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Typical questions

Given an appropriate model . . .

How do we calibrate the model? (parameter
estimation)

Assessing extinction risk:

What is the expected time to (total) extinction?
What is the probability of extinction by time t?

Can we improve population viability (subject to
budgetary constraints)?

Are there simple (but accurate) ‘rules of thumb’?
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Rules of thumb: R1

Our first rule (which I shall concentrate on today) is
based on exact and approximate formulae for the
persistence time (expected time to extinction).

It enables the population manager to form a priority
species ranking by identifying those species most at
risk of extinction.
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Rules of thumb: R2

Our second rule uses R1 to identify an optimal
management strategy that specifies how to alter the
colonisation rate c (creation or improvement of habitat
corridors) and local extinction rate e (restoring habitat
quality or expanding habitat) in order to maximise the
persistence time under a budgetary constraint.
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Rules of thumb: R2

Our second rule uses R1 to identify an optimal
management strategy that specifies how to alter the
colonisation rate c (creation or improvement of habitat
corridors) and local extinction rate e (restoring habitat
quality or expanding habitat) in order to maximise the
persistence time under a budgetary constraint.

Given a total budget B and costs Kc and Ke for
respective (per unit) changes in c and e:

If Kee − Kcc > B then increase c. Otherwise,
first reduce e towards its allowable minimum
and then increase c if budget permits.
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A simple model

Suppose there are N patches. Let n(t) be the number
occupied at time t and suppose that (n(t), t ≥ 0) is a
continuous-time Markov chain with transitions:

Event Transition Rate

Colonisation n → n + 1 c
N n(N − n)

Local extinction n → n − 1 en
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A simple model

Suppose there are N patches. Let n(t) be the number
occupied at time t and suppose that (n(t), t ≥ 0) is a
continuous-time Markov chain with transitions:

Event Transition Rate

Colonisation n → n + 1 c
N n(N − n)

Local extinction n → n − 1 en

This is the stochastic logistic (SL) model , though it has
many names, having been rediscovered several times
since Feller∗ proposed it.

∗Feller, W. (1939) Die grundlagen der volterraschen theorie des
kampfes ums dasein in wahrscheinlichkeitsteoretischer behand-
lung. Acta Biotheoretica 5, 11–40.
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A simple model

It is a stochastic analogue the classical Verhulst∗

population model (here, for the proportion of occupied
patches): x ′

t = cxt(1 − xt) − ext = cxt (1 − ρ − xt) , where
ρ = e/c, so that

xt =
(1 − ρ)x0

x0 + (1 − ρ − x0) e−(c−e)t
.

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit
dans son accroisement. Corr. Math. et Phys. X, 113–121.

MASCOS MODSIM09, July 2009 - Page 16



A simple model

It is a stochastic analogue the classical Verhulst∗

population model (here, for the proportion of occupied
patches): x ′

t = cxt(1 − xt) − ext = cxt (1 − ρ − xt) , where
ρ = e/c, so that

xt =
(1 − ρ)x0

x0 + (1 − ρ − x0) e−(c−e)t
.

There are two equilibria: x = 0 is stable if c < e, while
x = 1 − ρ (= 1 − e/c) is stable if c > e.

∗Verhulst, P.F. (1838) Notice sur la loi que la population suit
dans son accroisement. Corr. Math. et Phys. X, 113–121.
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The SL model (c < e) x = 0 stable
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The SL model (c > e) x = 1 − e/c stable
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The SL model (c > e) N large
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Spatially realistic models

The state of our Markov chain is now n = (n
1
, . . . , n

N
),

where ni = 1 if patch i is occupied and ni = 0 if
unoccupied. The transitions rates are:

Event Transition Rate

Colonisation n → n + 1i (1 − ni)
∑

j 6=i njλji

Local extinction n → n − 1i niλi0

Here 1i is the unit vector with a 1 as its i-th entry, λji is
the propagation rate from patch j to patch i and λi0 is
the local extinction rate.
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Spatially realistic models

