided one demands that the number of parts exceeds (L+ s+ b)/2.

3. Characters and string functions for A
(1)
1

In [49, 50] Kac and Wakimoto introduced admissible highest weight representa-
tions of affine Lie algebras as generalizations of the familiar integrable highest weight
representations [47]. Let p, p′ be integers such that 1 ≤ p < p′ and gcd(p, p′) = 1,
and define

N = p′/p− 2

so that −1 < N < 0 for p < p′ < 2p and N > 0 for p′ > 2p. Let Λ0 and Λ1

be the fundamental weights of A(1)
1 . Fix an integer ` ∈ Zp′−1 and let L(λ) be an

admissible A(1)
1 highest weight module of highest weight1 λ = (N−`)Λ0 +`Λ1. The

corresponding character is formally defined as

χN` (z, q) = χ`(z, q) = trL(λ)q
sλ−dz−

1
2α
∨
1 ,

where d = 3 is the dimension of A1, α∨1 is a simple coroot and

sλ = −1
8

+
(`+ 1)2

4(N + 2)
.

In terms of the classical theta function

(3.1) Θn,m(z, q) =
∑

j∈Z+n/2m

qmj
2
z−mj

of degree m and characteristic n, one can express the A(1)
1 character as

(3.2) χ`(z, q) =
∑
σ=±1 σΘσ(`+1),p′(z, qp)∑

σ=±1 σΘσ,2(z, q)
.

In (3.1) and elsewhere in the paper we use the notation
∑
j∈nZ+a for a sum over

all j such that j − a ≡ 0 (mod n).
The level-N A(1)

1 string functions are defined by the expansion

(3.3) χ`(z, q) =
∑

m∈2Z+`

CNm,`(q)q
m2
4N z−

1
2m,

and enjoy the symmetry

(3.4) CNm,` = CN−m,`.

When N is integer we furthermore have

(3.5) CNm,` = CN2N−m,` = CNN−m,N−`

so that (3.3) may be put in the familiar form

χ`(z, q) =
∑

0≤m<2N
m+ ` even

CNm,`(q)Θm,N (z, q).

1Kac and Wakimoto considered the more general case λ = (N−`)Λ0 +`Λ1 +k(N+2)(Λ0−Λ1)
with k ∈ Zp.
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We derive an expression for the string functions following the approach of e.g.,
Refs. [45, 3]. First observe that∑

σ=±1

σΘσ,2(z, q) = q1/8z−
1
2

∑
j∈Z

(−1)jq(
j
2)zj = q1/8z−

1
2 (z, q/z, q)∞

where in the second step Jacobi’s triple product identity (1.9) has been employed.
Next recall the identity

1
(z, q/z)∞

=
1

(q)2
∞

∑
k∈Z

∑
i∈N

(−1)i+1q(
i
2)−ikzk,

which can be extracted from an expansion of the following ratio of Jacobi theta
functions ϑ′1(0)/ϑ1(u) in [67, §486] (see also [48, Eq. (5.26)] and [68, Eqs. (A.4),
(A.5)]). Using this we find that

χ`(z, q) =
1

η3(τ)

∑
σ=±1

∑
j,k∈Z

∑
i∈N

σ(−1)i+1q(
i
2)−ik+pp′(j+σ(`+1)/(2p′))2

× z− 1
2 (2p′j−2k+σ(`+1)−1),

where, as usual, η(τ) = q1/24(q)∞ with q = exp(2πiτ). Now replace j by σj and
then k by 1

2 (2σp′j −m− 1 + σ(`+ 1)). This yields

χ`(z, q) =
1

η3(τ)

∑
m∈2Z+`

∑
j∈Z

∑
i∈N

(−1)iq
1
2 i(i+m)+pp′(j+(`+1)/(2p′))2

×
{
q

1
2 i(2p

′j+`+1) − q− 1
2 i(2p

′j+`+1)
}
z−

1
2m.

Comparing this with (3.3) one can extract the string functions as

(3.6) CNm,`(q) =
q

(`+1)2

4(N+2)−
m2
4N

η3(τ)

∑
j∈Z

∑
i∈N

(−1)iq
1
2 i(i+m)+jp(p′j+`+1)

×
{
q

1
2 i(2p

′j+`+1) − q− 1
2 i(2p

′j+`+1)
}
.

We slightly extend the original definition of the string functions given in equa-
tion (3.3) by dropping the condition gcd(p, p′) = 1. Also normalizing for later
convenience we are led to the following definition.

Definition 3.1. For integers 1 ≤ p < p′, m ∈ Z and ` ∈ Zp′−1 such that ` and m
have equal parity,

(3.7) C(p,p′)
m,` (q) =

1
(q)3
∞

∑
j∈Z

∑
i∈N

(−1)iq
1
2 i(i+m)+jp(p′j+`+1)

{
q

1
2 i(2p

′j+`+1) − q− 1
2 i(2p

′j+`+1)
}
.

When gcd(p, p′) = 1 we also use the notation CNm,`(q) = C(p,p′)
m,` (q), where N =

p′/p− 2 is the level of the modified string function.
As a note of warning we remark that for a generic choice of variables the order

of summation in (3.6) and (3.7) has to be strictly obeyed. We use the form (3.7)
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as defining relation rather than the more familiar (and computationally efficient)
expression

C(p,p′)
m,` (q) =

1
(q)3
∞

{∑
i≥0
j≥0

−
∑
i<0
j<0

}
(−1)iq

1
2 i(i+m)+p′j(pj+i)+ 1

2 (`+1)(2pj+i)(3.8)

− 1
(q)3
∞

{∑
i≥0
j>0

−
∑
i<0
j≤0

}
(−1)iq

1
2 i(i+m)+p′j(pj+i)− 1

2 (`+1)(2pj+i)

for later reasons. By

(3.9)
∞∑

i=−∞
(−1)iq(

i
2)+in = 0 for n ∈ Z,

which is a specialization of Jacobi’s triple product identity (1.9), it is straightfor-
ward to transform (3.7) into (3.8). We also note that for integer level, i.e., p = 1
and p′ = N + 2 we can rewrite (3.8) in the neat form (by (3.9) equivalent to [37,
Eq. (3.17)])

CNm,`(q) =
1

(q)3
∞

{∑
j≥1
k≤0

−
∑
j≤0
k≥1

}
(−1)k−jq(

k−j
2 )−Njk+ 1

2k(m−`)+ 1
2 j(m+`).

To see this, make the variable changes j → −j followed by i→ k+ j−1 in the first
line and j → 1− k followed by i→ k+ j − 1 in the second line of (3.8) and use the
symmetry CNm,`(q) = q(m−`)/2CNm−N,N−`(q).

To conclude this section we introduce the characters eNm,`(q) of the ZN parafer-
mion algebra at rational level N [3]. It was argued in [3] that these characters are
realized as branching functions as follows:

χ`(z, q) =
∑

m∈2Z+`

eNm,`(q)
q
m2
4N z−m/2

η(τ)

Comparison with (3.3) shows that

(3.10) eN`,m(q) = η(τ)CN`,m(q).

