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Abstract

A new type of sl3 basic hypergeometric series based on Macdonald polynomials is intro-
duced. Besides a pair of Macdonald polynomials attached to two different sets of variables,
a key-ingredient in the sl3 basic hypergeometric series is a bisymmetric function related
to Macdonald’s commuting family of q-difference operators, to the sl3 Selberg integrals of
Tarasov and Varchenko, and to alternating sign matrices. Our main result for sl3 series
is a multivariable generalization of the celebrated q-binomial theorem. In the limit this
q-binomial sum yields a new sl3 Selberg integral for Jack polynomials.

1. Introduction

The q-binomial theorem, which was independently discovered by Cauchy, Heine and Gauss (with
special cases due to Euler and Rothe) is one of the most important results in the theory of q-series, see
e.g., [1, 6] and references therein. Using the standard notation (a; q)n = (1−a)(1−aq) · · · (1−aqn−1)
for the q-shifted factorial, the theorem may be stated as

1φ0

[
a

–
; q, z

]
:=

∞∑
k=0

(a; q)k
(q; q)k

zk =
(az; q)∞
(z; q)∞

(1.1)

for |q| < 1 and |z| < 1. A well-known alternative representation of the q-binomial theorem is as the
q-beta integral (for the definition of q-integrals see [6])∫ 1

0
tα−1(tq; q)β−1 dqt =

Γq(α)Γq(β)
Γq(α+ β)

,

where 0 < q < 1, Γq is the q-gamma function [6],

(a; q)z =
(a; q)∞

(aqz; q)∞
for z ∈ C,

and α, β ∈ C such that Re(α) > 0, −β 6∈ {0, 1, 2, . . . }. Assuming Re(β) > 0 and taking the limit
q → 1− it follows that the q-binomial theorem implies Euler’s beta integral [1]∫ 1

0
tα−1(1− t)β−1 dt =

Γ(α)Γ(β)
Γ(α+ β)

.

Building on the pioneering work of Milne and Gustafson on multivariable basic hypergeometric
series, many generalizations of the q-binomial theorem have been found in recent times. Most of these
are labelled by one of the classical root systems, see e.g., [4, 7, 17, 19, 20]. A particularly interesting
generalisation of the q-binomial series is obtained when zk in (1.1) is replaced by an appropriate
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symmetric function such as the Schur function or Macdonald polynomial, see [3, 9, 16, 18]. The
latter case was independently considered by Kaneko and Macdonald, who proved that [9, 16]

1Φ0

[
a

–
; q, t;x

]
:=
∑
λ

tn(λ) (a; q, t)λ
c′λ(q, t)

Pλ(x; q, t) =
∏
i>1

(axi; q)∞
(xi; q)∞

. (1.2)

Here Pλ(x; q, t) is the Macdonald polynomial labelled by the partition λ, n(λ) =
∑

i>1(i−1)λi, and
c′λ(q, t) and (a; q, t)λ (defined in Section 2.1) are generalisations of the q-shifted factorials (q; q)k
and (a; q)k, respectively. If x contains a single variable then the partition λ is restricted to only one
part, and (1.2) reduces to the ordinary q-binomial theorem (1.1).

Analogous to the single-variable case, (1.2) may be transformed into a multiple q-integral. In
the q → 1− limit this implies the famous Selberg integral [22]∫

[0,1]n

n∏
i=1

xα−1
i (1−xi)β−1

∏
16i<j6n

|xi−xj |2γ dx =
n∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ + 1)
Γ(α+ β + (n+ i− 2)γ)Γ(γ + 1)

(1.3)

for Re(α) > 0, Re(β) > 0, Re(γ) > −min{1/n,Re(α)/(n− 1),Re(β)/(n− 1)}.

In this paper we take the natural next step in the development of basic hypergeometric series
and prove an sl3 version of the Kaneko–Macdonald q-binomial theorem:

1Φ0

[
a

–
; q, t;x, y

]
=

m∏
i=1

(aztm−1xi; q)∞
(ztm−1xi; q)∞

n−m∏
i=1

(aztn−i; q)∞
(ztn−i; q)∞

(1.4)

for y = z(1, t, . . . , tn−1) and 0 6 m 6 n. The series on the left (defined in Section 5) depends on two
Macdonald polynomials, Pλ(x1, . . . , xm; q, t) and Pµ(y1, . . . , yn; q, t), and — as a new ingredient —
involves a bisymmetric function related to Macdonald’s commuting family of q-difference operators
[15].

As in the previous two cases one may transform the sl3 basic hypergeometric series into a multiple
q-integral. The q → 1− limit then yields the sl3 Selberg integral of Tarasov and Varchenko [24]∫

Cm,nγ [0,1]

h(x, y)
m∏
i=1

xβ1−1
i

n∏
i=1

(1− yi)α−1yβ2−1
i (1.5)

×
∏

16i<j6m

|xi − xj |2γ
∏

16i<j6n

|yi − yj |2γ
m∏
i=1

n∏
j=1

|xi − yj |−γ dx dy

=
m∏
i=1

Γ(β1 + (i− 1)γ)Γ(β1 + β2 + (i− 2)γ)Γ((i− n− 1)γ)Γ(iγ)
Γ(β1 + (i+m− n− 2)γ)Γ(α+ β1 + β2 + (i+ n− 3)γ)Γ(γ)

×
n∏
i=1

Γ(α+ (i− 1)γ)Γ(iγ)
Γ(γ)

n−m∏
i=1

Γ(β2 + (i− 1)γ)
Γ(α+ β2 + (i+ n− 2)γ)

,

where Cm,nγ [0, 1] is an integration domain described in Section 5, h(x, y) is the bisymmetric function

h(x, y) =
(n−m)!

n!

n∑
l1,...,lm=1
li 6=lj

m∏
i=1

yli
yli − xi

2
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and (for generic n and m)

Re(α) > 0, Re(β1) > 0, Re(β2) > 0

−min
{ 1
n
,
Re(α)
n− 1

,
Re(β1)
m− 1

,
Re(β2)

n−m− 1
,
Re(β1 + β2)
m− 2

}
< Re(γ) < 0.

1.1 Outline

In the next section we provide a brief introduction to Macdonald polynomials and the sl2 Kaneko–
Macdonald multivariable basic hypergeometric series. Then, in Section 3, we define the bisymmetric
function F (x, y; t), which plays a key-part in the sl3 basic hypergeometric series studied in this paper.
We prove several elementary results for F , and establish a connection with the bisymmetric function
of Tarasov and Varchenko, and with alternating sign matrices. In Section 4 we obtain an identity
involving the q, t-Littlewood–Richardson coefficients and a specialization of the function F . This
identity is at the heart of our proof of the sl3 q-binomial theorem (1.4). Finally, in Section 5 we
define the sl3 basic hypergeometric series and prove several q-binomial theorems as well as a (more
general) q-Euler transformation. Taking the (q, t) → (1−, 1−) limit of the sl3 q-binomial theorem
(such that (1 − t)/(1 − q) → γ) yields a generalization of the Tarasov–Varchenko integral (1.5)
involving the Jack polynomial.

2. Macdonald polynomials

2.1 Preliminaries

Let λ = (λ1, λ2, . . . ) be a partition, i.e., λ1 > λ2 > . . . with finitely many λi unequal to zero.
The length and weight of λ, denoted by l(λ) and |λ|, are the number and sum of the non-zero
λi respectively. As usual we identify two partitions that differ only in their string of zeros, so that
(6, 3, 3, 1, 0, 0) and (6, 3, 1, 1) represent the same partition. When |λ| = N we say that λ is a partition
of N , and the unique partition of zero is denoted by 0. The multiplicity of the part i in the partition
λ is denoted by mi = mi(λ), and occasionally we will write λ = (1m12m2 . . . ).

We identify a partition with its Ferrers graph, defined by the set of points in (i, j) ∈ Z2 such
that 1 6 j 6 λi, and further make the usual identification between Ferrers graphs and (Young)
diagrams by replacing points by squares.

The conjugate λ′ of λ is the partition obtained by reflecting the diagram of λ in the main
diagonal, so that, in particular, mi(λ) = λ′i − λ′i+1. The statistic n(λ) is given by

n(λ) =
∑
i>1

(i− 1)λi =
∑
i>1

(
λ′i
2

)
.

The dominance partial order on the set of partitions of N is defined by λ > µ if λ1 + · · ·+ λi >
µ1 + · · ·+ µi for all i > 1. If λ > µ and λ 6= µ then λ > µ.

If λ and µ are partitions then µ ⊆ λ if (the diagram of) µ is contained in (the diagram of) λ,
i.e., µi 6 λi for all i > 1. If µ ⊆ λ then the skew-diagram λ− µ denotes the set-theoretic difference
between λ and µ, i.e., those squares of λ not contained in µ.

Let s = (i, j) be a square in the diagram of λ. Then a(s), a′(s), l(s) and l′(s) are the arm-length,
arm-colength, leg-length and leg-colength of s, defined by

a(s) = λi − j, a′(s) = j − 1
l(s) = λ′j − i, l′(s) = i− 1.

3
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This may be used to define the generalized hook-length polynomials [15, Equation (VI.8.1)]

cλ(q, t) =
∏
s∈λ

(
1− qa(s)tl(s)+1

)
, (2.1a)

c′λ(q, t) =
∏
s∈λ

(
1− qa(s)+1tl(s)

)
, (2.1b)

where the products are over all squares of λ. We further set

bλ(q, t) =
cλ(q, t)
c′λ(q, t)

. (2.2)

Observe that if λ contains a single part, say k, then

c′(k)(q, t) = (q; q)k.

For N a nonnegative integer the q-shifted factorial (b; q)N is defined as (b; q)0 = 1 and

(b; q)N = (1− b)(1− bq) · · · (1− bqN−1). (2.3)

We also need the q-shifted factorial for negative (integer) values of N . This may be obtained from
the above by

(b; q)−N =
1

(bq−N ; q)N
.

This implies in particular that 1/(q; q)−N = 0 for positive N .
The definition (2.3) may be extended to partitions λ by

(b; q, t)λ =
∏
s∈λ

(
1− b qa′(s)t−l′(s)

)
=

l(λ)∏
i=1

(bt1−i; q)λi .

With this notation the polynomials (2.1) may be recast as [9, Proposition 3.2]

cλ(q, t) = (tn; q, t)λ
∏

16i<j6n

(tj−i; q)λi−λj
(tj−i+1; q)λi−λj

, (2.4a)

c′λ(q, t) = (qtn−1; q, t)λ
∏

16i<j6n

(qtj−i−1; q)λi−λj
(qtj−i; q)λi−λj

, (2.4b)

where n is any integer such that n > l(λ).
Finally we introduce the usual condensed notation for q-shifted factorials as

(a1, . . . , ak; q)N = (a1; q)N · · · (ak; q)N
and

(a1, . . . , ak; q, t)λ = (a1; q, t)λ · · · (ak; q, t)λ.

2.2 Macdonald polynomials
Let Sn denote the symmetric group, acting on x = (x1, . . . , xn) by permuting the xi, and let
Λn = Z[x1, . . . , xn]Sn and Λ denote the ring of symmetric polynomials in n independent variables
and the ring of symmetric functions in countably many variables, respectively.

