Interaction between habitat quality and an Allee-like effect in metapopulations

Phil Pollett

Department of Mathematics The University of Queensland http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

The Allee Effect

alley al'i, (English) noun: a passage; a narrow lane.

alley *al'i*, (English) noun: a passage; a narrow lane. allée *a-l*ā, (French) noun: an avenue, walk or garden path. alley *al'i*, (English) noun: a passage; a narrow lane. allée *a-lā*, (French) noun: an avenue, walk or garden path. Allee, Warder Clyde (1885-1955): US zoologist / ecologist. alley al'i, (English) noun: a passage; a narrow lane.

- allée a-lā, (French) noun: an avenue, walk or garden path.
- Allee, Warder Clyde (1885-1955): US zoologist / ecologist.

Allee Effect: The population growth rate is

- negative for small population density
- positive for moderate population density
- negative for densities above carrying capacity

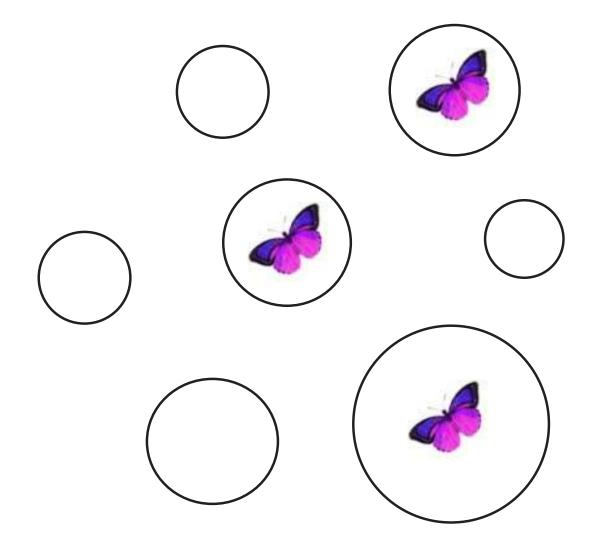
alley *al'i*, (English) noun: a passage; a narrow lane.
allée *a-lā*, (French) noun: an avenue, walk or garden path.
Allee, Warder Clyde (1885-1955): US zoologist / ecologist.
Allee Effect: The population growth rate is
negative for small population density (0 < x < A)

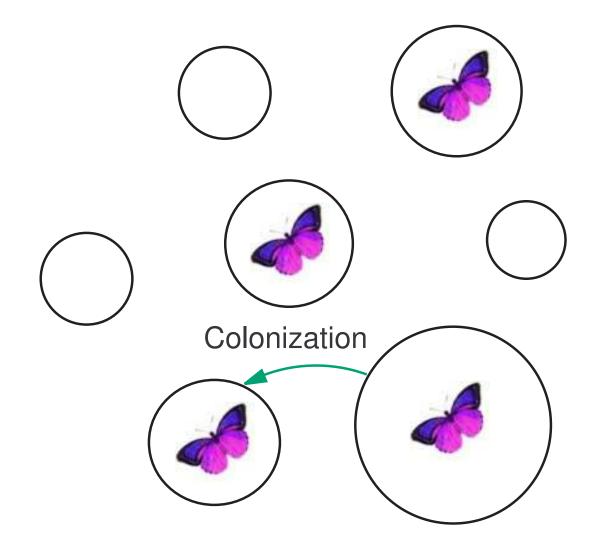
- positive for moderate population density (A < x < K)
- negative for densities above carrying capacity (x > K)