For integer N the eNm,` have also been shown to be branching functions of the Lie

algebra pair (A(1)
2N−1, C(1)

N ) [46].

4. Fractional-level conjugate Bailey pairs

This section contains the key results of this paper. In Theorem 4.1 new conjugate
Bailey pairs are stated, which by Corollary 4.2 imply conjugate Bailey pairs involv-
ing the one-dimensional configurations sums and fractional-level string functions of
the previous two sections.

Theorem 4.1. For η ∈ Z+ and j ∈ Z, the pair of sequences (γ, δ) with

γL =
1

(q)2
∞(aq)∞

∞∑
i=1

(−1)iq
1
2 i(i+2L+η)

{
q

1
2 i(2j+η+1) − q− 1

2 i(2j+η+1)
}

δL =
[
2L+η
L−j

]
−
[

2L+η
L−j−1

](4.1)
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forms a conjugate Bailey pair relative to a = qη.

Before we prove this theorem let us first state the following corollary.

Corollary 4.2. Fix integers 1 ≤ p < p′, and let η ∈ Z+ and ` ∈ Zp′−1 such that
` + η is even. Let C(p,p′)

m,` and X
(p,p′)
r,s (L, b) be defined as in (3.7) and (2.1). Then

(γ, δ) with

(4.2) γL = (q)ηC(p,p′)
2L+η,`(q) and δL = X

(p,p′)
0,`+1(2L+ η, 1)

forms a conjugate Bailey pair relative to a = qη.

Proof. Take the conjugate Bailey pair (4.1) and replace j by jp′ + (`− η)/2. Then
multiply both γL and δL by qjp(jp

′+`+1) and sum j over the integers. Using (3.7)
and (2.1) this transforms γL and δL of (4.1) into those of (4.2). �

The proof of Theorem 4.1 rests upon the following lemma.

Lemma 4.3. For a and b indeterminates,

(4.3)
∞∑
r=0

(ab)2r

(q)r(ab)r

{ 1
(aq)r−1(bq)r

− 1
(aq)r(bq)r−1

}
=

1
(q)∞(aq)∞(bq)∞

∞∑
i=1

(−1)iq(
i
2)(ai − bi).

Proof. The terms on the left within the curly braces can be combined to (b −
a)qr/(aq)r(bq)r. Using this as well as (a)∞/(a)r = (aqr)∞ and (a)2r/(a)r = (aqr)r,
equation (4.3) can be written as

(4.4)
∞∑
r=0

qr(abqr)r(aqr+1)∞(bqr+1)∞
(q)r

=
1

(q)∞

∞∑
i=1

(−1)i+1q(
i
2) a

i − bi

a− b
.

We now use the q-binomial sum [7, Eq. (3.3.6)]

(4.5) (a)n =
n∑
k=0

(−a)kq(
k
2)
[
n

k

]
as well as the limiting case

(a)∞ =
∞∑
k=0

(−a)kq(
k
2)

(q)k
,

to express the left-hand side of (4.4) as the following quadruple sum,
∞∑
r=0

∞∑
i=0

∞∑
j=0

r∑
k=0

(−1)i+j+kai+kbj+k
q(
i+1
2 )+(j+1

2 )+(k2)+r(i+j+k+1)

(q)i(q)j(q)k(q)r−k
.

After shifting i→ i− k, j → j − k and r → r + k this becomes
∞∑
i=0

∞∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )aibj
min{i,j}∑
k=0

(−1)kq(
k
2)

(q)i−k(q)j−k(q)k

∞∑
r=0

qr(i+j−k+1)

(q)r
.

The sum over r can readily be performed thanks to [43, Eq. (1.3.15)]

(4.6)
∞∑
r=0

xr

(q)r
=

1
(x)∞

,
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leading to

1
(q)∞

∞∑
i=0

∞∑
j=0

(−1)i+jq(
i+1
2 )+(j+1

2 )aibj
min{i,j}∑
k=0

(−1)kq(
k
2)(q)i+j−k

(q)i−k(q)j−k(q)k
.

The sum over k yields qij by the q-Chu–Vandermonde sum [43, Eq. (II.7)]

(4.7) 2φ1

[a, q−n
c

; q,
cqn

a

]
=

(c/a)n
(c)n

with n = min{i, j}, c = q−i−j and a = cqn, where the following standard notation
for basic hypergeometric series is employed

r+1φr

[a1, . . . , ar+1

b1, . . . , br
; q, z

]
=
∞∑
k=0

(a1, . . . , ar+1)k
(q, b1, . . . , br)k

zk.

As a result we are left with

1
(q)∞

∞∑
i=0

∞∑
j=0

(−1)i+jaibjq(
i+j+1

2 ).

This corresponds to the right-hand side of (4.4) as

∞∑
i=1

(−1)i+1q(
i
2) a

i − bi

a− b
=
∞∑
i=1

(−1)i+1q(
i
2)
i−1∑
j=0

ai−j−1bj

=
∞∑
j=0

∞∑
i=j+1

(−1)i+1q(
i
2)ai−j−1bj =

∞∑
j=0

∞∑
i=0

(−1)i+jq(
i+j+1

2 )aibj .

�

Finally we have to show that Theorem 4.1 follows from Lemma 4.3.

Proof of Theorem 4.1. Substitute the conjugate Bailey pair (4.1) into the defining
relation (1.4). After the shift r → r + L this becomes

1
(q)3
∞

∞∑
i=1

(−1)iq(
i
2)
{
q

1
2 i(ζ−σ) − q 1

2 i(ζ+σ+2)
}

=
∞∑
r=0

1
(q)r(q)r+ζ

{[ 2r+ζ
r+ 1

2 (ζ−σ−2)

]
−
[ 2r+ζ
r+ 1

2 (ζ−σ)

]}
,

where we have set 2L + η = ζ ≥ 0 and 2j + η = σ. To obtain this identity
we take (4.3) and choose a = q(ζ−σ)/2, b = q(ζ+σ+2)/2 and perform a few trivial
operations. �

5. Fermionic expressions for the one-dimensional configuration sums

From Definition 2.1 of the one-dimensional configuration sums we see that the
sequence δ in Corollary 4.2 is not a sequence of manifestly positive polynomials
(polynomials with positive integer coefficients). In applications of the corollary
interesting q-series identities arise when there exist expressions that do have this
property. Such constant-sign or fermionic representations for the configuration
sums of the Andrews–Baxter–Forrester models have recently attracted a lot of at-
tention [20, 21, 23, 34, 38, 39, 41, 54, 69, 70]. In this section we present some of
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the cited results for X(p,p′)
r,s (L, b) in the simplest case when gcd(p, p′) = 1 and s and

b are so-called Takahashi lengths associated with the continued fraction expansion
of p/(p′ − p). More complicated cases where s and b are not necessarily Takahashi
lengths or where (p, p′) 6= 1 can be found in [23] and [39], respectively.