For λ = (λ1, . . . , λn) a partition of at most n parts the monomial symmetric function mλ is
defined as

mλ(x) =
∑

xα,

where the sum is over all distinct permutations α of λ, and xα = xα1
1 · · ·xαnn . For l(λ) > n we set

mλ(x) = 0. The monomial symmetric functions mλ for l(λ) 6 n form a Z-basis of Λn.

4
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For r a nonnegative integer the power sums pr are given by p0 = 1 and pr = m(r) for r > 1.
Hence

pr(x) =
∑
i>1

xri . (2.5)

More generally the power-sum products are defined as pλ(x) = pλ1(x) · · · pλn(x).
Following Macdonald we define the scalar product 〈·, ·〉q,t by

〈pλ, pµ〉q,t = δλµzλ

n∏
i=1

1− qλi
1− tλi

,

with zλ =
∏
i>1mi! imi and mi = mi(λ). If we denote the ring of symmetric functions in n variables

over the field F = Q(q, t) of rational functions in q and t by Λn,F, then the Macdonald polynomial
Pλ(x; q, t) is the unique symmetric polynomial in Λn,F such that [15, Equation (VI.4.7)]:

Pλ(x; q, t) = mλ(x) +
∑
µ<λ

uλµ(q, t)mµ(x) (2.6)

and
〈Pλ, Pµ〉q,t = 0 if λ 6= µ.

The Macdonald polynomials Pλ(x; q, t) with l(λ) 6 n form an F-basis of Λn,F. If l(λ) > n then
Pλ(x; q, t) = 0. From (2.6) it follows that Pλ(x; q, t) for l(λ) 6 n is homogeneous of degree |λ|:

Pλ(zx; q, t) = z|λ|Pλ(x; q, t) (2.7)

with z a scalar.
When q = t the Macdonald polynomials simplify to the well-known Schur functions:

Pλ(x; t, t) = sλ(x). (2.8)

The latter are defined much more simply as

sλ(x) =
det16i,j6n

(
x
λj+n−j
i

)
det16i,j6n

(
xn−ji

) =
det16i,j6n

(
x
λj+n−j
i

)
∆(x)

, (2.9)

where
∆(x) =

∏
16i<j6n

(xi − xj)

is the Vandermonde product.

For f ∈ Λn,F and λ a partition such that l(λ) 6 n the evaluation homomorphism u
(n)
λ : Λn,F → F

is defined as
u

(n)
λ (f) = f(qλ1tn−1, qλ2tn−2, . . . , qλnt0). (2.10)

We extend this to f ∈ F(x1, . . . , xn)Sn for those f for which the right-hand side of (2.10) is well-
defined. According to the principal specialization formula for Macdonald polynomials [15, Example
VI.6.5]

u
(n)
0 (Pλ) = tn(λ)

∏
s∈λ

1− qa′(s)tn−l′(s)

1− qa(s)tl(s)+1
= tn(λ) (tn; q, t)λ

cλ(q, t)
. (2.11)

For more general evaluations we have the symmetry [15, Equation (VI.6.6)]

u
(n)
λ (Pµ)u(n)

0 (Pλ) = u(n)
µ (Pλ)u(n)

0 (Pµ) (2.12)

provided l(λ), l(µ) 6 n. It will also be convenient to define the homomorphism u
(n)
λ;z as

u
(n)
λ;z(f) = f(zqλ1tn−1, zqλ2tn−2, . . . , zqλnt0). (2.13)

5
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For homogeneous functions of degree d we of course have

u
(n)
λ;z(f) = zd u

(n)
λ (f). (2.14)

Thanks to the stability Pλ(x1, . . . , xn; q, t) = Pλ(x1, . . . , xn, 0; q, t) for l(λ) 6 n, we may extend
the Pλ to an infinite alphabet, and in the remainder of this section we assume that x (and y) contain
countable many variables so that we will be working in the ring ΛF = Λ ⊗Z F instead of Λn,F. By
abuse of terminology we still refer to Pλ(x; q, t) as a Macdonald polynomial, instead of a Macdonald
function.

For b an indeterminate, the homomorphism εa,t : ΛF → F is defined by its action on the power
sums pr as [15, Equation (VI.6.16)]

εb,t(pr) =
1− br

1− tr
. (2.15)

According to [15, Equation (VI.6.17)]

εb,t(Pλ) = tn(λ)
∏
s∈λ

1− b qa′(s)t−l′(s)

1− qa(s)tl(s)+1
= tn(λ) (b; q, t)λ

cλ(q, t)
. (2.16)

We also note that for any symmetric function f

εtn,t(f) = u
(n)
0 (f) = f(1, t, . . . , tn−1), (2.17)

compare for example (2.11) and (2.16).
The q, t-Littlewood–Richardson coefficients are defined by

Pµ(x; q, t)Pν(x; q, t) =
∑
λ

fλµν(q, t)Pλ(x; q, t), (2.18)

and trivially satisfy

fλµν(q, t) = fλνµ(q, t)

and

fλµν(q, t) = 0 unless |λ| = |µ|+ |ν|. (2.19)

It can also be shown that [15, Equation (VI.7.7)]

fλµν(q, t) = 0 unless µ, ν ⊆ λ. (2.20)

The q, t-Littlewood–Richardson coefficients may be used to define the skew Macdonald polyno-
mials

Pλ/µ(x; q, t) =
∑
ν

fλµν(q, t)Pν(x; q, t). (2.21)

By (2.20), Pλ/µ(x; q, t) = 0 unless µ ⊆ λ (in which case it is a homogeneous of degree |λ| − |µ|).
Equivalent to (2.21) is

Pλ(x, y; q, t) =
∑
µ

Pλ/µ(x; q, t)Pµ(y; q, t). (2.22)

Finally we need the Kaneko–Macdonald definition of sl2 basic hypergeometric series with Mac-
donald polynomial argument [9, 16]

r+1Φr

[
a1, . . . , ar+1

b1, . . . , br
; q, t;x

]
=
∑
λ

tn(λ)Pλ(x; q, t)
c′λ(q, t)

(a1, . . . , ar+1; q, t)λ
(b1, . . . , br; q, t)λ

. (2.23)

In the single-variable case, x = (z), this reduces to the classical r+1φr basic hypergeometric series

6
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[6]:

r+1Φr

[
a1, . . . , ar+1

b1, . . . , br
; q, t; (z)

]
=
∞∑
k=0

(a1, . . . , ar+1; q)k
(q, b1, . . . , br; q)k

zk =: r+1φr

[
a1, . . . , ar+1

b1, . . . , br
; q, z

]
.

The main result for Kaneko–Macdonald series needed in this paper is the q-binomial theorem [9,
Theorem 3.5], [16, Equation (2.2)] (see also [15, page 374])

1Φ0

[
a

–
; q, t;x

]
=
∏
i>1

(axi; q)∞
(xi; q)∞

(2.24)

which is (1.2) of the introduction. Those familiar with Macdonald polynomials will recognize the
intimate connection with the Cauchy identity [15, Equation (VI.4.13)]∑

λ

bλ(q, t)Pλ(x; q, t)Pλ(y; q, t) =
∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

, (2.25)

with bλ(q, t) defined in (2.2). Acting with the homomorphism εa,t on the left (with εa,t acting on y)
and using (2.2) and (2.16) immediately gives the above 1Φ0 series, so that (2.24) is equivalent to

εa,t

( ∏
i,j>1

(txiyj ; q)∞
(xiyj ; q)∞

)
=
∏
i>1

(axi; q)∞
(xi; q)∞

. (2.26)

3. The bisymmetric function F

Unless stated otherwise m and n are integers such that 0 6 m 6 n, and x = (x1, . . . , xm) and
y = (y1, . . . , yn). Given such x we set

x(i1,i2,...,iN ) = (x1, . . . , xi1−1, xi1+1, . . . , xi2−1, xi2+1, . . . , xiN−1, xiN+1, . . . , xm)

for integers 1 6 i1 < i2 < · · · < iN 6 m. We further use the shorthand notation

(x(p+1,...,m), 0m−p) = (x1, . . . , xp, 0, . . . , 0︸ ︷︷ ︸
m−p times

),

and apply the same notation to y = (y1, . . . , yn).
The symmetric group will feature prominently in this section, especially in the proofs. In total

we employ the symmetric group acting on 4 different sets of variables, sometimes of the same
cardinality. To avoid ambiguity we write ∑

w∈Sx

w
(
f(x)

)
instead of the more common ∑

w∈Sm

w
(
f(x)

)
:=

∑
w∈Sm

f(xw1 , . . . , xwm),

with similar notation for other sets of variables.

3.1 Definitions and results
Let r be a nonnegative integer not exceeding m. Macdonald introduced the commuting family of
q-difference operators Dr as [15, Equation (VI.3.4)r]

Dr = t(
r
2)
∑
I⊆[m]
|I|=r

∏
i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

Tq,xi ,

7



S. Ole Warnaar

where [m] = {1, 2, . . . ,m} and

Tq,xi
(
f(x)

)
= f(x1, . . . , xi−1, qxi, xi+1, . . . , xm)

the q-shift operator acting on xi.
Defining the generating series

D(u; q, t) =
m∑
r=0

Dr(−u)r

Macdonald showed that for l(λ) 6 m the Pλ are the eigenfunctions of D(u; q, t) [15, Equation
(VI.4.15)]:

D(u; q, t)Pλ(x; q, t) = gλ(u; q, t)Pλ(x; q, t), (3.1)
with eigenvalue

gλ(u; q, t) =
m∏
i=1

(1− utm−iqλi).

In [10, Equations (1.12) and (1.13)] Kirillov and Noumi combined the Cauchy identity (2.25)
with (3.1) to obtain∑

λ

bλ(q, t)gλ(u; q, t)Pλ(x; q, t)Pλ(y; q, t) = F (u;x, y; t)
m∏
i=1

n∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

, (3.2)

where the bisymmetric function F (u;x, y; t) is given by

F (u;x, y; t) =
∑
I⊆[m]

(−u)|I|t(
|I|
2 )∏

i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

n∏
j=1

1− xiyj
1− txiyj

. (3.3)

In Section 5 we define two types of sl3 basic hypergeometric series featuring particular special-
izations of F . In our study of these series several elementary results for F are needed. Proofs of all
claims may be found in Section 3.3.

Lemma 3.1 (Stability). We have

F (u;x, y; t)|xmyn=1 = F (u;x(m), y(n); t) (3.4a)

and

F (u;x, y; t)|xm=yn=0 = (1− u)F (ut;x(m), y(n); t). (3.4b)

The formulae (3.2) and (3.3) also make sense when y contains countably many variables (pro-
vided, of course, we replace

∏n
j=1 by

∏
j>1). In the following we assume such y.

Lemma 3.2. With εa,t acting on y = (y1, y2, . . . ) we have

εutm−1,t

(
F (u;x, y; t)

)
=

m∏
i=1

1− utm−i

1− utm−1xi
(3.5a)

and

εa,t
(
F (1;x, y; t)

)
= t(

m
2 )x1 · · ·xm

m∏
i=1

1− at1−i

1− axi
. (3.5b)

It easily follows (see Section 3.3) that

εa,t
(
F (u;x, y; t)

)
=
∑
I⊆[m]

(−u)|I|t(
|I|
2 )∏

i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

1− xi
1− axi

, (3.6)

8
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so that Lemma 3.2 is equivalent to the pair of identities∑
I⊆[m]

(−u)|I|t(
|I|
2 )∏

i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

1− xi
1− utm−1xi

=
m∏
i=1

1− utm−i

1− utm−1xi
(3.7a)

and ∑
I⊆[m]

(−1)|I|t(
|I|
2 )∏

i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

1− xi
1− axi

= t(
m
2 )x1 · · ·xm

m∏
i=1

1− at1−i

1− axi
. (3.7b)

This shows that (3.5a) and (3.5b) are in fact equivalent: taking (3.7a) and making the substitutions
u→ atm−1, xi → 1/(axi) and I → [m]− I yields (3.7b).