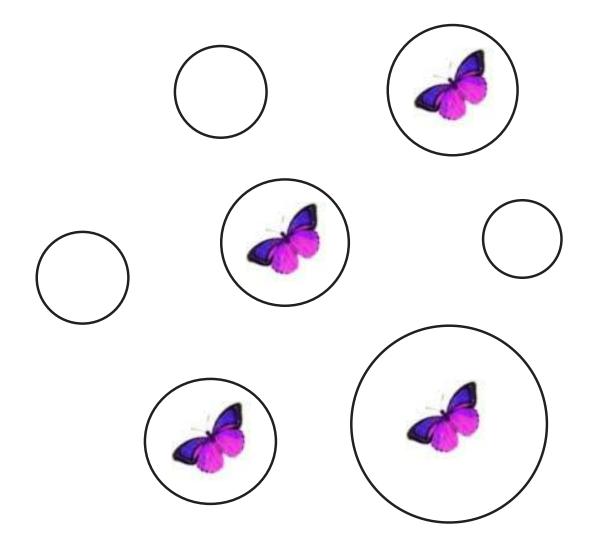
... as exemplified by the simple model

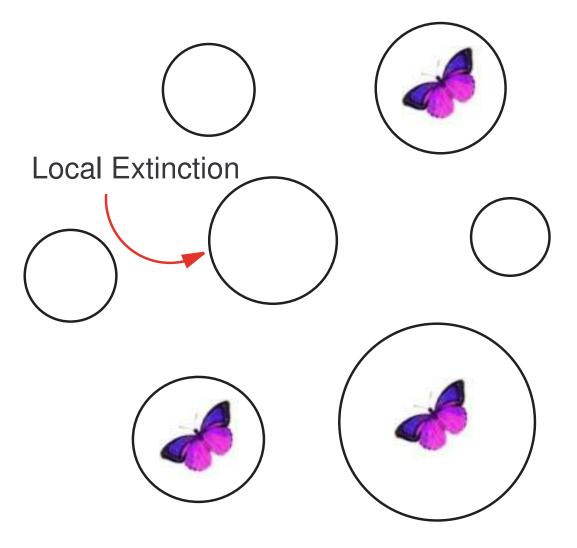
$$\frac{dx}{dt} = rx\left(\frac{x}{A} - 1\right)\left(1 - \frac{x}{K}\right)$$

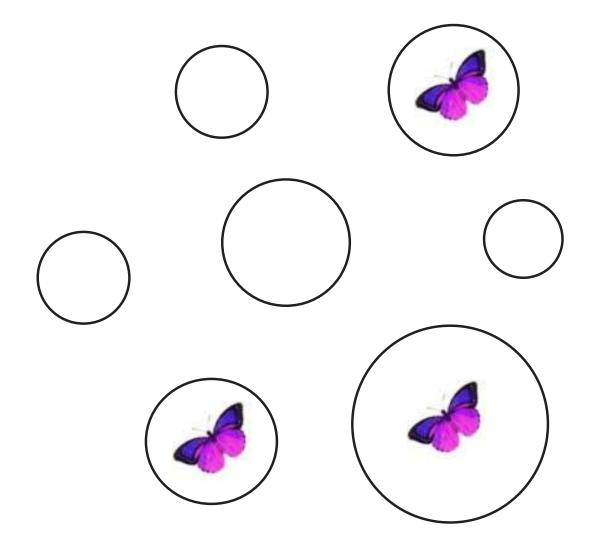
Ross McVinish Department of Mathematics University of Queensland