Given p, p′ such that gcd(p, p′) = 1 and p < p′ < 2p define integers n and
ν0, . . . , νn by the continued fraction expansion

p

p′ − p
= [ν0, ν1, . . . , νn].

Introduce partial sums of the νj as tm =
∑m−1
j=0 νj for 1 ≤ m ≤ n and set t0 = −1

and d = tn+1 = −2 +
∑n
j=0 νj . The tm’s define a matrix IB of size d × d with

entries

(IB)i,j =


δi,j+1 + δi,j−1 for i 6= tm

δi,j+1 + δi,j − δi,j−1 for i = tm < d

δi,j+1 + δνn,2δi,j for i = d.

Viewing IB as a generalized incidence matrix we define a corresponding fractional-
level Cartan-type matrix B = 2I − IB , where I is the identity matrix. When
p′ = p + 1 the matrix B is a Cartan matrix of type A and when p′ = p + 2 it
corresponds to a Cartan-type matrix of a tadpole graph.

For 1 ≤ m ≤ n consider the recursion

xm+1 = xm−1 + νmxm.

We need two sets of integers {ym}n+1
m=0 and {ȳm}n+1

m=0 approximating p′ and p, defined
by the above recurrence and the initial conditions y−1 = 0, ȳ−1 = −1, y0 = ȳ0 = 1
y1 = ν0 + 1, ȳ1 = ν0. Hence ȳm/(ym − ȳm) = [ν0, . . . , νm−1], yn+1 = p′ and
yn+1 = p. An important subset of Np′−1 is given by the “Takahashi lengths”
l1, . . . , ld+2 defined as

lj+1 = ym−1 + (j − tm)ym, tm < j ≤ tm+1 + δm,n.

Clearly, for p′ = p+ 1 the set of Takahashi lengths is just Np′−1. Similarly one may
define the “truncated Takahashi lengths” l1, . . . , ld+2,

lj+1 = ym−1 + (j − tm)ym, tm < j ≤ tm+1 + δm,n,

which determine a subset of Zp. If b = lj+1 is a Takahashi length then b̄ denotes
the truncated Takahashi length lj+1.

For vectors u,v ∈ Zd+1
+ define

(5.1) f(u,v) =
∑

m∈2Zd+Qu+v

q
1
4 mBm− 1

2 Au,vm

[
m + n

m

]
,

where [
m + n

m

]
=

d∏
j=1

[
mj + nj
mj

]
and where the following definitions are used. The variables m and n are related
by the (m,n)-system

m + n =
1
2

(IBm + u∗ + v∗)
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where u∗ and v∗ denote the projections of u and v onto Zd+. The linear term in
the exponent of (5.1) is fixed by

(Au,v)k =

{
uk for m odd
vk for m even

tm < k ≤ tm+1.

Finally, Qu =
∑d+1
j=1 ujQ

(j) where Q(j) is defined recursively as

Q
(j)
i =

{
max{j − i, 0} for tm ≤ i ≤ d

Q
(j)
i+1 +Q

(j)
tm′+1 for tm′−1 ≤ i < tm′ , 1 ≤ m′ ≤ m

with 0 ≤ m ≤ n such that tm < j ≤ tm+1 + δm,n. When νn = 2 we must take
Q

(tn+1)
tn+1 = 0.
When the conditions (2.5) are satisfied there exist fermionic expressions for the

one-dimensional configuration sums (2.1) in terms of the function (5.1) [23]. Gen-
erally these are very complex and, as mentioned earlier, to keep formulas relatively
simple we restrict our attention to b and s being Takahashi lengths (see [23, Eq.
(10.3)]).

Theorem 5.1. Let 1 ≤ p < p′ < 2p such that gcd(p, p′) = 1 and let b = lβ+1,
s = lσ+1 be Takahashi lengths with β ≥ 1 and r = b̄ = lβ+1. Then

(5.2) X(p,p′)
r,s (L, b) = q∆b,sf(Le1 + uβ ,uσ),

where ei is the ith standard unit vector in Zd+1 (e0 = 0) and

(5.3) ui = ei −
n∑

k=m+1

etk for tm < i ≤ tm+1 + δm,n.

The explicit expression for ∆b,s in the theorem is quite involved and is omitted
here. Instead we fix it by requiring that

X(p,p′)
r,s (L, b; q = 0) = 1,

for L ≥ |s− b|. The relation between b and r given in the theorem corresponds to
(2.7) with c = b− 1. This explains why β ≥ 1 (or b = lβ+1 ≥ 2). As a consequence
X

(p,p′)
0,s (L, 1), or, equivalently, X(p,p′)

1,s (L, 1), is not contained in (5.2). Using (2.9)
these cases can however be obtained from [23, Eq. (10.2)] and [23, Eq. (8.68)] as
follows.

Theorem 5.2. For 1 ≤ p < p′ < 2p such that gcd(p, p′) = 1 and s = lσ+1 a
Takahashi length,

X
(p,p′)
0,s (L, 1) = q

L
2 +∆sf(Le1 + u0,uσ)(5.4)

X
(p,p′)
0,p′−s(L, 1) = q

L
2 +∆′sf(Le1 + u0,uσ + ud+1).(5.5)

As before, ∆s and ∆′s are determined by demanding that the left-hand side is 1
for q = 0, and ui is as defined in equation (5.3).

Fermionic forms for p′ > 2p can be obtained from the previous two theorems by
the duality transformation (2.3) (and equation (2.9) when r = 0, b = 1). Applying
(2.4), this yields

X
(p′−p,p′)
b−r,s (L, b) = q

1
4 (L2−(b−s)2)−∆b,sf(uσ, Le1 + uβ)
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and

X
(p′−p,p′)
0,s (L, 1) = q

1
4 (L2−s2+1)−∆sf(uσ, Le1 + u0)(5.6)

X
(p′−p,p′)
0,p′−s (L, 1) = q

1
4 (L2−(p′−s)2+1)−∆′sf(uσ + ud+1, Le1 + u0).(5.7)

6. Fermionic representations of A
(1)
1 string functions and

parafermion characters

Our two main results obtained so far can be summarized as follows:

(1) The conjugate Bailey pairs (γ, δ) of Corollary 4.2 where γ is a sequence
of (generalized) A(1)

1 string functions and δ a sequence of one-dimensional
configuration sums.

(2) A fermionic representation for the sequences δ as formulated in Theorem 5.2
and equations (5.6) and (5.7).

As a consequence of these results we find fermionic or constant-sign expressions for
the sequence γ and thus for the A(1)

1 string functions. Specifically, by Corollary 4.2
and equation (1.4) we have

(6.1) C(p,p′)
m,` (q) =

∞∑
r=0

X
(p,p′)
0,`+1(2r +m, 1)

(q)r(q)r+m
,

which for p = 1 was found previously in Refs. [55, 56, 18]. Using (5.4) and (5.6)
the following result arises.