The results that we will actually need in Section 5 correspond to the principal specialization
formula, obtained by choosing u = tn−m+1 or a = tn in Lemma 3.2 and using (2.17).

Corollary 3.1 (Principal specialization). With u
(n)
0 acting on y = (y1, . . . , yn) we have

u
(n)
0

(
F (tn−m+1;x, y; t)

)
=

m∏
i=1

1− ti+n−m

1− tnxi

and

u
(n)
0

(
F (1;x, y; t)

)
= t(

m
2 )x1 · · ·xm

m∏
i=1

1− ti+n−m

1− tnxi
.

These last two results are suggestive of

F (1;x, y; t) = t(
m
2 )−(n2)F (tn−m+1;x, y; t)

m∏
i=1

xi

n∏
j=1

yj ,

but this is in fact only true for m = n as will be shown in (3.12) below.

The function F may be connected to the bisymmetric function introduced by Tarasov and
Varchenko in their work on sl3 Selberg integrals [24]. To this end we define

ω(x, y; t) = F (1;x−1, y; t), (3.8)

where x−1 = (x−1
1 , . . . , x−1

m ). From (3.3) it follows that

ω(x, y; t) =
∑
I⊆[m]

(−1)|I|t(
|I|
2 )∏

i∈I
j 6∈I

xi − txj
xi − xj

∏
i∈I

n∏
j=1

xi − yj
xi − tyj

. (3.9)

Proposition 3.1. Let k be an integer such that 1 6 k 6 m. Then

ω(x, y; t) = tm−n(1− t)
n∑
l=1

ω(x(k), y(l); t)
yl

xk − tyl

m∏
i=1
i 6=k

xi − yl
xi − tyl

n∏
i=1
i 6=l

yi − tyl
yi − yl

. (3.10)

Since ω(– , y; t) = 1 we may use (3.10) and induction to find the following alternative multisum
expression for ω.

Corollary 3.2. We have

ω(x, y; t) = tm(m−n)(1− t)m

×
n∑

l1,...,lm=1
li 6=lj

m∏
i=1

yli
xi − tyli

n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

∏
16i<j6m

xi − ylj
xi − tylj

·
yli − tylj
yli − ylj

. (3.11)

9
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Note that for m = n this is equivalent to

ω(x, y; t) = (1− t)n
∑
w∈Sy

w

( n∏
i=1

yi
xi − tyi

∏
16i<j6n

xi − yj
xi − tyj

· yi − tyj
yi − yj

)
from which it readily follows that

ω(x, y; t) = ω(x−1, y−1; t−1)
n∏
i=1

yi
xi

or, equivalently,

F (1;x, y; t) = F (1;x−1, y−1; t−1)
n∏
i=1

xiyi.

Since it follows from (3.3) that for general 0 6 m 6 n

F (u;x, y; t) = F (utm−n−1;x−1, y−1; t−1),

we also have

F (1;x, y; t) = F (t;x, y; t)
n∏
i=1

xiyi (3.12)

when m = n.
Using Corollary 3.2 we may achieve the further rewriting of ω as follows.

Proposition 3.2. We have

ω(x, y; t) =
tm(m−n)(1− t)n+m

(t; t)n−m(t; t)m

∑
w∈Sx×Sy

w

( m∏
i=1

yi+n−m
xi − tyi+n−m

∏
16i<j6n

yi − tyj
yi − yj

×
∏

16i<j6m

xi − yj+n−m
xi − tyj+n−m

· xi − txj
xi − xj

)
. (3.13)

The representation of ω(x, y; t) provided by (3.13) immediately implies that

lim
q→1

F (1; q−v, qu; qγ) = lim
q→1

ω(qv, qu; qγ) =
(−γ)mn!
(n−m)!

w(u, v; γ), (3.14)

where w(u, v; γ) is the bisymmetric function of Tarasov and Varchenko [24, Eq. (2.2)], and qv =
(qv1 , . . . , qvm), qu = (qu1 , . . . , qun).

Depending on the respective values of m and n either (3.9) or (3.11) provides the most efficient
way of computing ω(x, y; t). In the former we need to sum over all 2m subsets of [m] whereas in
the latter we are summing over all

(
n
m

)
m-subsets of [n]. A distinct advantage of the representation

(3.11) (and of (3.13)) over (3.9) is that it permits the computation of the t → 1 limit, required in
the derivation of the sl3 Selberg integral (1.5). In particular, the bisymmetric function featured in
that integral follows as

h(x, y) = (−1)m
(n−m)!

n!
lim
t→1

ω(x, y; t)
(1− t)m

(3.15)

=
(n−m)!

n!

n∑
l1,...,lm=1
li 6=lj

m∏
i=1

yli
yli − xi

=
1

m!n!

∑
w∈Sx×Sy

w

( m∏
i=1

yi+n−m
yi+n−m − xi

)
.
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Finally we mention that F (t;x, y; t) for m = n is nothing but the well-known Izergin–Korepin
determinant [8, 11] in disguise.

Lemma 3.3. For x = (x1, . . . , xn) and y = (y1, . . . , yn) we have

F (t;x, y; t) = det
16i,j6n

(
1

(1− xiyj)(1− txiyj)

) (1− t)n
∏n
i,j=1(1− xiyj)∏

16i<j6n(xi − xj)(yi − yj)
.

Since F (0;x, y; 0) = 1 this reduces to Cauchy’s double alternant when t = 0, see e.g., [12,
Equation 2.7].

Several combinatorial interpretations of the Izergin–Korepin determinant are known, for example
as the partition function of square ice [5, 14]. Perhaps best known is its evaluation in terms of
alternating sign matrices [5, 13]. This (together with (3.8) and (3.12)) implies that for m = n

ω(x, y; t) =
(1− t)ny1 · · · yn∏n
i,j=1(xi − tyj)

∑
A

(1− t)2N(A)t(
n
2)−I(A)

n∏
i=1

y
Ni(A)
i x

N i(A)
i

n∏
i,j=1
aij=0

(αijyi − xj).

Here the sum is over all n by n alternating sign matrices A (matrices with entries aij ∈ {−1, 0, 1}
such that the ones and minus ones alternate along each row and along each column and such that
the entries in each row and column add up to 1), Ni(A) is the number of minus ones in row i,
N i(A) is the number of minus ones in column i, N(A) is the total number of minus ones, I(A) is
the inversion number:

I(A) =
∑

16i′<i6n

∑
16j<j′6n

aijai′j′ ,

and

αij = t if
j∑

k=1

aik =
i∑

k=1

akj

and αij = 1 otherwise.

3.2 The rational functions Wλµ and Vλµ

Related to the bisymmetric function F we introduce two rational functions Wλµ(u, z; q, t) and
Vλµ(u, z; q, t) as follows. Let λ and µ be partitions such that l(λ) 6 m and l(µ) 6 n. Then

Wλµ(u, z; q, t) = u
(m)
λ;z u

(n)
µ

(
F (u;x, y; t)

)
(3.16)

and
Vλµ(u, z; q, t) = u

(m)
λ;z u

(n)
µ

(
F (u;x−1, y; t)

)
. (3.17)

There is no need to consider the more general specialization u
(m)
λ;z u

(n)
µ;w since

u
(m)
λ;z u

(n)
µ;w

(
F (u;x, y; t)

)
= u

(m)
λ;zwu

(n)
µ

(
F (u;x, y; t)

)
.

From (3.3) it immediately follows that

Wλµ(u, z; q, t) =
∑
I⊆[m]

(−u)|I|t(
|I|
2 )∏

i∈I
j 6∈I

1− qλi−λj tj−i+1

1− qλi−λj tj−i
∏
i∈I

n∏
j=1

1− zqλi+µj tm+n−i−j

1− zqλi+µj tm+n−i−j+1

and

Vλµ(u, z; q, t) =
∑
I⊆[m]

(−u)|I|t(
|I|
2 )−n|I|∏

i∈I
j 6∈I

1− qλj−λiti−j+1

1− qλj−λiti−j
∏
i∈I

n∏
j=1

1− zqλi−µj tj−i+m−n

1− zqλi−µj tj−i+m−n−1
.

11
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Furthermore, from (3.17) and Corollary 3.1 we infer that

Vλ,0(tn−m+1, z; q, t) = q|λ|zm
m∏
i=1

1− tm−n−i

1− zqλitm−n−i
(3.18a)

and

Vλ,0(1, z; q, t) =
m∏
i=1

1− tm−n−i

1− zqλitm−n−i
. (3.18b)

3.3 Proofs of the claims of Section 3.1

Proof of Lemma 3.1. By taking xmyn = 1 in (3.3) it follows that the summand vanishes if m ∈ I.
Hence we need to only sum over I ⊆ [m− 1], resulting in

F (u;x, y; t)|xmyn=1 =
∑

I⊆[m−1]

(−u)|I|t(
|I|
2 ) ∏

i∈I
j∈[m]−I

txi − xj
xi − xj

∏
i∈I

(
1− xi/xm
1− txi/xm

n−1∏
j=1

1− xiyj
1− txiyj

)

=
∑

I⊆[m−1]

(−u)|I|t(
|I|
2 )∏

i∈I
j 6∈I

txi − xj
xi − xj

∏
i∈I

n−1∏
j=1

1− xiyj
1− txiyj

.

This last expression is F (u;x(m), y(n); t), establishing (3.4a).

In proving (3.4b) we make the m-dependence of gλ(u; q, t) explicit by writing g(m)
λ (u; q, t).

Taking xm = yn = 0 in (3.2) and using the stability of the Macdonald polynomials yields∑
λ

bλ(q, t)g(m)
λ (u; q, t)Pλ(x(m); q, t)Pλ(y(n); q, t) = F (u;x, y; t)|xm=yn=0

m−1∏
i=1

n−1∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

.

Since Pλ(x(m); q, t) = 0 if l(λ) > m we may assume that l(λ) 6 m− 1. But then

g
(m)
λ (u; q, t) = (1− u)

m−1∏
i=1

(1− utm−iqλi)

= (1− u) g(m−1)
λ (ut; q, t),

so that

(1− u)
∑
λ

bλ(q, t)g(m−1)
λ (ut; q, t)Pλ(x(m); q, t)Pλ(y(n); q, t)

= F (u;x, y; t)|xm=yn=0

m−1∏
i=1

n−1∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

.

Summing the left-hand side using (3.2) (with (n,m, x, y)→ (n− 1,m− 1, x(m), y(n))) completes the
proof of (3.4b).