Event Transition Rate

Colonisation n → n + 1i (1 − ni)
∑

j 6=i njλji

Local extinction n → n − 1i niλi0

For example, λij = ge−β
√

dij , where g is the base
propagation rate, β is the exponential dispersion
parameter and dij is the distance between patches i

and j, and, λi0 = κ/Ai, where Ai is the area of patch i;
the rate of colonisation decreases with distance
between patches, and the rate of local extinction
decreases with patch area.
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Persistence times

How do we evaluate the expected time to (total)
extinction?
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Persistence times

How do we evaluate the expected time to (total)
extinction?

Mangel and Tier’s∗ Fact 2: “There is a simple and
direct method for the computation of persistence times
that virtually all biologists can use”.

∗Mangel, M. and Tier, C. (1994) Four facts every
conservation biologist should know about persis-
tence. Ecology 75, 607–614.
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Persistence times - my take on it

Every undergraduate mathematician is (or should be)
familiar with the following:

Theorem For a Markov chain with transition rates
Q = (q(m,n),m, n ∈ S), whose state space S (possibly
infinite) includes a subset E which is reached with
probability 1, the expected time τi it takes to reach E

starting in state i is the minimal non-negative solution
to
∑

i∈S q(i, j)τj + 1 = 0, i /∈ E, with τi = 0 for i ∈ E.
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For birth-death processes

For birth-death processes (such as the SL model) with
birth rates (an) and death rates (bn), the expected time
τi(N) it takes to reach (the extinction state) 0 starting in
state i is given by

τi(N) =
i
∑

j=1

1

bjπj

N
∑

k=j

πk, with τ0(N) = 0,

where the “potential coefficients” (πj) are given by
π1 = 1 and πj =

∏j
k=2(ak−1/bk) for j ≥ 2.

(This formula is valid in the infinite state-space case,
replacing N by ∞.)
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For the SL model

For the SL model, the expected time to total extinction
starting with i patches occupied is given by

τi(N) =
1

e

i
∑

j=1

N−j
∑

k=0

1

j + k

k−1
∏

l=0

(

N − j − l

Nρ

)

.

(Recall that ρ = e/c, where c is the colonisation rate
and e is the local extinction rate.)

Whilst this admits further simplification, the form given
reflects the algorithm one might use to evaluate τi(N),
the product being evaluated recursively, and the sums
evaluated in such a way as to minimize round-off error.
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For the SL model

This is far from being an explicit formula.

τi(N) =
1

e

i
∑

j=1

N−j
∑

k=0

1

j + k

k−1
∏

l=0

(

N − j − l

Nρ

)

.
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For the SL model (ρ < 1)

Note. Tilde (∼) here has the following interpretation:
aN ∼ bN as N → ∞ means aN/bN → 1.

Theorem. If ρ < 1, then

τi(N) ∼
1 − ρi

c(1 − ρ)2

(

e−(1−ρ)

ρ

)N √

2π

N
as N → ∞.

With correction:

τi(N) ≃
1

c(1 − ρ)







(

1 − ρi

1 − ρ

)

(

e−(1−ρ)

ρ

)N√

2π

N
−

i−1
∑

k=1

(1 − ρi−k)

k







.
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The approximation
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Log10 of approximated expected time to extinction. The initial
number of occupied patches is n(0) = N/5 and e = 1.
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The approximation
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Bonus theorem: for the SL model (ρ > 1)

Theorem. If ρ > 1, then

τi(N) ∼
ρi − 1

c(ρ − 1)
log

(

ρ

ρ − 1

)

as N → ∞.

With correction:

τi(N) ≃
1

c(ρ − 1)

{

(ρi − 1) log

(

ρ

ρ − 1

)

−
i−1
∑

k=1

(ρi−k − 1)

k

}

.
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