Corollary 6.1. For 1 ≤ p < p′ < 2p with gcd(p, p′) = 1 set N = p′/p− 2, and let
m ∈ Z+ and `+ 1 = lσ+1 a Takahashi length such that `+m is even. Then

CNm,`(q) = q∆`+1+ 1
2m

∞∑
r=0

qrf((2r +m)e1 + u0,uσ)
(q)r(q)r+m

(6.2)

and

C−N/(N+1)
m,` (q) = q

1
4 (m2−`(`+2))−∆`+1

∞∑
r=0

qr(r+m)f(uσ, (2r +m)e1 + u0)
(q)r(q)r+m

.

Similarly, using (6.1), (5.5) and (5.7) we get

Corollary 6.2. For 1 ≤ p < p′ < 2p with gcd(p, p′) = 1 set N = p′/p− 2, and let
m ∈ Z+ and p′ − `− 1 = lσ+1 a Takahashi length such that `+m is even. Then

CNm,`(q) = q∆′
p′−`−1+ 1

2m
∞∑
r=0

qrf((2r +m)e1 + u0,uσ + ud+1)
(q)r(q)r+m

and

C−N/(N+1)
m,` (q) = q

1
4 (m2−`(`+2))−∆′

p′−`−1

×
∞∑
r=0

qr(r+m)f(uσ + ud+1, (2r +m)e1 + u0)
(q)r(q)r+m

.
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For most choices of p and p′ we believe these results to be new. The simplest
known summation formulas arise for (p, p′) = (1, 3) and (2, 3) when we can employ
Schur’s [63] polynomial analogue of the Euler identity, X(2,3)

1,`+1(L) = 1, so that by
(2.3) and (2.9)

X
(1,3)
0,`+1(L, 1) = q

1
4 (L2−`2)

X
(2,3)
0,`+1(L, 1) = q

1
2 (L−`).

Considering (p, p′) = (1, 3) we find from Corollary 4.2 that δL = aLqL
2+(η2−`2)/4,

which we recognize as Bailey’s original sequence δ of equation (1.6) up to an irrel-
evant factor q(η2−`2)/4. Hence γL = aLqL

2+(η2−`2)/4/(aq)∞ and

(6.3) C1
m,`(q) =

q
1
4 (m2−`2)

(q)∞
,

which is the well-known form of the level-1 string function [48, Sec. 4.6, Ex. 3].
Next let (p, p′) = (2, 3). Then Schur’s polynomial identity implies δL = qL+(η−`)/2

which corresponds to the specialization r = q in the sequence δ of Bressoud and
Singh given in equation (1.13). Accordingly, we find that the string function at
level −1/2 can be represented as

C−1/2
m,` (q) =

q
1
2 (m−`)

(q)2
∞

∑
i∈Z+

(−1)iq
1
2 i(i+2m+1).

A constant-sign expression can be obtained from (6.2),

C−1/2
m,` (q) = q

1
2 (m−`)

∞∑
r=0

qr

(q)r(q)r+m
.

Using Heine’s 2φ1 transformation formula [43, Eq. (III.3)]

(6.4) 2φ1

[a, b
c

; q, z
]

=
(abz/c)∞

(z)∞
2φ1

[c/a, c/b
c

; q,
abz

c

]
,

with a = b = 0, c = qm+1 and z = q, this can be transformed into

C−1/2
m,` (q) =

q
1
2 (m−`)

(q)∞

∞∑
r=0

qr(r+m+1)

(q)r(q)r+m

which has an explicit factor 1/(q)∞ and hence also provides a fermionic expression
for the parafermion characters e−1/2

m,` (q) of equation (3.10).
By far the most involved of the known cases is (p, p′) = (1, p′) for arbitrary

p′ ≥ 3. Then N = p′ − 2 ∈ N, ` ∈ ZN+1, and from the fermionic representations
(5.6) and (5.7) for the one-dimensional configuration sums we have

(6.5) X
(1,N+2)
0,`+1 (L, 1) = q

L2−`2
4N

∑
n∈ZN−1

+
L+`
2N +(C−1n)1∈Z

qnC−1(n−e`)

[
m + n

n

]
,

with m + n = 1
2 (Le1 + e` + Im), and

(6.6) X
(1,N+2)
0,`+1 (L, 1) = q

L2−`2
4N

∑
n∈ZN−1

+
L−`
2N +(C−1n)1∈Z

qnC−1(n−eN−`)

[
m + n

n

]
,
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with m + n = 1
2 (Le1 + eN−` + Im). Here C is the AN−1 Cartan matrix, I

the corresponding incidence matrix and ei the ith standard unit vector in ZN−1

(e0 = eN = 0). Inserting (6.5) into (6.1) gives a fermionic formula for the integer-
level string functions implied by [25, Eq. (4.7)].

Lepowsky and Primc [53] provide an alternative fermionic expression for the
integer-level string functions as

(6.7) CNm,`(q) =
q
m2−`2

4N

(q)∞

∑
n∈ZN−1

+
m+`
2N +(C−1n)1∈Z

qnC−1(n−e`)

(q)n
,

where (q)n =
∏N−1
j=1 (q)nj . Inserting (6.5)–(6.7) into (4.2) we obtain two sequences

of conjugate Bailey pairs. Using the symmetry CNm,`(q) = q(m−`)/2CNm−N,N−`(q)
these two sequences may be succinctly expressed as follows.

Theorem 6.3. For N ≥ 1, σ ∈ Z2, η ∈ Z+ and ` ∈ ZN+1 such that ` + η + σN
is even, the following pair of sequences (γ, δ) forms a conjugate Bailey pair relative
to a = qη:

γL =
aL/NqL

2/N

(aq)∞

∑
n∈ZN−1

+
2L+η+`+σN

2N +(C−1n)1∈Z

qnC−1(n−e`)

(q)n

δL = aL/NqL
2/N

∑
n∈ZN−1

+
2L+η+`+σN

2N +(C−1n)1∈Z

qnC−1(n−e`)

[
m + n

n

]
,

with m + n = 1
2 ((2L+ η)e1 + e` + Im).

These are the “higher-level” conjugate Bailey pairs of [61, Lemma 3] and [62,
Cor. 2.1] (with the parameter M therein sent to infinity and with the partition λ
therein having a single part).

To conclude this section we give some examples of (6.1) that are new. When
we take (p, p′) = (2, 5) we can express the string functions at level 1/2 in terms of
polynomials introduced by Schur [63] in his famous paper on the Rogers–Ramanujan
identities. To be specific, from (5.6) we infer the following polynomial analogues of
the Rogers–Ramanujan identities

X
(2,5)
0,1 (2L, 1) = qL

(
1 +

L−1∑
n=1

qn(n+1)
[
2L−2−n

n

])
X

(2,5)
0,2 (2L+ 1, 1) = qL

L∑
n=0

qn
2[2L−n

n

]
X

(2,5)
0,3 (2L, 1) = qL−1

L−1∑
n=0

qn
2[2L−1−n

n

]
X

(2,5)
0,4 (2L+ 1, 1) = qL−1

L−1∑
n=0

qn(n+1)
[
2L−1−n

n

]
.
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We remark that the above results may also be derived using related polynomial
identities for X(2,5)

1,1 (2L, 3), X(2,5)
1,1 (2L + 1, 2), X(2,5)

1,3 (2L, 3) and X
(2,5)
1,3 (2L + 1, 2),

due to Andrews [4]. Substituting the above four identities into (6.1) gives fermionic
representation for the string functions at level 1/2. Fermionic forms for the cor-
responding parafermion characters e1/2

m,` can be obtained by pulling out an explicit
factor 1/(q)∞.

