## A RANDOM GRAPH

The construction. A random (undirected) graph with $n$ vertices is constructed in the following way: pairs of vertices are selected one at a time in such a way that each pair has the same probability of being selected on any given occasion, and, each selection is made independently of previous selections. If the vertex pair $\{x, y\}$ is selected, then an edge is constructed which connects $x$ and $y$.

Are multiple edges possible? In my model, yes! For example, if the vertex pair $\{x, y\}$ were to be selected $k$ times, there would be $k$ edges connecting $x$ and $y$ : a multiple edge contributing $\binom{k}{2}$ cycles of length 2.

## ASYMPTOTIC BEHAVIOUR

Suppose that $m$ edges have been selected. We shall be concerned with the behaviour of the graph in the limit as $n$ and $m$ become large, but in such a way that $m=O(n)$.

The problem. Our problem is to determine the limiting probability that the graph is acyclic.

Motivation. Havas and Majewski* present an algorithm for minimal perfect hashing (used for memory-efficient storage and fast retrieval of items from static sets) based on this random graph. Their algorithm is optimal when the graph is acyclic.
*[HM] Havas, G. and Majewski, B.S. (1992), Optimal algorithms for minimal perfect hashing, Technical Report No. 234, Key Centre for Software Technology, Department of Computer Science, The University of Queensland.

## WHY ACYCLIC?

Consider a set $W$ of $m$ words (or keys). Every bijection $h: W \rightarrow I$, where $I=\{0, \ldots, m-1\}$, is called a minimal perfect hash function. HM find hash functions of the form

$$
h(w)=\left(g\left(f_{1}(w)\right)+g\left(f_{2}(w)\right)\right) \bmod m ;
$$

$f_{1}, f_{2}$ map keys to integers (they identify the pair of vertices of the graph corresponding to the edge $w$ ) and $g$ maps integers to $I$.

Given $f_{1}$ and $f_{2}$, can $g$ be chosen so that $h$ is a bijection?

If the graph is acyclic then, yes, it is easy to construct $g$ from $h$. Traverse the graph: if vertex $w$ is reached from vertex $u$ then set

$$
g(w)=(h(e)-g(u)) \bmod m,
$$

where $e=(u, w)$.

## EFFICIENCY

HM's algorithm generates $f_{1}$ and $f_{2}$ at random until an acyclic graph is found:

$$
f_{k}(w)=\left(\sum_{i=1}^{|w|} T_{k}(i) w[i]\right) \bmod m
$$

where $T_{1}$ and $T_{2}$ are tables of random integers and $w[i]$ denotes the $i$-th character (an integer) of key $i$.

The efficiency of the algorithm is determined by the probability $p^{(n)}$ that the graph is acyclic: the expected number of iterations needed to find an acyclic graph will be $1 / p^{(n)}$ (typically between 2 and 3).

## EVALUATING $p^{(n)}$

Theorem. If $n$ and $m$ tend to $\infty$ in such a way that $m \sim c n$, where $c$ is a positive constant, the limiting probability $p$ that the graph is acyclic is given by

$$
p= \begin{cases}e^{c} \sqrt{1-2 c} & \text { if } 0<c<1 / 2 \\ 0 & \text { if } c \geq 1 / 2\end{cases}
$$

Proof. On request. It uses results from [HM] and Erdös and Renyi*.
*[ER] Erdös, P. and Renyi, A. (1960). On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5, 17-61.