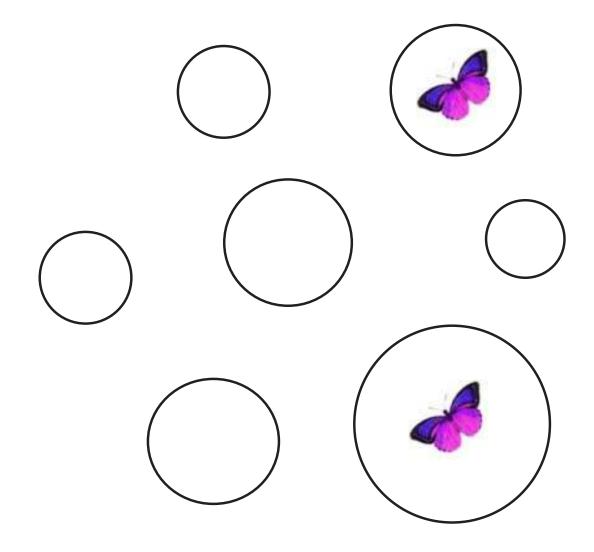


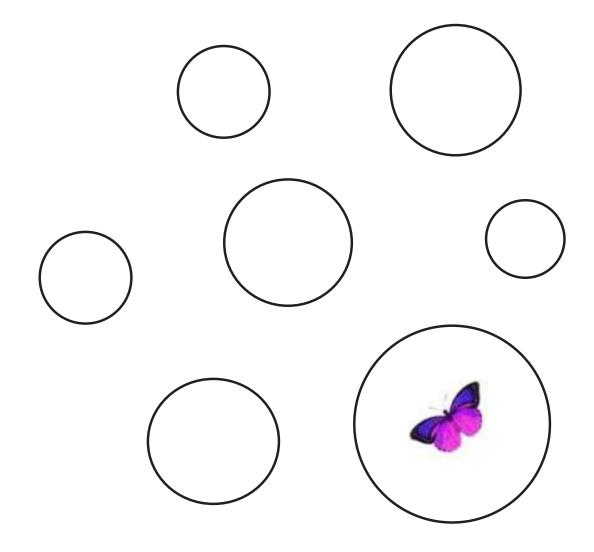


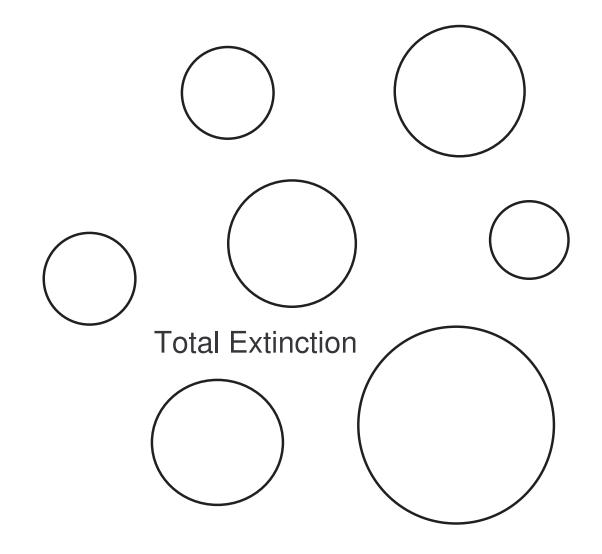


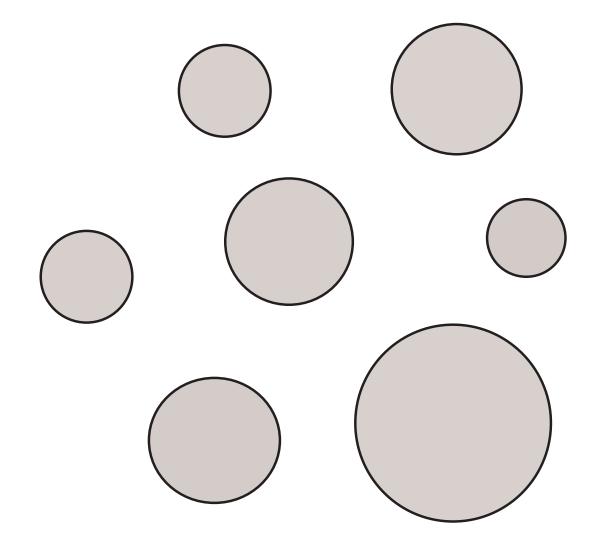


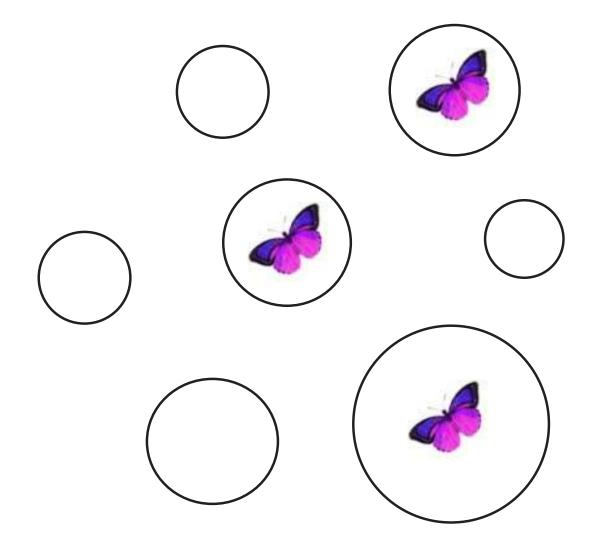












Suppose that there are n patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

Suppose that there are *n* patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

For each *n*, $(X_t^{(n)}, t = 0, 1, ...)$ is assumed to be a Markov chain.

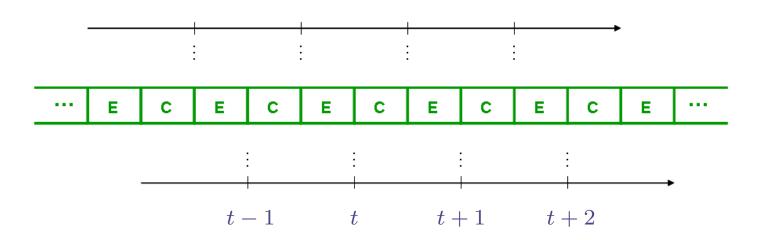
Suppose that there are *n* patches.