Proposition 6.4. For m ≥ 0 the level 1/2 string functions can be expressed as

C1/2
2m,0(q) =

qm

(q)∞

∞∑
r=0

qr

(q)r

(
1 +

m+b(r−2)/2c∑
n=1

qn(n+1)

[
r + 2m− n− 2

n

])

C1/2
2m+1,1(q) =

qm

(q)∞

∞∑
r=0

qr

(q)r

m+br/2c∑
n=0

qn
2
[
r + 2m− n

n

]

C1/2
2m,2(q) =

qm−1

(q)∞

∞∑
r=0

qr

(q)r

m+b(r−1)/2c∑
n=0

qn
2
[
r + 2m− n− 1

n

]

C1/2
2m+1,3(q) =

qm−1

(q)∞

∞∑
r=0

qr

(q)r

m+b(r−1)/2c∑
n=0

qn(n+1)

[
r + 2m− n− 1

n

]
.

Proof. We only present the proof of the second identity. The other three identities
can be proven in a similar fashion. (The second rather than the first identity is
chosen because all equations are more compact in this case.) We start with

C1/2
2m+1,1(q) = qm

∞∑
r=0

r+m∑
n=0

qr+n
2

(q)r(q)r+2m+1

[
2r + 2m− n

n

]
and interchange the sums over r and n and shift r → r + n −m. Then we again
swap the order of summation yielding

(6.8) C1/2
2m+1,1(q) =

( ∞∑
r=m

∞∑
n=0

+
m−1∑
r=0

∞∑
n=m−r

) qr+n(n+1)

(q)r+n−m(q)r+n+m+1

[
n+ 2r
n

]
.

Now consider the first double sum denoted by S1 and write this as

S1 =
∞∑
r=m

qr

(q)r−m(q)r+m+1

∞∑
n=0

qn(n+1)(q2r+1)n
(q)n(qr−m+1)n(qr+m+2)n

.

Using the q-Kummer–Thomae–Whipple formula [43, (III.9)]

(6.9) 3φ2

[a, b, c
d, e

; q,
de

abc

]
=

(e/a, de/bc)∞
(e, de/abc)∞

3φ2

[a, d/b, d/c
d, de/bc

; q,
e

a

]
,

with a, b→∞, c = q2r+1, d = qr−m+1 and e = qr+m+2 this can be put in the form

S1 =
1

(q)∞

∞∑
r=m

r+m∑
n=0

qr+n(n+1)

(q)r+n−m

[
r +m

n

]
.
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Once more the order of summation is reversed, then r is replaced by r+m−n and
the summation order is again changed. Thus,

S1 =
qm

(q)∞

∞∑
r=0

qr

(q)r

min{r,m+br/2c}∑
n=0

qn
2
[
r + 2m− n

n

]
.

Next we deal with S2, given by the second double sum in (6.8). Shifting n →
n+m− r gives

S2 =
qm

(q)2m+1

m−1∑
r=0

q(m−r)2
[
r +m

2r

] ∞∑
n=0

qn(n+2m−2r+1)(qm+r+1)n
(q)n(qm−r+1)n(q2m+2)n

.

By equation (6.9) with a, b → ∞, c = qm+r+1, d = qm−r+1 and e = q2m+2 this is
equal to

S2 =
1

(q)∞

m−1∑
r=0

2r∑
n=0

qr+(n+m−r)(n+m−r+1)

(q)n

[
r +m

n+m− r

]
.

By an interchange of sums followed by the successive transformations r → n+m−r
and r ↔ n this becomes

S2 =
qm

(q)∞

2m−2∑
r=0

qr

(q)r

m+br/2c∑
n=r+1

qn
2
[
r + 2m− n

n

]
.

Computing S1 + S2 results in the claim of the proposition. �

In our last example we take (p, p′) = (3, 4). The one-dimensional configuration
sums for this case correspond to those of the celebrated Ising model of statistical
mechanics, and the fermionic representations of the previous section can be sim-
plified using the q-binomial theorem (4.5) or the q-Chu–Vandermonde sum (4.7).
Specifically we have the polynomial identities

(6.10) X
(3,4)
0,1 (2L, 1)± q3/2X

(3,4)
0,3 (2L, 1) = qL(∓q1/2)L

and

(6.11) X
(3,4)
0,2 (2L+ 1, 1) = qL(−q)L.

Substitution into (6.1) yields fermionic forms for the string functions at level −2/3.
The next proposition states alternative expressions for these string functions which
by (3.10) also imply fermionic forms for the corresponding parafermion characters.

Proposition 6.5. For m ≥ 0 the level −2/3 string functions satisfy the identities

C−2/3
2m,0 (q) =

qm

2(q)∞

∞∑
r=0

qr
2/2+(m+1)r

(q)r(q)r+2m
{(−q1/2)r+m + (−1)r(q1/2)r+m}

q3/2C−2/3
2m,2 (q) =

qm

2(q)∞

∞∑
r=0

qr
2/2+(m+1)r

(q)r(q)r+2m
{(−q1/2)r+m − (−1)r(q1/2)r+m}

C−2/3
2m+1,1(q) =

qm

(q)∞

∞∑
r=0

q(
r
2)+(m+2)r(−q)r+m
(q)r(q)r+2m+1

.
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Proof. Inserting the polynomial identities (6.10) and (6.11) into (6.1) one can apply
the 2φ1 transformation (6.4) with a = 0, b = ∓qm+1/2, c = q2m+1, z = q, and
a = 0, b = −qm+1, c = q2m+2, z = q, respectively. This yields identities for
C−2/3

2m,0 (q) ± q3/2C−2/3
2m,2 (q) and C−2/3

2m+1,1(q) which immediately imply the expressions
of the proposition. �

Note that one can apply (4.5) once again to rewrite

1
2
{(−q1/2)r+m ± (−1)r(q1/2)r+m} =

∑
n,restriction

qn
2/2

[
r +m

n

]
,

where the restrictions are n ≡ r (mod 2) and n 6≡ r (mod 2), respectively.

7. A
(1)
1 branching functions

Let either N1 or N2 be a positive integer. Then the A(1)
1 branching functions are

defined by [51]

(7.1) χN1
`1

(z, q)χN2
`2

(z, q) =
∑

`3∈Zp′3−1

`1+`2+`3∈2Z

BN1,N2
`1,`2,`3

(q)χN3
`3

(z, q).