Proof of Lemma 3.2. Recall our earlier comment following (2.24) that the 1Φ0 series naturally arises
from the sum side of the Cauchy identity (2.25) by application of the homomorphism εa,t (acting
on y). It is therefore an obvious idea to apply εa,t to the more more general identity∑

λ

bλ(q, t)gλ(u; q, t)Pλ(x; q, t)Pλ(y; q, t) = F (u;x, y; t)
m∏
i=1

∞∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

.
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Doing so and using (2.2), (2.16), (2.23), (2.26) and

gλ(u; q, t) = g0(u; q, t)
(uqtm−1; q, t)λ
(utm−1; q, t)λ

,

yields

g0(u; q, t) 2Φ1

[
a, uqtm−1

utm−1
; q, t;x

]
= εa,t

(
F (u;x, y; t)

) m∏
i=1

(axi; q)∞
(xi; q)∞

(3.19)

or, equivalently,

εa,t
(
F (u;x, y; t)

)
= g0(u; q, t) 2Φ1

[
a, uqtm−1

utm−1
; q, t;x

] m∏
i=1

(xi; q)∞
(axi; q)∞

. (3.20)

Taking a = utm−1 the 2Φ1 reduces to a 1Φ0 which may be summed by (2.24), so that

εutm−1,t

(
F (u;x, y; t)

)
= g0(u; q, t)

m∏
i=1

(uqtm−1xi; q)∞
(utm−1xi; q)∞

=
m∏
i=1

1− utm−i

1− utm−1xi

in accordance with (3.5a).
To also prove (3.5b) we have to prove identity (3.6) (see the comments immediately following

Lemma 3.2). Hence we need to show that

εa,t

( ∏
j>1

1− zyj
1− tzyj

)
=

1− z
1− az

.

By taking the logarithm on both sides this is equivalent to

εa,t

(∑
j>1

(
log(1− zyj)− log(1− tzyj)

))
= log

( 1− z
1− az

)
.

Using the series expansion for log(1− x), then interchanging sums and finally using definition (2.5)
of the power sums, this yields

εa,t

(
−
∑
m>1

(1− tm)zm

m
pm(y)

)
= log

( 1− z
1− az

)
.

By (2.15) this simplifies to

−
∑
m>1

(1− am)zm

m
= log

( 1− z
1− az

)
which is obviously true.

As an aside we note that (3.6) and (3.19) may be combined to yield the following generalization
of the Kaneko–Macdonald q-binomial theorem (2.24):

2Φ1

[
a, uqtm−1

utm−1
; q, t;x

] m∏
i=1

(1− utm−i)

=
( m∏
i=1

(axi; q)∞
(xi; q)∞

) ∑
I⊆[m]

(−u)|I|t(
|I|
2 )∏

i∈I
j∈Ī

txi − xj
xi − xj

∏
i∈I

1− xi
1− axi

.
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Proof of Proposition 3.1. Since ω(x, y; t) is symmetric in x it suffices to prove the proposition for
k = m.

It follows from (3.9) that ω(x, y; t), viewed as a function of xm, has simple poles at xm = xi for
1 6 i 6 m− 1 and xm = tyj for 1 6 j 6 n. However, since ω(x, y; t) is symmetric in x, the first set
of poles must have zero residue.

It also follows from (3.9) that
lim

xm→∞
ω(x, y; t) = 0.

Indeed, if ωI(x, y; t) is the summand of (3.9) and if I ⊆ [m− 1], then

lim
xm→∞

ωI(x, y; t) = − lim
xm→∞

ωI∪{m}(x, y; t).

The above observations imply the existence of the partial fraction expansion

ω(x, y; t) =
n∑
l=1

Al
xm − tyl

,

with Al = Al(x(m), y; t) determined by

Al = lim
xm→tyl

(xm − tyl)ω(x, y; t)

= lim
xm→tyl

(xm − tyl)
∑
I⊆[m]

(−1)|I|t(
|I|
2 )∏

i∈I
j 6∈I

xi − txj
xi − xj

∏
i∈I

n∏
j=1

xi − yj
xi − tyj

.

In the limit, only sets I containing m give a nonvanishing contribution. A straightforward calculation
thus gives

Al = (t− 1)yl
∑
I⊆[m]
m∈I

(−1)|I|t(
|I|
2 )−|I|+m−n+1

∏
j 6∈I

xj − yl
xj − tyl

n∏
j=1
j 6=l

yj − tyl
yj − yl

×
∏

i∈I−{m}
j 6∈I

xi − txj
xi − xj

∏
i∈I−{m}

n∏
j=1

xi − yj
xi − tyj

.

Rewriting the sum as a sum over [m− 1] this becomes

Al = (t− 1)yl
∑

I⊆[m−1]

(−1)|I|+1t(
|I|
2 )+m−n

∏
j 6∈I

xj − yl
xj − tyl

n∏
j=1
j 6=l

yj − tyl
yj − yl

∏
i∈I
j 6∈I

xi − txj
xi − xj

∏
i∈I

n∏
j=1

xi − yj
xi − tyj

.

By ∏
j 6∈I

xj − yl
xj − tyl

∏
i∈I

n∏
j=1

xi − yj
xi − tyj

=
m−1∏
i=1

xi − yl
xi − tyl

∏
i∈I

n∏
j=1
j 6=l

xi − yj
xi − tyj

,

this finally yields

Al = (1− t)tm−nyl
m−1∏
i=1

xi − yl
xi − tyl

n∏
j=1
j 6=l

yj − tyl
yj − yl

∑
I⊆[m−1]

(−1)|I|t(
|I|
2 )∏

i∈I
j∈Ī

xi − txj
xi − xj

∏
i∈I

n∏
j=1
j 6=l

xi − yj
xi − tyj

= (1− t)tm−nyl ω(x(m), y(l); t)
m−1∏
i=1

xi − yl
xi − tyl

n∏
j=1
j 6=l

yj − tyl
yj − yl
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as required.

Proof of Proposition 3.2. We first symmetrize the right-hand side of (3.13) with respect to y and
compute ∑

w∈Sy

w

( m∏
i=1

yi+n−m
xi − tyi+n−m

∏
16i<j6n

yi − tyj
yi − yj

∏
16i<j6m

xi − yj+n−m
xi − tyj+n−m

)
.

To this end we write each permutation w as w = (σ1, . . . , σn−m, l1, . . . , lm). In summing over w we
first sum over the σi for fixed l1, . . . , lm. This yields,

n∑
l1,...,lm=1
li 6=lj

m∏
i=1

yli
xi − tyli

n−m∏
i=1

m∏
j=1

Yi − tylj
Yi − ylj

∏
16i<j6m

xi − ylj
xi − tylj

· yli − tyli
yli − ylj

∑
σ∈SY

σ

( ∏
16i<j6n−m

Yi − tYj
Yi − Yj

)
,

where Y = (Y1, . . . , Yn−m) = y(l1,l2,...,lm) and where we have used the symmetry of the double
product involving Yi and ylj to pull it out of the sum over SY . Carrying out this sum using [15,
Ch. III, (1.4)] ∑

w∈Su

w

( ∏
16i<j6n

ui − tuj
ui − uj

)
=

(t; t)n
(1− t)n

, (3.21)

we obtain

(t; t)n−m
(1− t)n−m

n∑
l1,...,lm=1
li 6=lj

m∏
i=1

yli
xi − tyli

n−m∏
i=1

m∏
j=1

Yi − tylj
Yi − ylj

∏
16i<j6m

xi − ylj
xi − tylj

· yli − tyli
yli − ylj

.

If we denote the expression on the right of (3.13) by ω̄(x, y; t), and use that

n−m∏
i=1

m∏
j=1

Yi − tylj
Yi − ylj

=
n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

,

the above calculations imply that

ω̄(x, y; t) = κ(t)
n∑

l1,...,lm=1
li 6=lj

∑
w∈Sx

w

( m∏
i=1

yli
xi − tyli

n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

×
∏

16i<j6m

xi − txj
xi − xj

·
xi − ylj
xi − tylj

· yli − tyli
yli − ylj

)
,

where

κ(t) =
tm(m−n)(1− t)2m

(t; t)m
.

The expression for ω(x, y; t) given by (3.11) is also a sum over the li but unfortunately the two
summands do not equate and some further manipulations of the sums are required.

To proceed we apply
n∑

l1,...,lm=1
li 6=lj

f(yl) =
∑

16l1<···<lm6n

∑
w∈Syl

w
(
f(yl)

)
, (3.22)
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with yl = (yl1 , . . . , ylm). Therefore

ω̄(x, y; t) = κ(t)
∑

16l1<···<lm6n

∑
w∈Sx×Syl

w

( m∏
i=1

yli
xi − tyli

n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

×
∏

16i<j6m

xi − txj
xi − xj

·
xi − ylj
xi − tylj

· yli − tyli
yli − ylj

)
.

We now invoke the following lemma, which reduces to (3.21) for v = u.

Lemma 3.4. For u = (u1, . . . , un) and v = (v1, . . . , vn) there holds

∑
w∈Su×Sv

w

( n∏
i=1

1
ui − tvi

∏
16i<j6n

ui − tuj
ui − uj

· ui − vj
ui − tvj

· vi − tvj
vi − vj

)

=
(t; t)n

(1− t)n
∑
w∈Sv

w

( n∏
i=1

1
ui − tvi

∏
16i<j6n

ui − vj
ui − tvj

· vi − tvj
vi − vj

)
.

Since
m∏
i=1

yli

n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

is symmetric in yl, Lemma 3.4 (with (n, u, v)→ (m,x, yl)) may be applied to yield

ω̄(x, y; t) = κ(t)
(t; t)m

(1− t)m
∑

16l1<···<lm6n

∑
w∈Syl

w

( m∏
i=1

yli
xi − tyli

×
n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

∏
16i<j6m

xi − ylj
xi − tylj

·
yli − tylj
yli − ylj

)
.

Reversing (3.22) we finally get

ω̄(x, y; t) = κ(t)
(t; t)m

(1− t)m
n∑

l1,...,lm=1
li 6=lj

m∏
i=1

yli
xi − tyli

n∏
i=1

i 6=l1,...,lm

m∏
j=1

yi − tylj
yi − ylj

∏
16i<j6m

xi − ylj
xi − tylj

·
yli − tylj
yli − ylj

.

Comparing this with (3.11) we see that ω̄ = ω and the proof is complete except for a proof of
Lemma 3.4.

Proof of Lemma 3.4. Defining

g(u, v; t) =
n∏
i=1

1
ui − tvi

∏
16i<j6n

ui − vj
ui − tvj

· vi − tvj
vi − vj

,

the proposition states that∑
w∈Su×Sv

w

(
g(u, v; t)

∏
16i<j6n

ui − tuj
ui − uj

)
=

(t; t)n
(1− t)n

∑
w∈Sv

w
(
g(u, v; t)

)
. (3.23)

The difficulty is that it is unclear that the right-hand side is symmetric in u. For example, when
n = 2 it reads (without the (u, v)-independent prefactor)

1
u1 − tv1

· 1
u2 − tv2

· u1 − v2

u1 − tv2
· v1 − tv2

v1 − tv2
+

1
u1 − tv2

· 1
u2 − tv1

· u1 − v1

u1 − tv1
· v2 − tv1

v2 − tv1
,
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sl3 Basic hypergeometric series

which appears symmetric in v only, but is in fact equal to
(1 + t)(tv1v2 + u1u2)− t(v1 + v2)(u1 + u2)

(u1 − tv1)(u1 − tv2)(u2 − tv1)(u2 − tv2)
.

Let Tk,u ∈ Su by the kth adjacent transposition acting on u:

Tk,u
(
f(u)

)
= f(u1, . . . , uk−1, uk+1, uk, uk+2, . . . , un).

