Ensemble behaviour in population processes with applications to ecological systems

Phil Pollett

http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Ensemble vs individual behaviour

Can properties of an ensemble of individuals, be deduced from a model for the behaviour of the individual?

Butterfly life cycle

Larva (caterpillar) \simeq 14 days

Pupa (chrysalis) \simeq 7 days

Adult (butterfly) \simeq 14 days

Butterfly life cycle

Ensemble of organisms

Ensemble of organisms

MODSIM07, December 2007 - Page

Ensemble vs individual behaviour

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the *proportion* of organisms in stage *s* at time *t* should be approximately equal to $p_s(t)$, the *probability* that the *individual* organism is in stage *s* at time *t*.

Can properties of the ensemble, be deduced from a model for the behaviour of an individual?

For example, suppose we have n butterflies.

Our intuition tells us that, for the ensemble, the *proportion* of organisms in stage *s* at time *t* should be approximately equal to $p_s(t)$, the *probability* that the *individual* organism is in stage *s* at time *t*.

So strong is this intuition that scientists frequently model population proportions using individual-level models.

State probabilities (individual)

State probabilities (individual)

State proportions (ensemble)

State proportions (ensemble)

What is the probability that the organism is in stage s of its life cycle at time t?

What is the probability that the organism is in stage s of its life cycle at time t?

Using a simple Markov chain model, we can evaluate this for each stage *s* and for all times *t*.

X(t) - the state of an individual at time $t (\ge 0)$, for example, the current stage in the individual's life cycle.

Suppose $(X(t), t \ge 0)$ is a continuous-time Markov chain taking values in a discrete set *S* with transition rates (q_{ij}) :

 q_{ij} is the rate of transition from state $i \rightarrow j$ ($j \neq i$).

 $q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state *i*.

X(t) - the state of an individual at time $t (\ge 0)$, for example, the current stage in the individual's life cycle.

Suppose $(X(t), t \ge 0)$ is a continuous-time Markov chain taking values in a discrete set *S* with transition rates (q_{ij}) :

 q_{ij} is the rate of transition from state $i \rightarrow j$ ($j \neq i$).

 $q_i (= -q_{ii}) = \sum_{j \neq i} q_{ij}$ is the total rate out of state *i*.

Example (Butterfly life cycle) $\{4\} \rightarrow \{3\} \rightarrow \{2\} \rightarrow \{1\} \rightarrow \{0\}$

 $q_4 = q_{43} = 1/4 \qquad \downarrow \text{Egg} (\simeq 4 \text{ days})$ $q_3 = q_{32} = 1/14 \qquad \downarrow \text{Caterpillar} (\simeq 14 \text{ days})$ $q_2 = q_{21} = 1/7 \qquad \downarrow \text{Chrysalis} (\simeq 7 \text{ days})$ $q_1 = q_{10} = 1/14 \qquad \downarrow \text{Adult} (\simeq 14 \text{ days})$

In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

Why put minus the total rate on the diagonal?

In matrix form

$$Q = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1/14 & -1/14 & 0 & 0 & 0 \\ 0 & 1/7 & -1/7 & 0 & 0 \\ 0 & 0 & 1/14 & -1/14 & 0 \\ 0 & 0 & 0 & 1/4 & -1/4 \end{pmatrix}$$

Why put minus the total rate on the diagonal?

For mathematical convenience ... the equations we must solve are then easier to write down.

The state probabilities $p(t) = (p_j(t), j \in S)$, where

 $p_j(t) = \Pr(X(t) = j),$

can be obtained as the (unique) solution to

p'(t) = p(t) Q satisfying p(0) = a,

where $a = (a_j, j \in S)$ is a given initial distribution.

The state probabilities $p(t) = (p_j(t), j \in S)$, where

 $p_j(t) = \Pr(X(t) = j),$

can be obtained as the (unique) solution to

p'(t) = p(t) Q satisfying p(0) = a,

where $a = (a_j, j \in S)$ is a given initial distribution.

(It will be convenient to restrict our attention to the case where S is a *finite* set, but I note that many of the arguments presented hold more generally.) % State probabilities (butterfly life cycle)

```
q(1)=1/14; q(2)=1/7; q(3)=1/14; q(4)=1/4;
Q=zeros(5,5);
for i=2:5
  state=i-1; % Matlab doesn't like a 0 index
  Q(i,i-1)=q(state); Q(i,i)=-q(state);
end
i=5; t=10;
P = expm(Q * t);
             % The solution to p'(t)=p(t)Q
p=P(i,1:5); % with p_4(0)=1
bar(0:4,p);
```


Sometimes the state probabilities can be evaluated analytically.

Suppose that an organism has M stages of life (M = 4 for the butterfly), and that the expected time spent in stage j is $1/q_j$ (q_j is the rate of departure from stage j).