Here N1 = p′1/p1 − 2, N2 = p′2/p2 − 2 and N3 = N1 + N2 = p′3/p3 − 2, with
gcd(pi, p′i) = 1 for i = 1, 2, 3. Note that p3 = p1p2 and p′3 = p′1p2 + p′2p1 − 2p1p2 =
p2(p′1 +N2p1). Indeed gcd(p3, p

′
3) = 1 since either p1 = 1 or p2 = 1.

In the following we are going to derive an explicit expression for the branching
function following the method employed by Kac and Wakimoto in [51] (see also [35,
36]). The essence of this approach is to expand the character χN2

`2
in terms of string

functions and to then perform simple manipulations using the symmetries of the
string functions to express the left-hand side of (7.1) as a linear combination of the
χN3
`3

. The difference between our derivation below and that of Kac and Wakimoto
is that we will not assume that N2 is integer. Of course, since either N1 or N2

is (a positive) integer and BN1,N2
`1,`2,`3

= BN2,N1
`2,`1,`3

one can without loss of generality
assume that N2 ∈ N. Nevertheless, dropping this assumption leads to a different
representation of the branching functions. As will be shown in the next section, this
has a natural interpretation in terms of the Bailey lemma. Before we commence
our derivation we remark that because N2 is no longer assumed to be integer we
deal with string functions at (generally) non-integer level and hence we cannot rely
on the symmetries employed in the Kac–Wakimoto derivation.

Insert (3.2) for χN1
`1

(z, q) and (3.3) for χN2
`2

(z, q) in the left-hand side of (7.1).
Then, using the definition (3.1) of Θn,m(z, q), one obtains

PN1,N2
`1,`2

(q) := χN1
`1

(z, q)χN2
`2

(z, q)
∑
σ=±1

σΘσ,2(z, q)(7.2)

=
∑
σ=±1

∑
j∈Z+σ

`1+1
2p′1

∑
m∈2Z+`2

σz−
1
2 (m+2p′1j)q

m2
4N2

+p1p
′
1j

2

CN2
m,`2

(q).



CONJUGATE BAILEY PAIRS 21

Now make the replacement m → m − 2p′1j followed by j → σ(j + `1+1
2p′1

). Using
CNm,` = CN−m,` this gives

(7.3) PN1,N2
`1,`2

(q) = q
(`1+1)2

4(N1+2)
∑

m∈2Z+`1+`2+1

z−
1
2mq

1
4N2

(m−`1−1)2b
p′1,p

′
1+N2p1,N2

`1+1,`2,m
(q),

where we have introduced the function

bP,P
′,N

r,`,s (q)

=
∑
j∈Z

{
q
j
N (PP ′j+P ′r−Ps)CN2Pj+r−s,`(q)− q

1
N (Pj+r)(P ′j+s)CN2Pj+r+s,`(q)

}
.

Note that the initial assumption that eitherN1 orN2 is a positive integer means that
we are only concerned with bP,P

′,N
r,`,s (q) with either (P ′ − P )/N = 1 or N ∈ N. This

is crucial in the following lemma needed to rewrite the expression for PN1,N2
`1,`2

(q).

Lemma 7.1. Let P ∈ N and N,P ′ ∈ Q such that N = p′/p− 2 with gcd(p, p′) = 1
and (P ′ − P )/N ∈ Z+. When (P ′ − P )/N = 1 or N ∈ N the following periodicity
holds:

(7.4) bP,P
′,N

r,`,s+2pP ′(q) = q−
p
N (pPP ′−P ′r+Ps)bP,P

′,N
r,`,s (q).

Proof. After inserting the definition of bP,P
′,N

r,`,s in the above equation make the
variable changes j → j+p in the first term and j → j−p in the second term of the
left-hand side. Then, by the symmetry (3.4), equation (7.4) can be rewritten as

(7.5)∑
j∈Z

{
q
j
N (PP ′j+P ′r−Ps)CN2Pj+r−s−2pkN,`(q)−q

1
N (Pj−r)(P ′j−s)CN2Pj−r−s−2pkN,`(q)

}
=
∑
j∈Z

{
q
j
N (PP ′j+P ′r−Ps)CN2Pj+r−s,`(q)− q

1
N (Pj−r)(P ′j−s)CN2Pj−r−s,`(q)

}
where k = (P ′−P )/N ∈ Z+. WhenN ∈ N this follows directly from the symmetries
(3.4) and (3.5), and in the remainder we assume that N ∈ Q and k = 1. The
complication is now that we no longer have CNm,` = CNm−2N,`. In view of this let
us first investigate the origin of this difficulty. Consider the expression (3.6) of
the A(1)

1 string functions. The summand has two different terms corresponding to
the two terms within the curly braces. In the first term make the variable change
j → j−1, i→ i+2p and in the second term make the change j → j+1, j → i+2p.
The result of these changes is exactly the same expression as before except that m
has been replaced by m− 2pN and that the sum over i now runs over all integers
greater than −2p. We may therefore conclude that

(7.6) CNm,`(q) = CNm−2pN,`(q) + C̄Nm−2pN,`(q),

where

C̄Nm,`(q) =
q

(`+1)2

4(N+2)−
m2
4N

η3(τ)

×
2p−1∑
i=1

∑
j∈Z

(−1)iq
1
2 i(i−m)+pj(p′j+`+1)

{
q−

1
2 i(2p

′j+`+1) − q 1
2 i(2p

′j+`+1)
}
.
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By a shift j → j − 1 in the second term of the summand this becomes

C̄Nm,`(q) =
q

(`+1)2

4(N+2)−
m2
4N

η3(τ)

×
2p−1∑
i=1

∑
j∈Z

(−1)iq
1
2 i(i−m)+pj(p′j+`+1)− 1

2 i(2p
′j+`+1)

{
1− q 1

2 (i−p)(2p′j−p′+`+1)
}
,

which shows that the i = p term in the summand vanishes and hence that C̄Nm,`(q) =
0 for N integer.

Inserting (7.6) into equation (7.5) with k = 1 we are done with the lemma if we
prove that∑

j∈Z

{
q
j
N (PP ′j+P ′r−Ps)C̄N2Pj+r−s−2pN,`(q)

− q 1
N (Pj−r)(P ′j−s)C̄N2Pj−r−s−2pN,`(q)

}
= 0.

Using the explicit form for C̄Nm,`(q), this is equivalent to showing that

2p−1∑
i=1

∑
j∈Z

(−1)iq
1
2 i(i−r+s)+jp(p

′j+`+1)− 1
2 i(2p

′j+`+1)
{

1− q 1
2 (i−p)(2p′j−p′+`+1)

}
× qp((i−p)N+r−s)

∑
µ∈Z

{
qµ(µP+r−P (i−2p)) − q(µ−i+2p)(µP−r)

}
= 0.