The Tk,u for 1 6 k 6 n−1 generate Su, and to prove that the right-hand side of (3.23) is symmetric
in u it suffices to show that it is invariant under the action of the Tk,u. That is, we must show that

Tk,u

( ∑
w∈Sv

w
(
g(u, v; t)

))
=
∑
w∈Sv

w
(
g(u, v; t)

)
or, equivalently, ∑

w∈Sv

w
(
Tk,u

(
g(u, v; t)

))
=
∑
w∈Sv

w
(
g(u, v; t)

)
(3.24)

since Tk,u commutes with the v-symmetrization.
A direct computation shows that

Tk,u
(
g(u, v; t)

)
= g(u, v; t)− (uk − uk+1)(vk+1 − tvk)

(uk − vk+1)(uk+1 − tvk)
g(u, v; t).

Acting with Sv it thus follows that (3.24) holds if∑
w∈Sv

w
(
h(u, v; t)

)
= 0 (3.25)

for

h(u, v; t) =
(vk+1 − tvk)

(uk − vk+1)(uk+1 − tvk)
g(u, v; t).

Given an arbitrary permutation w = (w1, . . . , wn) ∈ Sv let w′ ∈ Sv be given by

w′ = (w1, . . . , wk−1, wk+1, wk, wk+2, . . . , wn).

Another direct computation shows that

w
(
h(u, v; t)

)
= −w′

(
h(u, v; t)

)
.

Therefore ∑
w∈Sv

w
(
h(u, v; t)

)
= −

∑
w∈Sv

w
(
h(u, v; t)

)
from which (3.25) follows.

Now that the u-symmetry of the right-hand side of (3.23) has been established the rest is easy.
By (3.21)

RHS(3.23) =
∑
w∈Su

w

(
ui − tuj
ui − uj

) ∑
w∈Sv

w
(
g(u, v; t)

)
=

∑
w∈Su×Sv

w

(
ui − tuj
ui − uj

g(u, v; t)
)

= LHS(3.23)

completing the proof.

Proof of Lemma 3.3. The entries of the determinant may be expanded by

1
(1− xy)(1− txy)

=
∞∑
α=0

[
α+ 1
α

]
t

(xy)α,

17
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where [
N

k

]
q

=
(qN−k+1; q)k

(q; q)k
is a q-binomial coefficient. By multilinearity this gives

det
16i,j6n

(
. . .

)
=

∞∑
α1,...,αn=0

det
16i,j6n

(
yαij
)
xα
[
α+ 1
α

]
t

,

where [
α+ 1
α

]
t

=
n∏
i=1

[
αi + 1
αi

]
t

.

Since the summand vanishes when two (or more) of the summation indices coincide and since the
product of t-binomials is symmetric in α, this may be rewritten as

det
16i,j6n

(
. . .

)
=

∞∑
α1>···>αn>0

∑
w∈Sα

det
16i,j6n

(
y
αwi
j

)
xw(α)

[
α+ 1
α

]
t

=
∞∑

α1>···>αn>0

det
16i,j6n

(
yαij
) [α+ 1

α

]
t

∑
w∈Sα

ε(w)xw(α)

=
∞∑

α1>···>αn>0

det
16i,j6n

(
yαij
)

det
16i,j6n

(
xαij
) [α+ 1

α

]
t

where ε(w) in the second line denotes the signature of the permutation w.
Setting αi = λi + n− i+ 1 and using (2.9) this becomes

det
16i,j6n

(
. . .

)
= ∆(x)∆(y)

∑
λ

sλ(x)sλ(y)
n∏
i=1

[
λi + n− i+ 1
λi + n− i

]
t

.

Recalling that m = n we have
n∏
i=1

[
λi + n− i+ 1
λi + n− i

]
t

=
gλ(t; t, t)
(1− t)n

so that ∑
λ

gλ(t; t, t)sλ(x)sλ(y) = (1− t)n det
16i,j6n

(
. . .

)
1

∆(x)∆(y)
.

By (2.8) the left-hand side may be recognised as the left-hand side of (3.2) for m = n, q = t and
u = t. Hence it may be replaced by the corresponding right-hand side, leading to

F (t;x, y; t) = (1− t)n det
16i,j6n

(
. . .

)∏n
i,j=1(1− xiyj)
∆(x)∆(y)

as claimed by the lemma.

4. An identity for q, t-Littlewood–Richardson coefficients

In our proof of the sl3 q-binomial theorem (1.4) we require the following identity for the q, t-
Littlewood–Richardson coefficients.

Theorem 4.1. Given integers 0 6 m 6 n, let λ and µ be partitions such that l(λ) 6 m and

18
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l(µ) 6 n. Then∑
ω,ν

tn(ν)−|ω|fλων(q, t)Vν,0(u, 1; q, t)u(n−m)
0 (Pµ/ω)

(qtm−n−1; q, t)ν
c′ν(q, t)

= tn(λ)−m|µ|Vλµ(u, 1; q, t)u(n)
0 (Pµ)

(qtm−1; q, t)λ
c′λ(q, t)

m∏
i=1

n∏
j=1

(qtj−i+m−n−1; q)λi−µj
(qtj−i+m−n; q)λi−µj

.

Since fλων(q, t) = 0 if ω 6⊆ λ and Pµ/ω = 0 if ω 6⊆ µ we may add the restrictions ω ⊆ λ and ω ⊆ µ
to the sum over ω. It may in fact also be shown that the summand on the left vanishes unless

λi > µi+n−m for 1 6 i 6 m. (4.1)

In other words, if µ∗ is the partition formed by the last m parts of µ (i.e., µ∗ = (µn−m+1, . . . , µn))
then the summand vanishes unless µ∗ ⊆ λ.

To see this we recall from [15, Equation (VI.7.13′)] that

Pµ/ω(x1, . . . , xn−m; q, t) =
∑
T

ψT (q, t)xT ,

where the sum is over all semistandard Young tableaux T of skew shape µ − ω over the alphabet
{1, . . . , n − m}; xT is the monomial defined by T and ψT ∈ F. For the shape µ − ω to have an
admissible filling it must have at most n − m boxes in each of its columns. Hence ωi > µi+n−m
for 1 6 i 6 m. Since we already established that the summand vanishes unless ω ⊆ λ, a necessary
condition for nonvanishing of the summand is thus given by (4.1). Since 1/(q; q)−N = 0 for N a
positive integer, it is easily seen that also the double product on the right-hand side of the theorem
vanishes unless (4.1) holds.

Proof of Theorem 4.1. We start with (3.2) with λ replaced by η and apply the homomorphisms u(m)
λ;z

(acting on x) and u(n)
µ (acting on y). Using the homogeneity (2.7) of the Macdonald polynomials

and recalling (3.16) this leads to∑
η

z|η|bη(q, t)gη(u; q, t)u(m)
λ (Pη)u(n)

µ (Pη)

= Wλµ(u, z; q, t)
m∏
i=1

(ztn+m−i; q)∞
(ztm−i; q)∞

m∏
i=1

n∏
j=1

(ztn+m−i−j ; q)λi+µj
(ztn+m−i−j+1; q)λi+µj

. (4.2)

The summand on the left vanishes unless l(η) 6 m. Assuming such η we may twice use the
symmetry (2.12) to rewrite the left-hand side as

LHS(4.2) =
∑
η

z|η|bη(q, t)gη(u; q, t)
u

(m)
η (Pλ)u(n)

η (Pµ)u(m)
0 (Pη)u

(n)
0 (Pη)

u
(m)
0 (Pλ)u(n)

0 (Pµ)
.

Next we apply (2.22) as well as (2.7) to get

u(n)
η (Pµ) = Pµ(qη1tn−1, . . . , qηmtn−m, tn−m−1, . . . , t, 1; q, t)

=
∑
ω

Pω(qη1tn−1, . . . , qηmtn−m; q, t)u(n−m)
0 (Pµ/ω)

=
∑
ω

t(n−m)|ω|u(m)
η (Pω)u(n−m)

0 (Pµ/ω).
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Thus

LHS(4.2) =
∑
η,ω

z|η|t(n−m)|ω|bη(q, t)gη(u; q, t)
u

(n−m)
0 (Pµ/ω)u(m)

η (Pλ)u(m)
η (Pω)u(m)

0 (Pη)u
(n)
0 (Pη)

u
(m)
0 (Pλ)u(n)

0 (Pµ)
.

Next we use that

u(m)
η (Pλ)u(m)

η (Pω) = u(m)
η (Pλ Pω)

= u(m)
η

(∑
ν

fνωλ(q, t)Pν
)

(by (2.18))

=
∑
ν

fνωλ(q, t)u(m)
η (Pν)

to rewrite this as

LHS(4.2) =
∑
η,ω,ν

z|η|t(n−m)|ω|fνωλ(q, t)bη(q, t)gη(u; q, t)
u

(n−m)
0 (Pµ/ω)u(m)

η (Pν)u(m)
0 (Pη)u

(n)
0 (Pη)

u
(m)
0 (Pλ)u(n)

0 (Pµ)
.

By one more application of (2.12) this becomes

LHS(4.2) =
∑
η,ω,ν

z|η|t(n−m)|ω|fνωλ(q, t)bη(q, t)gη(u; q, t)
u

(n−m)
0 (Pµ/ω)u(m)

ν (Pη)u
(m)
0 (Pν)u(n)

0 (Pη)

u
(m)
0 (Pλ)u(n)

0 (Pµ)
.

As a result of the previous manipulations the sum over η corresponds to∑
η

z|η|bη(q, t)gη(u; q, t)u(m)
ν (Pη)u

(n)
0 (Pη)

= u(m)
ν;z u

(n)
0

(∑
η

bη(q, t)gη(u; q, t)Pη(x; q, t)Pη(y; q, t)
)

= u(m)
ν;z u

(n)
0

(
F (u;x, y; t)

m∏
i=1

n∏
j=1

(txiyj ; q)∞
(xiyj ; q)∞

)
(by (3.2))

= u(m)
ν;z u

(n)
0

(
F (u;x, y; t)

) (ztm−1; q, t)ν
(ztn+m−1; q, t)ν

m∏
i=1

(ztn+m−i; q)∞
(ztm−i; q)∞

= Wν,0(u, z; q, t)
(ztm−1; q, t)ν

(ztn+m−1; q, t)ν

m∏
i=1

(ztn+m−i; q)∞
(ztm−i; q)∞

(by (3.16)).

We thus arrive at

LHS(4.2) =
m∏
i=1

(ztn+m−i; q)∞
(ztm−i; q)∞

×
∑
ω,ν

t(n−m)|ω|fνωλ(q, t)Wν,0(u, z; q, t)
u

(n−m)
0 (Pµ/ω)u(m)

0 (Pν)

u
(n)
0 (Pµ)u(m)

0 (Pλ)

(ztm−1; q, t)ν
(ztn+m−1; q, t)ν

.

Finally equating this with the right-hand side of (4.2) yields

∑
ω,ν

t(n−m)|ω|fνωλ(q, t)Wν,0(u, z; q, t)
u

(n−m)
0 (Pµ/ω)u(m)

0 (Pν)

u
(n)
0 (Pµ)u(m)

0 (Pλ)

(ztm−1; q, t)ν
(ztn+m−1; q, t)ν

= Wλµ(u, z; q, t)
m∏
i=1

n∏
j=1

(ztn+m−i−j ; q)λi+µj
(ztn+m−i−j+1; q)λi+µj

. (4.3)
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Both sides of this identity trivially vanish if l(λ) > m. Furthermore, the summand on the left
vanishes if l(ν) > m. Hence we may without loss of generality assume in the following that l(λ) 6 m
and l(ν) 6 m. (The latter of course refers to a restriction on the summation index.) We may also
assume that the largest part of ν is bounded since fνωλ = 0 if |ω|+ |λ| 6= |ν| and Pµ/ω = 0 if ω 6⊆ µ.
In particular ν1 6 |λ|+ |µ|.