## SKETCH PROOF

Let $X_{k}^{(n)}$ be the number of cycles of length $k$ and let $p_{k}^{(n)}=\operatorname{Pr}\left(X_{k}^{(n)}=0\right)$. Following [HM] write

$$
p^{(n)}=\prod_{k=2}^{\infty} p_{k}^{(n)}, \quad n=2,3, \ldots
$$

Now let $q_{k}^{(n)}=-\log p_{k}^{(n)}$, so that $0 \leq q_{k}^{(n)}<\infty$ and

$$
p^{(n)}=\exp \left(-\sum_{k=2}^{\infty} q_{k}^{(n)}\right), \quad n=2,3, \ldots
$$

ER show that the distribution of $X_{k}^{(n)}$ is asymptotically Poisson: in particular,

$$
\lim _{n \rightarrow \infty} p_{k}^{(n)}=e^{-\lambda_{k}}, \text { where } \lambda_{k}=(2 c)^{k} / 2 k .
$$

It follows that

$$
\lim _{n \rightarrow \infty} q_{k}^{(n)}=-\log \left(\lim _{n \rightarrow \infty} p_{k}^{(n)}\right)=\lambda_{k} .
$$

So, formally,

$$
\lim _{n \rightarrow \infty} \sum_{k=2}^{\infty} q_{k}^{(n)}=\sum_{k=2}^{\infty} \lim _{n \rightarrow \infty} q_{k}^{(n)}=\sum_{k=2}^{\infty} \lambda_{k},
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p^{(n)}=e^{-\lambda}, \text { where } \lambda=\sum_{k=2}^{\infty} \lambda_{k} \tag{1}
\end{equation*}
$$

By Fatou's Lemma, we always have

$$
\liminf _{n \rightarrow \infty} \sum_{k=2}^{\infty} q_{k}^{(n)} \geq \sum_{k=2}^{\infty} \liminf _{n \rightarrow \infty} q_{k}^{(n)}=\sum_{k=2}^{\infty} \lambda_{k},
$$

from which it follows immediately that

$$
\limsup _{n \rightarrow \infty} p^{(n)} \leq e^{-\lambda} ;
$$

this argument is valid even if the sum in (??) is divergent. We deduce immediately that if $c \geq 1 / 2, p^{(n)} \rightarrow 0$.

When $c<1 / 2$, we have $0<\lambda_{k}<1$ and

$$
\lambda=\sum_{k=2}^{\infty} \lambda_{k}=-c+\frac{1}{2} \ln \left(\frac{1}{1-2 c}\right)
$$

From Markov's inequality we have $\operatorname{Pr}\left(X_{k}^{(n)} \geq\right.$ 1) $\leq \mathrm{E} X_{k}^{(n)}$ and so $p_{k}^{(n)}=\operatorname{Pr}\left(X_{k}^{(n)}=0\right) \geq$ $1-\mathrm{E} X_{k}^{(n)}$. By Lemma 2 of [HM], we have, for each fixed $k \geq 2$, that $\mathrm{E} X_{k}^{(n)} \uparrow \lambda_{k}$ as $n \rightarrow \infty$. In particular, for each $k \geq 2$, the sequence $\left\{\mathrm{E} X_{k}^{(n)}\right\}$ is bounded above by $\lambda_{k}$. It follows that $\left\{q_{k}^{(n)}\right\}$ is bounded above by $d_{k}:=-\log \left(1-\lambda_{k}\right)$. Further, since $\lambda_{k}<1$,

$$
\sum_{k=2}^{\infty} d_{k}=-\log \left(\prod_{k=2}^{\infty}\left(1-\lambda_{k}\right)\right)<\infty
$$

Thus, by Dominated Convergence, we have

$$
\lim _{n \rightarrow \infty} \sum_{k=2}^{\infty} q_{k}^{(n)}=\sum_{k=2}^{\infty} \lim _{n \rightarrow \infty} q_{k}^{(n)}=\lambda
$$

and, hence, $p^{(n)} \rightarrow e^{-\lambda}$.

## THE FIVE STAGES OF EVOLUTION

## PRIMORDIAL STEW: $m(n)=o(n)$

If $m(n) / n \rightarrow 0$, then (with limiting probability 1) all components are trees.