After the shift µ→ i−2p−µ in the second term in the sum over µ we are done. �

From (3.4) it follows that bP,P,Nr,`,s (q) = −q rsN bP,P
′,N

r,`,−s (q) so that in combination
with Lemma 7.1

(7.7) bP,P
′,N

r,`,2pP ′−s(q) = −q− 1
N (pP−r)(pP ′−s)bP,P

′,N
r,`,s (q).

In view of (7.4) and (7.7), it becomes natural to dissect the sum over m in (7.3)
using ∑

m∈2Z+`1+`2+1

fm =
∑
k∈N

{ ∑
`3∈Zp′3

`1+`2+`3∈2Z

f2p′3k+`3+1 +
∑

`3+1∈Zp′3
`1+`2+`3∈2Z

f2p′3k−`3−1

}
.

Observing that bP,P
′,N

r,`,0 (q) = 0 and, by (7.7), also bP,P
′,N

r,`,pP ′ (q) = 0, equation (7.3) can
then be written as

PN1,N2
`1,`2

(q) = q
(`1+1)2

4(N1+2) +
(`3−`1)2

4N2

∑
`3∈Zp′3−1

`1+`2+`3∈2Z

b
p′1,p

′
1+N2p1,N2

`1+1,`2,`3+1 (q)

×
∑
k∈Z

{
z−

1
2 (2p′3k+`3+1)qp3k(p′3k+`3+1) − z− 1

2 (2p′3k−`3−1)qp3k(p′3k−`3−1)
}

= q
((p′1+N2p1)(`1+1)−p′1(`3+1))2

4N2p
′
1(p′1+N2p1)

∑
`3∈Zp′3−1

`1+`2+`3∈2Z

b
p′1,p

′
1+N2p1,N2

`1+1,`2,`3+1 (q)
∑
σ=±1

σΘσ(`3+1),p′3
(z, qp3).

Comparing with (7.1) and (7.2) we can read off the branching functions.
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Theorem 7.2. For N1 = p′1/p1 − 2 and N2 = p′2/p2 − 2 with gcd(p1, p
′
1) =

gcd(p2, p
′
2) = 1, such that p1 = 1 or p2 = 1 we have

BN1,N2
r−1,`,s−1(q) = BN2,N1

`,r−1,s−1(q) = q
(P ′r−Ps)2

4N2PP ′

×
∑
j∈Z

{
q
j
N2

(PP ′j+P ′r−Ps)CN2
2Pj+r−s,`(q)− q

1
N2

(Pj+r)(P ′j+s)CN2
2Pj+r+s,`(q)

}
.

Here P = p′1, P ′ = p′1 +N2p1, r ∈ NP−1, `+ 1 ∈ Np′2−1 and s ∈ Np2P ′−1.

When N2 ∈ N this is Theorem 3.1 of [51] for X(r)
N = A(1)

1 .
For comparison with later expressions it will be convenient to normalize the

branching functions and to express them in terms of the modified string functions.
Hence we introduce

(7.8) BN1,N2
r−1,`,s−1(q) =

∑
j∈Z

qp1j(p
′
1j+r)

{
CN2

2p′1j+r−s,`
(q)− CN2

2p′1j+r+s,`
(q)
}
,

where

BN1,N2
r−1,`,s−1(q) = q

(P ′r−Ps)2

4N2PP ′
+

(`+1)2

4(N2+2)−
(r−s)2
4N2

− 1
8BN1,N2

r−1,`,s−1(q).

8. Bose-Fermi identities

In Section 6 we have applied Corollary 4.2 to derive fermionic representations
for the A(1)

1 string functions, but so far we have not yet employed the result of
Corollary 4.2 in the context of the Bailey lemma. This is what we will do next. To
simplify the notation we abbreviate the polynomial identities (5.2)–(5.4) as

(8.1) X(p,p′)
r,s (L, b) = F (p,p′)

r,s (L, b).

From these, Bailey pairs relative to q|b−s| can be extracted [10, 40]. Together with
the conjugate Bailey pairs of Corollary 4.2 these Bailey pairs (given by [24, Eq.
(3.6)]) may be substituted into Bailey’s equation (1.2). Omitting the details we
find the following theorem.

Theorem 8.1. For i = 1, 2, let 1 ≤ pi < p′i < 2pi such that gcd(pi, p′i) = 1 and
set Ni = p′i/pi − 2. Let b and s be Takahashi lengths with respect to the continued
fraction decomposition of p1/(p′1 − p1) and let r = b̄. Let ` + 1 be a Takahashi
length with respect to the continued fraction decomposition of p2/(p′2 − p2). Then,
for η = |b− s| with η + ` even,

(8.2)
∑
j∈Z

{
qj(p1p

′
1j+rp

′
1−sp1)CN2

2p′1j+b−s,`
(q)− q(p1j+r)(p

′
1j+s)CN2

2p′1j+b+s,`
(q)
}

=
∞∑
L=0

F
(p1,p

′
1)

r,s (2L+ η, b)F (p2,p
′
2)

0,`+1 (2L+ η, 1)/(q)2L+η.

Many similar theorems can be derived. For example, we could have iterated the
Bailey pair implied by (8.1) (see [24, Eq. (3.8)]) before substituting it into (1.2).
Alternatively one can derive identities for N1 > 0, N2 < 0, or N1 < 0, N2 > 0 or
N1, N2 > 0.

In general we have not been able to identify the left-hand side of (8.2), but when
either N1 or N2 is a positive integer one can recognize the left-hand side of the
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above identities as A(1)
1 branching function. First assume N2 is integer and r is

even. Using the symmetries CN2
m−2N2,`

(q) = qN2−mCN2
m,`(q) and CN2

m,`(q) = CN2
−m,`(q),

the left-hand side of (8.2) becomes

q
1
4 r(2s−2b−N2r)BN1,N2

s−1,`,b+N2r−1(q).

For N2 integer and r odd we can use CN2
m−N2,`

(q) = q(N2−m−`)/2CN2
m,N2−`(q) and

CN2
m,`(q) = CN2

−m,`(q) to rewrite the left-hand side of (8.2) as

q
1
4 r(2s−2b−N2r)+

1
4 (N2−2`)BN1,N2

s−1,N2−`,b+N2r−1(q).

Finally, for N1 integer we must have r = 0, b = 1 or r = 1, b− 1 ∈ Np′1−2 and the
left-hand side of (8.2) can be simplified to

BN1,N2
s−1,`,0(q) and BN1,N2

p′1−s−1,`,p′1−b−1(q),

respectively.
Given the above results let us connect to the discussion in Sections 1 and 7 on

the duality between Bailey and conjugate Bailey pairs and on the symmetry of the
branching functions. If r = 0 and b = 1 the right-hand side of (8.2) is symmetric
under the simultaneous interchange N1 ↔ N2 and s ↔ ` + 1. In terms of Bailey
and conjugate Bailey pairs this corresponds to the transformation

(β(N1), δ(N2))↔ (β̄(N2), δ̄(N1))

with

β̄
(N2)
L = δ

(N2)
L /(q)2L+η

δ̄
(N1)
L = β

(N1)
L (q)2L+η,

where β(N1)
L = F

(p1,p
′
1)

0,s (2L + η, 1)/(q)2L+η and δ
(N2)
L = F

(p2,p
′
2)

0,`+1 (2L + η, 1). This
result is to be compared with (1.16).