The above considerations imply that λ, ν ⊆ (Nm) for sufficiently large N . Given such N we
can define the partitions λ̂ and µ̂ as the complements of λ and ν with respect to (Nm), i.e.,
λ̂i = N − λm+1−i and ν̂i = N − νm+1−i for 1 6 i 6 m.

We now replace z → q1−m−N/z, λ → λ̂ and ν → ν̂ in (4.3), and then eliminate the hats. For
this we need the easily established

Wλ̂µ(u, q1−m−N/z; q, t) = Vλµ(u, z; q, t)

as well as [25, page 263]

f ν̂
ωλ̂

(q, t) = tn(ν)−n(λ)fλων(q, t)
(qtm−1; q, t)ν
(qtm−1; q, t)λ

c′λ(q, t)
c′ν(q, t)

u
(m)
0 (Pλ)

u
(m)
0 (Pν)

,

[3, Equation (4.1)]
(a; q, t)λ̂
(b; q, t)λ̂

=
( b
a

)|λ| (a; q, t)(Nm)

(b; q, t)(Nm)

(q1−N tm−1/b; q, t)λ
(q1−N tm−1/a; q, t)λ

,

and

u
(m)
0 (Pλ̂) = t(

m
2 )N+(1−m)|λ|u

(m)
0 (Pλ).

This last result follows from [3, Equation (4.3)]

Pλ̂(x; q, t) = (x1 · · ·xm)N Pλ(x−1; q, t)

and the homogeneity (2.7). As a result we arrive at∑
ω,ν

tn(ν)−|ω|fλων(q, t)Vν,0(u, z; q, t)u(n−m)
0 (Pµ/ω)

(qtm−1, zqtm−n−1; q, t)ν
c′ν(q, t) (zqtm−1; q, t)ν

= tn(λ)−m|µ|Vλµ(u, z; q, t)u(n)
0 (Pµ)

(qtm−1; q, t)λ
c′λ(q, t)

m∏
i=1

n∏
j=1

(zqtj−i+m−n−1; q)λi−µj
(zqtj−i+m−n; q)λi−µj

,

where we have also that fλων = 0 if |ω|+ |ν| 6= |λ|, and

(a; q)N−k
(b; q)N−k

=
(a; q)N
(b; q)N

(q1−N/b; q)k
(q1−N/a; q)k

( b
a

)k
.

Finally specializing z = 1 complete the proof.

5. sl3 basic hypergeometric series

Below we will give two different definitions of sl3 basic hypergeometric series, denoted Type I and
Type II respectively. To cover both types at once we introduce the function Vλµ(q, t) which is either
given by

Vλµ(q, t) = Vλµ(1, 1; q, t) Type I

or by

Vλµ(q, t) = q−|λ|Vλµ(tn−m+1, 1; q, t) Type II.
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Note that it follows from (3.17) and (3.8) that for Type I series,

Vλµ(q, t) = u
(m)
λ u(n)

µ

(
ω(x, y; t)

)
.

From (3.18a) and (3.18b) we see that regardless of our choice of Vλµ(q, t)

Vλ,0(q, t) =
m∏
i=1

1− tm−n−i

1− qλitm−n−i
=

(tm−n−1; q, t)λ
(qtm−n−1; q, t)λ

. (5.1)

It is important to observe that Vλµ(q, t) does not merely depend of the partitions λ and µ but
also on the integers m and n. (We tacitly assume that l(λ) 6 m and l(µ) 6 n.) These integers
are mostly assumed to be fixed, but occasionally we will relate series labelled by (m,n) to those
labelled by (m − 1, n − 1). If we write V (m,n)

λµ (q, t) instead of Vλµ(q, t) it follows from Lemma 3.1

that V (m,n)
λµ (q, t) only depends on the difference n−m. Specifically,

V
(m,n)
λµ (q, t) = V

(m−1,n−1)
λµ (q, t) (5.2)

provided of course that l(λ) 6 m− 1 and l(µ) 6 n− 1.
To reduce the length of many of the subsequent formulae we introduce another rational function

Ωλµ(q, t) as

Ωλµ(q, t) = Vλµ(q, t) (qtm−1; q, t)λ
m∏
i=1

n∏
j=1

(qtj−i+m−n−1; q)λi−µj
(qtj−i+m−n; q)λi−µj

, (5.3)

where λ and µ are partitions such that l(λ) 6 m and l(µ) 6 n.
Two easily established results for Ωλµ(q, t) are

Ωλ,0(q, t) = (tm−n−1; q)λ (5.4)

and, displaying the (m,n) dependence,

Ω(m,n)
λµ (q, t) = Ω(m−1,n−1)

λµ (q, t) t|µ|
(tn−1; q, t)µ
(tn; q, t)µ

(5.5)

for l(λ) 6 m− 1 and l(µ) 6 n− 1. Equation (5.4) follows from (5.1) and
m∏
i=1

n∏
j=1

(qtj−i+m−n−1; q)λi−µj
(qtj−i+m−n; q)λi−µj

∣∣∣∣
µ=0

=
(qtm−n−1; q, t)λ
(qtm−1; q, t)λ

,

and (5.5) follows from (5.2) and
m∏
i=1

n∏
j=1

(qtj−i+m−n−1; q)λi−µj
(qtj−i+m−n; q)λi−µj

∣∣∣∣
λm=µn=0

= t|µ|
(qtm−2; q, t)λ
(qtm−1; q, t)λ

(tn−1; q, t)µ
tn; q, t)µ

.

We can now state the main definition of this section.

Definition 5.1 sl3 basic hypergeometric series. Let x = (x1, . . . , xm) and y = (y1, . . . , yn) such
that 0 6 m 6 n. Then

r+1Φr

[
a1, . . . , ar+1

b1, . . . , br
; q, t;x, y

]
=

m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

×
∑
λ,µ

tn(λ)+n(µ) Pλ(x; q, t)
c′λ(q, t)

Pµ(y; q, t)
c′µ(q, t)

(a1, . . . , ar+1; q, t)µ
(b1, . . . , br; q, t)µ

Ωλµ(q, t), (5.6)

where the sum is over partitions λ and µ such that l(λ) 6 m, l(µ) 6 n and

λi > µi−m+n for 1 6 i 6 m. (5.7)
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Remarks.

i) The restrictions on the sum may alternatively be expressed by the inequalities [24, Equation
(2.4)]

λ1 > λ2 > . . . > λm

> > >

µ1 > · · · > µn−m+1 > µn−m+2 > . . . > µn > 0

ii) The prefactor
m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

in the definition has been included to simplify subsequent formulae, and implies that for a1 = 1
the sl3 series simplifies to 1, see Lemma 5.2 below.

iii) The main reason for attaching the label sl3 to the series of Definition 5.1 is the connection
with the sl3 discrete exponential and continous Selberg integrals of Tarasov and Varchenko,
see page 28 for details.
We should also mention that we are currently developing a theory of sln basic hypergeometric
series [26]. In such series, a Macdonald polynomial is attached to each vertex of the sln Dynkin
diagram, and the corresponding sln q-binomial theorem may be expressed concisely in terms
of the data of the undelying Lie algebra.

iv) Finally we remark that nearly all our results involve non-terminating sl3 series. To ensure
convergence we implicitly assume that

max{|q|, |t|, |x1|, . . . , |xm|, |y1|, . . . , |yn|} < 1

whenever necessary.

Our most important results for sl3 basic hypergeometric series are two generalizations of the
q-binomial theorem. First however, we state several elementary properties of the series. In all of the
results below the parameters a1, . . . , ar+1 and b1, . . . , br act as dummies, and to shorten some of the
equations we abbreviate these sequences by A and B respectively.

Lemma 5.1. We have

r+1Φr

[
A

B
; q, t;x, (0n)

]
= 1.

Proof of Lemma 5.1. Since Pµ((0n); q, t) = δµ,0 we get

r+1Φr

[
A

B
; q, t;x, (0n)

]
=

m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

∑
λ

tn(λ)Pλ(x; q, t)
c′λ(q, t)

Ωλ,0(q, t).

Thanks to (5.4) this is

r+1Φr

[
A

B
; q, t;x, (0n)

]
= 1Φ0

[
tm−n−1

–
; q, t;x

] m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

,

where on the right we have used definition (2.23) of the sl2 Kaneko–Macdonald series. Summing
the 1Φ0 series by the q-binomial theorem (2.24) results in the claim of the lemma.

Lemma 5.2. We have

r+1Φr

[
1, a2, . . . , ar+1

b1, . . . , br
; q, t;x, y

]
= 1.
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Proof of Lemma 5.2. When a1 = 1 the summand vanishes unless µ = 0. The proof is thus a repeat
of the proof of Lemma 5.1.

The next two lemmas relate sl3 series with labels (n,m) and (n− 1,m− 1). Recall the notation
introduced in Section 3.

Lemma 5.3 (Stability 1). With u
(n)
0;z acting on y and u

(n−1)
0;tz acting on y(n), we have

u
(n)
0;z

(
r+1Φr

[
A

B
; q, t; (x(m), 0), y

])
= u

(n−1)
0;tz

(
r+1Φr

[
A

B
; q, t;x(m), y(n)

])
.

Lemma 5.4 (Stability 2). We have

r+1Φr

[
A

B
; q, t, (x(m), 0), (y(n), 0)

]
= r+2Φr+1

[
tn−1, A

tn, B
; q, t;x(m), ty(n)

]
.

Iterating the two types of stability leads to

u
(n)
0;z

(
r+1Φr

[
A

B
; q, t; (0m), y

])
= u

(n−m)
0;tmz

(
r+1Φr

[
A

B
; q, t; y(n−m+1,...,n)

])
and

r+1Φr

[
A

B
; q, t; (0m), (y(n−m+1,...,n), 0m)

]
= r+2Φr+1

[
tn−m, A

tn, B
; q, t; tmy(n−m+1,...,n)

]
.

Note that both right-hand sides involve the sl2 Kaneko–Macdonald series.

Proof of Lemmas 5.3 and 5.4. Because we are comparing series for different (m,n) values we write
Ω(m,n)
λµ instead of Ωλµ.

If xm = 0 only partitions of length strictly less than m contribute to the sum over λ. But if
λm = 0 then the inequality 0 6 µn 6 λm implies that also µn = 0. Hence we may use (5.5) and the
homogeneity of the Macdonald polynomials to obtain

r+1Φr

[
A

B
; q, t; (x(m), 0), y

]
=

m−1∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

×
∑
λ,µ

tn(λ)+n(µ)Pλ(x(m); q, t)
c′λ(q, t)

Pµ(ty; q, t)
c′µ(q, t)

(tn−1, A; q, t)µ
(tn, B; q, t)µ

Ω(m−1,n−1)
λµ (q, t),

where the sum is over partitions λ and µ such that l(λ) 6 m− 1, l(µ) 6 n− 1 and

λi > µi−m+n for 1 6 i 6 m− 1.