Trees of order $k$ appear when $m$ reaches order $n^{(k-2) /(k-1)}$. In particular, $T_{k}$, the number of trees of order $k$, has a (limiting) Poisson distribution with mean $\lambda_{k}=(2 \rho)^{k-1} k^{k-2} / k!$, where

$$
\rho=\lim _{n \rightarrow \infty} m(n) n^{(k-1) /(k-2)} .
$$

Finally, if $m(n) n^{(k-1) /(k-2)} \rightarrow \infty$, the number of trees of order $k$ is asymptotically normally distributed with mean and variance equal to

$$
\mu_{n}=n \frac{k^{k-2}}{k!}\left(\frac{2 m(n)}{n}\right)^{k-1} e^{-2 k m(n) / n} .
$$

To be precise, $\left(T_{k}-\mu_{n}\right) / \sqrt{\mu_{n}} \Rightarrow N(0,1)$. This result holds in the next two stages of evolution; we only require $\mu_{n} \rightarrow \infty$.

## SPOOKY: $m(n) \sim c n$, where <br> $$
0<c<1 / 2
$$

Cycles of all orders start to appear: $C_{k}$, the number of cycles of order $k$, has a (limiting) Poisson distribution with mean $\lambda_{k}=$ $(2 c)^{k} /(2 k)$.

Furthermore, with limiting probability 1, all components are either trees or consist of exactly one cycle ( $k$ vertices and $k$ edges), the latter having a Poisson distribution with mean

$$
\lambda_{k}=\frac{\left(2 c e^{-2 c}\right)^{k}}{k!} \sum_{i=0}^{k-3} \frac{k^{i}}{i!},
$$

where $k$ is the order of the cycle.
The largest component is a tree; it has

$$
\frac{1}{2 c-1-\log 2 c}\left(\log n-\frac{5}{2} \log \log n\right)
$$

vertices (with probability tending to 1 ).

## A MONSTER APPEARS:

$$
m(n) \sim c n, \text { where } c \geq 1 / 2
$$

When $m(n) \sim n(c=1 / 2)$, the largest component has (with probability tending to 1 ) $n^{2 / 3}$ vertices. When $m(n) \sim c n$ with $c>$ $1 / 2$, a giant component appears: the largest component in the graph has $G(c) n$ vertices, where $G(c)=1-X(c) / 2 c$ and

$$
X(c)=\sum_{i=1}^{\infty} \frac{i^{i-1}}{i!}\left(2 c e^{-2 c}\right)^{i} .
$$

Note that $G(1 / 2)=0$ and $G(c) \rightarrow 1$ as $c \rightarrow \infty$.
Almost all the other vertices belong to trees: the total number of vertices belonging to trees is almost surely $n(1-G(c))+o(n)$.

For $c>1 / 2$, the expected number of components in the graph is asymptotically

$$
\frac{n}{2 c}\left(X(c)-\frac{1}{2} X^{2}(c)\right) .
$$

## CONNECTEDNESS:

$m(n) \sim c n \log n$, where $0<c \leq 1 / 2$

The graph is becoming connected: if
$m(n)=\frac{n}{2 k} \log n+\frac{k-1}{2 k} n \log \log n+\alpha n+o(n)$,
then (with probability tending to 1 ) there are only trees of order $\leq k$ outside the giant component, the limiting distribution of the number of trees of order $l$ being Poisson with mean $e^{-2 \alpha l} /(l . l!)$. For example ( $k=1$ ), if

$$
m(n)=\frac{n}{2} \log n+\alpha n+o(n),
$$

there are (almost surely) only isolated vertices outside the giant component, the number of these having a limiting Poisson distribution with mean $e^{-2 \alpha}$. And, the chance that the graph is indeed connected tends to $\exp \left(-e^{-2 \alpha}\right)$ (which itself tends to 1 as $\alpha$ grows).

## ASYMPTOTIC REGULARITY: $m(n) \sim \omega(n) n \log n$, where $\omega(n) \rightarrow \infty$

The whole graph becomes regular: with probability tending to 1 , the graph becomes connected and the orders of all vertices are equal.