Similarly, using (2.9), the right-hand side of (8.2) is symmetric under the inter-
change N1 ↔ N2 and s ↔ ` + 1 if r = 1 and b = 1, which corresponds to the
transformation

β̄
(N2)
L = q−L−(η−`)/2δ

(N2)
L /(q)2L+η

δ̄
(N1)
L = qL+(η−`)/2β

(N1)
L (q)2L+η,

where β(N1)
L = q−L−(η−`)/2F

(p1,p
′
1)

0,s (2L + η, 1)/(q)2L+η and δ
(N2)
L = F

(p2,p
′
2)

0,`+1 (2L +
η, 1).

Carrying out the corresponding transformations on α and γ yields another ex-
pression for the left-hand side of (8.2) which involves the modified string functions
at level N1. When either N1 or N2 is a positive integer we recognize the resulting
identities as the special cases `3 = 0 or `3 = N1 of the symmetry BN1,N2

`1,`2,`3
= BN2,N1

`2,`1,`3
,

as expected.
Finally we present some explicit identities that follow by application of Bailey’s

lemma and the conjugate Bailey pairs of Corollary 4.2. In Refs. [10, Eqs. (2.12),
(2.13)] and [11, Eqs. (3.47), (3.48)] one can find the following generalization of
(1.12),

(8.3) αL =
(1− aq2L)(a)L(−1)Lq(

L
2)

(1− a)(q)L
and βL = δL,0.



CONJUGATE BAILEY PAIRS 25

Inserting this and (4.2) into equation (1.2) and performing some series manipula-
tions gives a generalized Euler identity for the modified string functions.

Proposition 8.2. For 1 ≤ p < p′, ` ∈ Zp′−1, η ∈ Zp′ such that `+ η is even,
∞∑

L=−∞
(−1)Lq(

L
2)C(p,p′)

2L+η,`(q) = δ`,η.

Recalling (6.3), this is the classical Euler identity for (p, p′) = (1, 3). For p = 1
and arbitrary p′ this is the A(1)

1 case of equation (2.1.17) of Ref. [51].
Before we can proof the proposition we need a technical lemma.

Lemma 8.3. If fm = f−m then

(8.4)
∞∑
L=0

(1− q2L+η)(qL+1)η−1(−1)Lq(
L
2)f2L+η

=
bη/2c∑
k=0

{[η
k

]
−
[

η

k − 1

]} ∞∑
L=−∞

(−1)Lq(
L
2)f2L+η−2k.

Proof. First observe that
bη/2c∑
k=0

{[η
k

]
−
[

η

k − 1

]} k−1∑
L=k−η+1

(−1)Lq(
L
2)f2L+η−2k = 0.

To prove this shift L→ L+ k in the first term in the curly braces and successively
k → η− k+ 1 and L→ η−L+ 1 in the second term in the curly braces. Using the
symmetry of fm the resulting terms can be combined to

η−1∑
L=1

f2L−η

η∑
k=0

(−1)k−Lq(
k−L

2 )
[
η

k

]
=

η−1∑
L=1

f2L−η(−1)Lq(
L+1

2 )(q−L)η = 0,

where the middle term follows by application of the q-binomial theorem (4.5) and
the last term by (q−a)b = 0 for 0 ≤ a < b. With this result we can write the sum
over L in the right-hand side of equation (8.4) as a sum over L ≤ k− η and L ≥ k.
Then using the symmetry of fm the right-hand side becomes

∞∑
L=0

f2L+η

bη/2c∑
k=0

{[η
k

]
−
[

η

k − 1

]}{
(−1)L+kq(

L+k
2 ) + (−1)k−η−Lq(

k−η−L
2 )

}
=
∞∑
L=0

f2L+η

η∑
k=0

(−1)L+kq(
L+k

2 )(1 + qL+k)
[
η

k

]

=
∞∑
L=0

f2L+η(−1)Lq(
L
2){(qL)η + qL(qL+1)η

}
.

Comparing with the left-hand side of (8.4) we are done since (a)n + a(aq)n =
(1− a2qn)(aq)n−1. �

Proof of Proposition 8.2. Inserting (8.3) and (4.2) into (1.2) gives the identity

X
(p,p′)
0,`+1(η, 1) =

∞∑
L=0

(1− q2L+η)(qL+1)η−1(−1)Lq(
L
2)C(p,p′)

2L+η,`(q),
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for η + ` even and `+ 1 ∈ Np′−1. Applying Lemma 8.3 this can be simplified to

X
(p,p′)
0,`+1(η, 1) =

bη/2c∑
k=0

{[η
k

]
−
[

η

k − 1

]} ∞∑
L=−∞

(−1)Lq(
L
2)C(p,p′)

2L+η−2k,`(q).

Now observe that for η ≤ p′ − 1 the only contribution to X(p,p′)
0,`+1(η, 1) comes from

the j = 0 term in the summand of (2.1). Therefore,

X
(p,p′)
0,`+1(η, 1) =

[
η

(η + `)/2

]
−
[

η

(η − `− 2)/2

]
=
bη/2c∑
k=0

{[η
k

]
−
[

η

k − 1

]}
δη−2k,`.

By induction on η this implies Proposition 8.2. �

Our last identity follows by a straightforward generalization of the proof of The-
orem 4.1 of Ref. [62], which corresponds to p = 1 in the result given below.

Theorem 8.4. For 1 ≤ p < p′, ` ∈ Zp′−1 and integers δ, k, i such that δ ∈ Z2,
k ≥ 2 and i ∈ Nk,

∞∑
L=−∞

(−1)Lq((2k+δ−2)L+2k−2i+δ)L/2C(p,p′)
2L,` (q)

=
∑

n1,...,nk−1≥0

qN
2
2 +···+N2

k−1+Ni+···+Nk−1X
(p,p′)
0,`+1(2N1, 1)

(q)n1 · · · (q)nk−2(q2−δ; q2−δ)nk−1

,

where Nj = nj + · · ·+ nk−1.

By Jacobi’s triple product identity (1.9) and the fermionic expressions for the
string function and configuration sums given earlier in the paper, the above iden-
tities can be recognized as (i) Andrews’ analytic counterpart of Gordon’s parti-
tion theorem when (p, p′) = (1, 3) and δ = 1 [6], (ii) Bressoud’s generalization
thereof to even moduli when (p, p′) = (1, 3) and δ = 0 [27], (iii) generalizations
of the Göllnitz–Gordon partition identities due to Andrews and Bressoud when
(p, p′) = (1, 4) and δ = 1 [8, 28], (iv) Rogers–Ramanujan type identities by Bres-
soud when (p, p′) = (1, 4) and δ = 0 [28].
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