All terms on the right-hand side depend on n − 1 and m − 1 except for Pµ(ty; q, t), since y =
(y1, . . . , yn). We can either make the obvious choice yn = 0 and use the stability of the Macdonald
polynomial: Pµ(t(y(n), 0); q, t) = Pµ(ty(n); q, t) to obtain Lemma 5.4, or we can specialize y. In the
latter case we may use that for l(µ) 6 n− 1

u
(n)
0;z

(
Pµ(y; q, t)

)
= u

(n−1)
0;z

(
Pµ(y(n); q, t)

) (tn; q, t)µ
(tn−1; q, t)µ

(5.8)

as follows from (2.11). Therefore

u
(n)
0;z

(
r+1Φr

[
A

B
; q, t; (x(m), 0), y

])
=

m−1∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

×
∑
λ,µ

tn(λ)+n(µ)Pλ(x(m); q, t)
c′λ(q, t)

u0;tz

(
Pµ(y(n−1); q, t)

)
c′µ(q, t)

(A; q, t)µ
(B; q, t)µ

Ω(m−1,n−1)
λµ (q, t),
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in accordance with the right-hand side of Lemma 5.3.

Our next result implies all previous four lemmas, but unlike the latter it is not elementary,
requiring Theorem 4.1 for its proof.

Proposition 5.1. Fix σ as

σ =

{
0 for Type I

1 for Type II
(5.9)

and let X = (X1, . . . , Xn) be given by

Xi =

{
q−σt−1xi for 1 6 i 6 m

tn−i for m+ 1 6 i 6 n.

Then

r+1Φr

[
A

B
; q, t;x, y

]
=
∑
µ

tn(µ)+m|µ| Pµ(y; q, t)Pµ(X; q, t)

c′µ(q, t)u(n)
0 (Pµ)

(A; q, t)µ
(B; q, t)µ

. (5.10)

Note that by taking y = (0n) or a1 = 1 the summand vanishes unless µ = 0 leading to Lemmas 5.1
and 5.2. Also the Lemmas 5.3 and 5.4 immediately follow from the proposition be it that the latter
also requires (5.8). For example, applying u(n)

0;z acting on y to (5.10) yields

u
(n)
0;z

(
r+1Φr

[
A

B
; q, t;x, y

])
=
∑
µ

z|µ|tn(µ)+m|µ| Pµ(X; q, t)
c′µ(q, t)

(A; q, t)µ
(B; q, t)µ

.

Not only does this make Lemma 5.3 obvious but it in fact implies the following more general (and
more important) result.

Corollary 5.1. With the same notation as Proposition 5.1 we have

u
(n)
0;z

(
r+1Φr

[
A

B
; q, t;x, y

])
= r+1Φr

[
A

B
; q, t; ztmX

]
. (5.11)

Note that on the right we have the sl2 Kaneko–Macdonald series.
There is another important corollary of Proposition 5.1. If we take m = n then

Pµ(X; q, t) = q−σ|µ|t−|µ|Pµ(x; q, t).

Hence for m = n the series (5.10) is invariant under the interchange of x and y.

Corollary 5.2. For m = n, i.e., x = (x1, . . . , xn) and y = (y1, . . . , yn), there holds

r+1Φr

[
A

B
; q, t;x, y

]
= r+1Φr

[
A

B
; q, t; y, x

]
.

Using the above two corollaries it is straightforward to prove several q-binomial theorems for sl3
series. First however we shall prove Proposition 5.1.

Proof of Proposition 5.1. Recalling definition (5.3) and using (5.1), Theorem 4.1 may be rewritten
as

Ωλµ(q, t) =
∑
ω,ν

tn(ν)−n(λ)+m|µ|−|ω|fλων(q, t) c′λ(q, t)

× Vν,0(u, 1; q, t)
Vν,0(q, t)

Vλµ(q, t)
Vλµ(u, 1; q, t)

u
(n−m)
0 (Pµ/ω)

u
(n)
0 (Pµ)

(tm−n−1; q, t)ν
c′ν(q, t)

.
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Taking u = 1 or u = tn−m+1, so that

Vν,0(u, 1; q, t)
Vν,0(q, t)

Vλµ(q, t)
Vλµ(u, 1; q, t)

→ q−σ(|λ|−|ν|),

and using that fλων = 0 if |ω|+ |ν| 6= |λ| we obtain

Ωλµ(q, t) =
∑
ω,ν

tn(ν)−n(λ)+m|µ|−|ω|q−σ|ω|fλων(q, t) c′λ(q, t)
u

(n−m)
0 (Pµ/ω)

u
(n)
0 (Pµ)

(tm−n−1; q, t)ν
c′ν(q, t)

.

Substituting this in the definition (5.6) of the sl3 basic hypergeometric series leads to

r+1Φr

[
A

B
; q, t;x, y

]
=

m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

×
∑

λ,µ,ν,ω

tn(µ)+n(ν)+m|µ|−|ω|q−σ|ω|
Pµ(y; q, t)
c′µ(q, t)

(A; q, t)µ
(B; q, t)µ

u
(n−m)
0 (Pµ/ω)

u
(n)
0 (Pµ)

× (tm−n−1; q, t)ν
c′ν(q, t)

fλων(q, t)Pλ(x; q, t).

Now performing the sum over λ by (2.18) yields

r+1Φr

[
A

B
; q, t;x, y

]
=

m∏
i=1

(xi; q)∞
(xitm−n−1; q)∞

×
∑
µ,ν,ω

tn(µ)+n(ν)+m|µ|−|ω|q−σ|ω|
Pµ(y; q, t)
c′µ(q, t)

(A; q, t)µ
(B; q, t)µ

u
(n−m)
0 (Pµ/ω)

u
(n)
0 (Pµ)

× (tm−n−1; q, t)ν
c′ν(q, t)

Pν(x; q, t)Pω(x; q, t).

The next simplification arises by noting that the sum over ν corresponds to a summable sl2 Kaneko–
Macdonald series:

1Φ0

[
qtm−n−1

–
; q, t;x

]
=

m∏
i=1

(xitm−n−1; q)∞
(xi; q)∞

by (2.23) and (2.24). Hence

r+1Φr

[
A

B
; q, t;x, y

]
=
∑
µ,ω

tn(µ)+m|µ|−|ω|q−σ|ω|
Pµ(y; q, t)
c′µ(q, t)

(A; q, t)µ
(B; q, t)µ

u
(n−m)
0 (Pµ/ω)

u
(n)
0 (Pµ)

Pω(x; q, t).

Next we use the homogeneity (2.7) of Pω, the definition (2.10) of the principal specialization u(n−m)
0

and the definition (2.22) of the skew Macdonald polynomials to perform the sum over ω;∑
ω

(qσt)−|ω|u(n−m)
0 (Pµ/ω)Pω(x; q, t) =

∑
ω

u
(n−m)
0 (Pµ/ω)Pω(q−σt−1x; q, t)

= Pµ(X; q, t),

where X = (q−σt−1x, tn−m−1, . . . , t, 1). The resulting identity is (5.10).

From Corollary 5.1 it is clear that whenever an sl2 series is summable this implies a corresponding
sum for sl3 series. The most obvious choice is to set r = 0 in Corollary 5.1 so that the right-hand
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side of (5.11) may be summed by the Kaneko–Macdonald q-binomial theorem (2.24). Hence

u
(n)
0;z

(
1Φ0

[
a

–
; q, t;x, y

])
=

n∏
i=1

(aztmXi; q)∞
(ztmXi; q)∞

=
m∏
i=1

(azq−σtm−1xi; q)∞
(zq−σtm−1xi; q)∞

n∏
i=m+1

(aztm+n−i; q)∞
(ztm+n−i; q)∞

.

Theorem 5.1 (First sl3 q-binomial theorem). For x = (x1, . . . , xm) and y = z(1, t, . . . , tn−1) we
have

1Φ0

[
a

–
; q, t;x, y

]
=

m∏
i=1

(aztm−1xi; q)∞
(ztm−1xi; q)∞

n−m∏
i=1

(aztn−i; q)∞
(ztn−i; q)∞

for the sl3 series of Type I, and

1Φ0

[
a

–
; q, t;x, y

]
=

m∏
i=1

(azq−1tm−1xi; q)∞
(zq−1tm−1xi; q)∞

n−m∏
i=1

(aztn−i; q)∞
(ztn−i; q)∞

for the sl3 series of Type II.

If we assume m = n then we may first invoke the symmetry of Corollary 5.2 to find a second
pair of q-binomial theorems.

Theorem 5.2 (Second sl3 q-binomial theorem). For x = z(1, t, . . . , tn−1) and y = (y1, . . . , yn) we
have

1Φ0

[
a

–
; q, t;x, y

]
=

n∏
i=1

(aztn−1yi; q)∞
(ztn−1yi; q)∞

for the sl3 series of type I, and

1Φ0

[
a

–
; q, t;x, y

]
=

m∏
i=1

(azq−1tn−1yi; q)∞
(zq−1tn−1yi; q)∞

for the sl3 series of type II.

Using further results for sl2 Kaneko–Macdonald series many more identities for sl3 series may
be proved, such as q-Gauss sums, q-Saalschütz sums, etc. Below we restrict ourselves to just one
further applications in the form of an sl3 analogue of Heine’s q-Euler transformation.

Proposition 5.2. Let σ be fixed as in (5.9), and let x = (x1, . . . , xm) and y = z(1, t, . . . , tn−1).
Then

2Φ1

[
a, b

c
; q, t;x, y

]
= 2Φ1

[
c/a, c/b

c
; q, t;x, aby/c

] m∏
i=1

(abzq−σtm−1xi/c; q)∞
(zq−σtm−1xi; q)∞

n−m∏
i=1

(abztn−i/c; q)∞
(ztn−i; q)∞

.

For b = c the 2Φ1 on the right is 1 by Lemma 5.2 and we recover the q-binomial theorem of
Theorem 5.1.

Proof of Proposition 5.2. According to (5.1)

u
(n)
0;z

(
2Φ1

[
a, b

c
; q, t;x, y

])
= 2Φ1

[
a, b

c
; q, t; ztmX

]
.

In [3, Proposition 3.1] Baker and Forrester proved that

2Φ1

[
a, b

c
; q, t;x

]
= 2Φ1

[
c/a, c/b

c
; q, t;

abx

c

] n∏
i=1

(abxi/c; q)∞
(xi; q)∞
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so that we get

u
(n)
0;z

(
2Φ1

[
a, b

c
; q, t;x, y

])
= 2Φ1

[
c/a, c/b

c
; q, t;

abztmX

c

] n∏
i=1

(abztmXi/c; q)∞
(ztmXi; q)∞

.

Again using (5.11) gives

u
(n)
0;z

(
2Φ1

[
a, b

c
; q, t;x, y

])
= u

(n)
0;abz/c

(
2Φ1

[
c/a, c/b

c
; q, t;x, y

]) n∏
i=1

(abztmXi/c; q)∞
(ztmXi; q)∞

.

Eliminating Xi completes the proof.