If q_1, q_2, \ldots, q_M are distinct, then

$$p_j(t) = \frac{1}{q_j} \sum_{k=j}^M q_k e^{-q_k t} \prod_{l=j, l \neq k}^M \frac{q_l}{q_l - q_k},$$

for j = 1, ..., M, and $p_0(t) = 1 - \sum_{j=1}^M p_j(t)$.

MASCOS

Individual organism

Individual organism

Ensemble of organisms

Suppose that at time t = 0 the individuals are assigned to the states according to some rule and then each moves independently in *S* as a Markov chain governed by *Q*.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain. Suppose that at time t = 0 the individuals are assigned to the states according to some rule and then each moves independently in *S* as a Markov chain governed by *Q*.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain. Suppose that at time t = 0 the individuals are assigned to the states according to some rule and then each moves independently in *S* as a Markov chain governed by *Q*.

The key assumption here is *independence*: individuals do not affect one another.

We record only the *number* of individuals in the various states, rather than their positions.

Let $N_j(t)$ be the number of individuals in state j at time t, and let $N = (N_j, j \in S)$. The process $(N(t), t \ge 0)$ is also a continuous-time Markov chain. The closed ensemble. We suppose that there is a fixed number n of individuals, each moving according to Q.

The process takes values in

$$E = \{ \mathbf{n} \in \{0, \dots, n\}^S : \sum_{j \in S} n_j = n \},\$$

and its transition rates $Q_E = (q(n, m), n, m \in E)$ are given by

$$q(\boldsymbol{n}, \boldsymbol{n} + \boldsymbol{e}_j - \boldsymbol{e}_i) = n_i q_{ij},$$

for all states $j \neq i$ in *S*, where $e_j = (0, ..., 0, 1, 0, ..., 0)$ is the unit vector with a 1 as its *j*-th entry (this transition corresponds to a single individual moving from state *i* to state *j*).

Ensemble of organisms

Convergence of ensemble proportions

Let $X^{(n)}(t) = N(t)/n$, where *n* is the number of individuals, so that $X_j^{(n)}(t)$ is the proportion if individuals in state *j*.

Convergence of ensemble proportions

Let $\mathbf{X}^{(n)}(t) = \mathbf{N}(t)/n$, where *n* is the number of individuals, so that $X_j^{(n)}(t)$ is the proportion if individuals in state *j*. **Theorem 1.** If $\mathbf{X}^{(n)}(0) \to \mathbf{a}$ as $n \to \infty$, then, for all u > 0, and for every $\epsilon > 0$,

$$\Pr\left(\sup_{0\leq t\leq u} \left| \boldsymbol{X}^{(n)}(t) - \boldsymbol{p}(t) \right| > \epsilon \right) \to 0 \quad \text{as } n \to \infty,$$

where $p(t) = (p_j(t), j \in S)$ is the unique solution to p'(t) = p(t) Q satisfying p(0) = a, namely $p(t) = a \exp(tQ)$, where $\exp(\cdot)$ is the matrix exponential.

Bonus theorem

Theorem 2. In the setup of Theorem 1, let

$$\boldsymbol{Z}^{(n)}(t) = \sqrt{n}(\boldsymbol{X}^{(n)}(t) - \boldsymbol{p}(t)).$$

If $Z^{(n)}(0) \to z$ as $n \to \infty$, then $(Z^{(n)}(t))$ converges weakly in D[0,t] (the space of right-continuous, left-hand limits functions on [0,t]) to a *Gaussian diffusion* (Z(t)) with initial value Z(0) = z and with mean and covariance given by $\mu_s := \mathbb{E}(Z(s)) = e^{sQ^{\top}} z$ and

$$V_s := \operatorname{Cov}(\boldsymbol{Z}(s)) = e^{sQ^{\top}} \left(\int_0^s e^{-uQ^{\top}} G(\boldsymbol{p}(u)) e^{-uQ} \, du \right) \, e^{sQ},$$

Theorem 2 (continued).

 \dots where the matrix $G(\boldsymbol{x})$ has entries

 $G_{kk}(x) = x_k q_k + \sum_{i \neq k} x_i q_{ik}$ and $G_{kl}(x) = -(x_l q_{lk} + x_k q_{kl})$.

Theorem 2 (continued).

 \dots where the matrix $G(\boldsymbol{x})$ has entries

$$G_{kk}(x) = x_k q_k + \sum_{i \neq k} x_i q_{ik}$$
 and $G_{kl}(x) = -(x_l q_{lk} + x_k q_{kl})$.

Theorem 2 has many implications. One immediate one is that the population proportions $X^{(n)}(t)$ have an approximate multivariate Gaussian (normal) distribution with known mean vector and covariance matrix.

This helps explain the observed fluctuations (now seen to be of order $1/\sqrt{n}$) of $\mathbf{X}^{(n)}(t)$ about $\mathbf{p}(t)$.

Bonus theorem