Let $X_t^{(n)} = (X_{1,t}^{(n)}, \dots, X_{n,t}^{(n)})$, where $X_{i,t}^{(n)}$ is a binary variable indicating whether or not patch *i* is occupied.

For each *n*, $(X_t^{(n)}, t = 0, 1, ...)$ is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive phases.

Colonization and extinction happen in distinct, successive phases.



We will we assume that the population is *observed after successive extinction phases* (CE Model).

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $f(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $f: [0,1] \rightarrow [0,1]$ is continuous and increasing with f(0) = 0and f'(0) > 0. Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $f(n^{-1}\sum_{i=1}^{n} X_{i,t}^{(n)})$, where $f: [0,1] \rightarrow [0,1]$ is continuous and increasing with f(0) = 0and f'(0) > 0.

Extinction: occupied patch *i* remains occupied independently with probability s_i (fixed or random).

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, f\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, f\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, f\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, f\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\left(X_{i,t}^{(n)} + Bin\left(1 - X_{i,t}^{(n)}, f\left(\frac{1}{n}\sum_{j=1}^{n} X_{j,t}^{(n)}\right)\right), s_i\right)$$

We have a *Chain Bernoulli* structure:

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\Big(X_{i,t}^{(n)} + Bin\Big(1 - X_{i,t}^{(n)}, f(\bar{X}_{t}^{(n)})\Big), s_i\Big),$$

where $\bar{X}_{t}^{(n)} = \frac{1}{n} \sum_{j=1}^{n} X_{j,t}^{(n)}.$

We have a *Chain Bernoulli* structure:

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\Big(X_{i,t}^{(n)} + Bin\Big(1 - X_{i,t}^{(n)}, f(\bar{X}_t^{(n)})\Big), s_i\Big),$$

where $\bar{X}_t^{(n)} = \frac{1}{n} \sum_{j=1}^n X_{j,t}^{(n)}$.

Clearly, then, $X_{i,t+1}^{(n)}$ has the same distribution as the sum of two Bernoulli random variables:

$$X_{i,t+1}^{(n)} \stackrel{d}{=} Bin\Big(X_{i,t}^{(n)}, s_i\Big) + Bin\Big(1 - X_{i,t}^{(n)}, s_i f\left(\bar{X}_t^{(n)}\right)\Big).$$

(This is Equation (2) of our paper.)

If (i) the survival probabilities (s_i) are iid with distribution σ (which we call the *survival distribution*) and (ii) given the (s_i) , the initial occupancies are independent with $\Pr(X_{i,0}^{(n)} = 1|s_i) = p(s_i)$ for some function p, then (Theorem 1 of our paper)

$$rac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} \stackrel{p}{
ightarrow} l_t$$
 as $n
ightarrow\infty$,

where l_t is non-random.

If (i) the survival probabilities (s_i) are iid with distribution σ (which we call the *survival distribution*) and (ii) given the (s_i) , the initial occupancies are independent with $\Pr(X_{i,0}^{(n)} = 1|s_i) = p(s_i)$ for some function p, then (Theorem 1 of our paper)

$$rac{1}{n}\sum_{i=1}^n s^k_i X^{(n)}_{i,t} \ o p_t_t(k)$$
 as $n o\infty$,

for all k = 0, 1, ..., where $l_t(k)$ is non-random.

If (i) the survival probabilities (s_i) are iid with distribution σ (which we call the *survival distribution*) and (ii) given the (s_i) , the initial occupancies are independent with $\Pr(X_{i,0}^{(n)} = 1|s_i) = p(s_i)$ for some function p, then (Theorem 1 of our paper)

$$rac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} \stackrel{p}{
ightarrow} l_t$$
 as $n
ightarrow\infty$,

where l_t is non-random.

If (i) the survival probabilities (s_i) are iid with distribution σ (which we call the *survival distribution*) and (ii) given the (s_i) , the initial occupancies are independent with $\Pr(X_{i,0}^{(n)} = 1|s_i) = p(s_i)$ for some function p, then (Theorem 1 of our paper)

$$rac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} \stackrel{p}{
ightarrow} l_t$$
 as $n
ightarrow\infty$,

where l_t is non-random. The proportion occupied becomes less random as the number of patches increases.