Theorem 5.1 may be viewed as a q, t, x-analogue of a result of Tarasov and Varchenko, stated in
[24, Theorem 2.3] as a sl3 discrete exponential Selberg integral. To obtain the Tarasov–Varchenko
result we take t = qγ and a = qβ+γ(n−1) in the theorem, and let q tend to 1−. A standard computation
using (2.4) and (2.11) then leads to∑

λ,µ

z|µ|vλµ(γ)
P

(1/γ)
λ (x)

P
(1/γ)
λ (1m)

n∏
i=1

Γ(β + µ̃i)
Γ(1 + µ̃i)

m∏
i=1

n∏
j=1

Γ(1− γ + λ̃i − µ̃j)
Γ(1 + λ̃i − µ̃j)

(5.12)

×
∏

16i<j6n

(µ̃i − µ̃j)Γ(γ + µ̃i − µ̃j)
Γ(1− γ + µ̃i − µ̃j)

∏
16i<j6m

(λ̃i − λ̃j)Γ(γ + λ̃i − λ̃j)
Γ(1− γ + λ̃i − λ̃j)

= (1− z)−(β+(n−1)γ)(n−m)
m∏
i=1

(1− zxi)−β−γ(n−1)(1− xi)−γ(m−n−1)

×
n∏
i=1

Γ(iγ)Γ(β + γ(i− 1))
Γ(γ)

m∏
i=1

Γ(iγ)Γ(1 + γ(i− n− 1))
Γ(γ)

.

Here

λ̃i = λi + γ(m− i) and µ̃i = µi + γ(n− i),

P
(α)
λ (x) is the Jack polynomial:

P
(α)
λ (x) = lim

t→1
Pλ(x; tα, t)

and

vλµ(γ) = lim
q→1

Vλµ(q, qγ)

=
∑
I⊆[m]

(−1)|I|
∏
i∈I
j∈Ī

λ̃j − λ̃i + γ

λ̃j − λ̃i

∏
i∈I

n∏
j=1

λ̃i − µ̃j
λ̃i − µ̃j − γ

.

Taking x = (wm) and using the homogeneity of the Jack polynomials (so that P (1/γ)
µ (wm) =

w|µ|P
(1/γ)
µ (1m)) results in the Tarasov–Varchenko identity. To make the correspondence exact we

need to recall the difference in normalization exhibited in (3.14), and the fact that
m∏
i=1

Γ(1 + γ(i− n− 1)) =
(−γ)mn!
(n−m)!

m∏
i=1

Γ(γ(i− n− 1)).

It is interesting to note that Tarasov and Varchenko obtained the x = (wm) instance of the series
(5.12) as the coordinate function of the hypergeometric solution of the sl3 dynamical differential
equation of [23] with values in the weight subspace Lλ[λ − nα1 − mα2], λ ∈ CΛ1. Here Lλ is
an irreducible sl3 highest weight module of weight λ, and αi and Λi (i = 1, 2) are the roots and
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fundamental weights of sl3. The existence of identities such as (5.12) (with x = (wm)) and their
associated integral evaluations was anticipated by Mukhin and Varchenko who formulated a very
general conjecture regarding g type Selberg integrals being expressible in terms of products of
gamma functions [21, Conjecture 1].

By a standard limiting procedure the sum (5.12) (with x = (wm) may be transformed into an
integral, leading to the sl3 exponential Selberg integral of [24, Theorem 3.1]. More generally, if we
first transform Theorem 5.1 into a q-integral and then take the q → 1− limit we get a more general
sl3 Selberg integral, not contained in [24]. More precisely, we take Theorem 5.1 (for Type I series)
and apply the homomorphism u

(m)
ν;w acting on x. Thanks to (2.12) and (2.14) this yields

∑
λ,µ

w|λ|z|µ|tn(λ)+n(µ) u
(n)
λ (Pν) (a; q, t)µ Ωλµ(q, t)

u
(n)
0 (Pλ)
c′λ(q, t)

u0(Pµ)
c′µ(q, t)

= u
(n)
0 (Pν)

m∏
i=1

(awzt2m−i−1qνi ; q)∞
(zt2m−i−1wqνi ; q)∞

(wt2m−n−i−1qνi ; q)∞
(wtm−iqνi ; q)∞

n−m∏
i=1

(aztn−i; q)∞
(ztn−i; q)∞

.

Next we replace (a,w, z, t) → (q(n−1)γ+α, qβ1 , qβ2−mγ , qγ) and use the definition of the q-gamma
function to interpret this as an (m+ n)-dimensional q-integral. Taking the limit q → 1 then yields
a sl3 Selberg integral involving Jack polynomial. The precise details of this essentially elementary
calculation will be given in a future paper in which more general Selberg-type integrals will be
considered.

To give the exact form of the integral we need to borrow some notation from [24]. Let M be a
map

M : {1, . . . ,m} → {1, . . . , n}
such that

M(i) 6 M(i+ 1)

and

1 6 M(i) 6 n−m+ i.

It is easily seen that there are exactly

n−m+ 1
n+ 1

(
m+ n

m

)
admissible maps M .

Let Dm,n[0, 1] ⊆ [0, 1]m+n be defined as the set of points

P = (x1, . . . , xm, y1, . . . , yn)

such that
0 6 x1 6 x2 6 . . . 6 xm

6 6 6

0 6 y1 6 · · · 6 yn−m+1 6 yn−m+2 6 . . . 6 yn.

(5.13)

The x as well as the y coordinates P ∈ Dm,n[0, 1] are totally ordered, but only a partial order exists
between the xi and the yj . We now write Dm,n[0, 1] as a chain:

Dm,n[0, 1] =
∑
M

Dm,n
M [0, 1],

where Dm,n
M [0, 1] ⊆ Dm,n[0, 1] is defined by points P endowed with a total ordering among its
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coordinates, by supplementing (5.13) with

yM(i)−1 6 xi 6 yMs(i) for 1 6 i 6 m,

where y0 := 0. We further define the chain

Cm,nγ [0, 1] =
∑
M

Fm,nM (γ)Dm,n
M [0, 1], (5.14)

where

Fm,nM (γ) =
m∏
i=1

sin
(
π(i+ n−m−M(i) + 1)γ

)
sin
(
π(i+ n−m)γ

) .

Up to a trivial transformation (corresponding to the variable change (5.15)) the above chains coin-
cide with those of [24].

Finally introducing the Pochhammer symbol

(a)N = a(a+ 1) · · · (a+N − 1)

and recalling the definition (3.15) we are in a position to state the integral analogue of Theorem 5.1.

Corollary 5.3 (sl3 Selberg integral). Let ν be a partition of at most m parts. Then∫
Cm,nγ [0,1]

P (1/γ)
ν (x)h(x, y)

m∏
i=1

xβ1−1
i

n∏
i=1

(1− yi)α−1yβ2−1
i |∆(x)|2γ |∆(y)|2γ

m∏
i=1

n∏
j=1

|xi − yj |−γ dx dy

=
∏

16i<j6m

((j − i+ 1)γ)νi−νj
((j − i)γ)νi−νj

n∏
i=1

Γ(α+ (i− 1)γ)Γ(iγ)
Γ(γ)

n−m∏
i=1

Γ(β2 + (i− 1)γ)
Γ(α+ β2 + (i+ n− 2)γ)

×
m∏
i=1

Γ(β1 + (m− i)γ + νi)Γ(β1 + β2 + (m− i− 1)γ + νi)Γ((i− n− 1)γ)Γ(iγ)
Γ(β1 + (2m− n− i− 1)γ + νi)Γ(α+ β1 + β2 + (m+ n− i− 2)γ + νi)Γ(γ)

,

where

Re(α) > 0, Re(β1) > 0, Re(β2) > 0

−min
{ 1
n
,
Re(α)
n− 1

,
Re(β1)
m− 1

,
Re(β2)

n−m− 1
,
Re(β1 + β2)
m− 2

}
< Re(γ) < 0.

The conditions on α, β1, β2 and γ (which are only sharp when ν = 0) are valid for generic n and
m and need small modifications when m = 0, 1 or m = n. The conditions are correct for n = 1,
m = 2 or n = m + 1 provided 1/0 is interpreted as +∞. Conditions that are sharp follow by
demanding that the arguments of gamma functions appearing in the numerator on the right have
positive real part. We also note that without loss of generality one may assume that ν has at most
m− 1 parts, since

P(ν1,...,νm)(x) = (x1 · · ·xm)νnP(ν1−νm,...,νm−1−νm,0)(x)
so that νn may be eliminated by a rescaling of β1.

For m = 0 Corollary 5.3 is the Selberg integral (1.3) up to some trivial changes. Indeed for
m = 0 we get, after replacing β2 by β,∫

06y16···6yn61

|∆(y)|2γ
n∏
i=1

(1− yi)α−1yβ−1
i dy =

n∏
i=1

Γ(α+ (i− 1)γ)Γ(β + (i− 1)γ)Γ(iγ)
Γ(α+ β + (i+ n− 2)γ)Γ(γ)

.

Since the integrand is symmetric in y and
n∏
i=1

Γ(iγ)
Γ(γ)

=
1
n!

n∏
i=1

Γ(iγ + 1)
Γ(γ + 1)

,
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this yields (1.3) with α and β interchanged. (Alternatively one may replace yi → 1 − yi for all
1 6 i 6 m instead of replacing α↔ β.)

When ν = 0 all reference to the Jack polynomial P 1/γ
ν (x) disappears from Corollary 5.3 and

we obtain the Tarasov–Varchenko integral (1.5). To make the connection with the integral of [24]
precise one needs to replace

xi → 1− si, yi → 1− ti, (5.15)
n→ k1, m→ k2,

α→ α+ 1, β1 ↔ β2

and observe that

h(1− s, 1− t) = (−1)k2 h̃k1,k2,k2(t; s)
k1∏
i=1

t−1
i ,

where h̃l1,l2,m(t; s) is the function defined in Section 5 of [24]. Then correcting a factor (−1)k2 missing
in [24] one obtains the integral

J̃k1,k2,k2(α, β1, β2, γ)

given by the final two equations of that paper.

For ν = (1r) the Jack polynomial simplifies to the elementary symmetric function:

P(1r)(x) = er(x) =
∑

16i1<i2<···<ir6m
xi1 · · ·xir

and Corollary 5.3 yields an sl3 version of Aomoto’s integral [2].

Corollary 5.4. For 0 6 r 6 m∫
Cm,nγ [0,1]

er(x)h(x, y)
m∏
i=1

xβ1−1
i

n∏
i=1

(1− yi)α−1yβ2−1
i |∆(x)|2γ |∆(y)|2γ

m∏
i=1

n∏
j=1

|xi − yj |−γ dx dy

=
(
m

r

) n∏
i=1

Γ(α+ (i− 1)γ)Γ(iγ)
Γ(γ)

n−m∏
i=1

Γ(β2 + (i− 1)γ)
Γ(α+ β2 + (i+ n− 2)γ)

×
m∏
i=1

(
Γ(β1 + (m− i)γ + χ(i 6 r))

Γ(β1 + (2m− n− i− 1)γ + χ(i 6 r))

× Γ(β1 + β2 + (m− i− 1)γ + χ(i 6 r))Γ((i− n− 1)γ)Γ(iγ)
Γ(α+ β1 + β2 + (m+ n− i− 2)γ + χ(i 6 r))Γ(γ)

)
,

where

Re(α) > 0, Re(β1) > 0, Re(β2) > 0

−min
{ 1
n
,
Re(α)
n− 1

,
Re(β1)
m− 1

,
Re(β2)

n−m− 1
,
Re(β1 + β2)
m− 2

}
< Re(γ) < 0

and χ(true) = 1, χ(false) = 0.

The comments made immediately after Corollary 5.3 still apply.
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