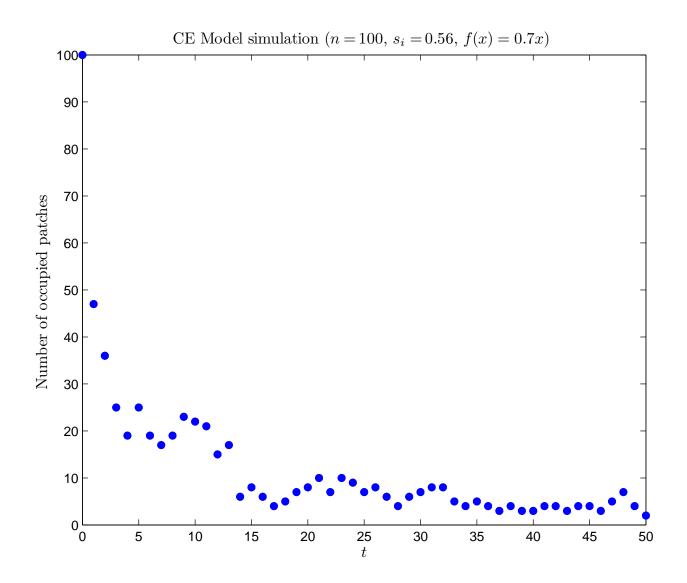
If (i) the survival probabilities (s_i) are iid with distribution σ (which we call the *survival distribution*) and (ii) given the (s_i) , the initial occupancies are independent with $\Pr(X_{i,0}^{(n)} = 1|s_i) = p(s_i)$ for some function p, then (Theorem 1 of our paper)

$$rac{1}{n}\sum_{i=1}^n X_{i,t}^{(n)} \stackrel{p}{
ightarrow} l_t$$
 as $n
ightarrow\infty$,

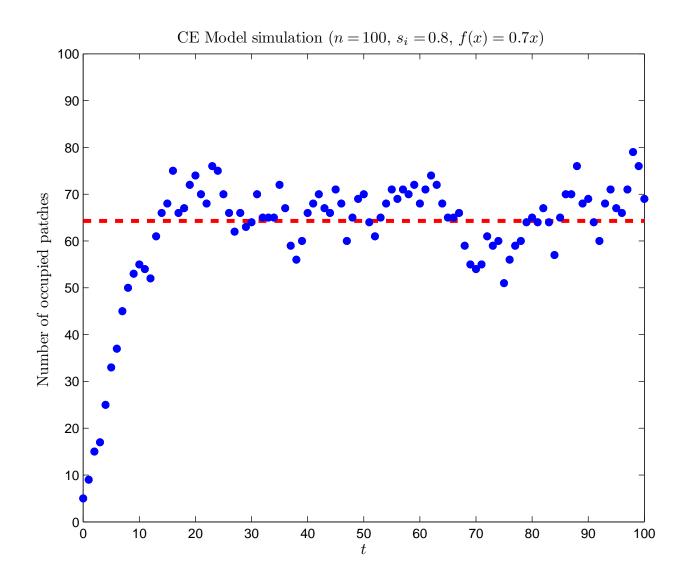
where l_t is non-random. The proportion occupied becomes less random as the number of patches increases.

We then study long-term $(t \to \infty)$ behaviour by examining the stability of the system $(l_t(k))$. In particular, $l_t \to ?$

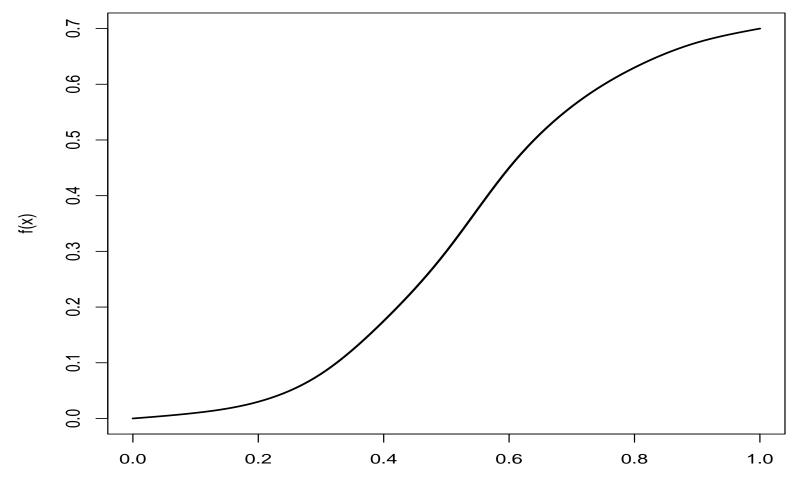
Concave *f* - zero state stable



Concave *f* - non-zero state stable



The non-concave f we used



х

