Point processes and patch survival in metapopulations

Phil Pollett
Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp
AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Collaborator

Ross McVinish
 Department of Mathematics University of Queensland

*McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch dependent extinction probabilities. Advances in Applied Probability 42, 11721186.
*McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island metapopulation. Journal of Mathematical Biology. To appear.

Metapopulations

Metapopulations

Metapopulations

$$
\because \because
$$

SPOM

A Stochastic Patch Occupancy Model (SPOM)

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied.

For each $n,\left(X_{t}^{(n)}, t=0,1, \ldots\right)$ is assumed to be a Markov chain.

Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is observed after successive extinction phases (CE Model).

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases, as independent trials.

Colonization: unoccupied patches become occupied independently with probability $c\left(n^{-1} \sum_{i=1}^{n} X_{i, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave.

Extinction: occupied patch i remains occupied independently with probability s_{i} (fixed or random).

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

Thus, we have a Chain Bernoulli structure:

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right)
$$

SPOM

$$
\begin{aligned}
& n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x \\
& 000010110101000011101010001000
\end{aligned}
$$

$$
c(x)=c\left(\frac{11}{30}\right)=0.7 \times 0.3 \dot{6}=0.25 \dot{6}
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
\begin{array}{r}
0 \\
C \\
C
\end{array} 00001011111000010000011110110100001000
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110001000011101010001000
C 100011110101000011111110001010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

$$
\text { C } 100011110101000011111110001010
$$

$$
\text { E } 000010010101000010111100000010
$$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010 E 000010010101000010111100000010
$c(x)=c\left(\frac{10}{30}\right)=0.7 \times 0 . \dot{3}=0.2 \dot{3}$

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

$$
000010110101000011101010001000
$$

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000

C 100011110101000011111110001010
E 000010010101000010111100000010
C 001010011101001011111100000010
E 000010010101000001000100000010

SPOM

$$
n=30, s_{i} \sim \operatorname{Beta}(25.2,19.8)\left(\mathbb{E} s_{i}=0.56\right) \text { and } c(x)=0.7 x
$$

000010110101000011101010001000
C 100011110101000011111110001010
E000010010101000010111100000010
C001010011101001011111100000010
E000010010101000001000100000010

C000010000000000010000000000000
E000000000000000000000000000000

SPOM - Homogeneous case

In the homogeneous case, where $s_{i}=s$ (non-random) is the same for each i, the number $N_{t}^{(n)}$ of occupied patches at time t is Markovian.

It has the following Chain Binomial structure:

$$
N_{t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(N_{t}^{(n)}+\operatorname{Bin}\left(n-N_{t}^{(n)}, c\left(\frac{1}{n} N_{t}^{(n)}\right)\right), s\right)
$$

A deterministic limit

Letting the initial number $N_{0}^{(n)}$ of occupied patches grow with $n \ldots$
Theorem [BP] If $N_{0}^{(n)} / n \xrightarrow{p} x_{0}$ (a constant), then

$$
N_{t}^{(n)} / n \xrightarrow{p} x_{t}, \quad \text { for all } t \geq 1,
$$

with $\left(x_{t}\right)$ determined by $x_{t+1}=f\left(x_{t}\right)$, where

$$
f(x)=s(x+(1-x) c(x)) .
$$

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $c^{\prime}(0)>0$.]

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Stationarity: $c(0)>0$. There is a unique fixed point $x^{*} \in[0,1]$. It satisfies $x^{*} \in(0,1)$ and is stable.
Evanescence: $c(0)=0$ and $1+c^{\prime}(0) \leq 1 / s$. Now 0 is the unique fixed point in $[0,1]$. It is stable.

Quasi stationarity: $c(0)=0$ and $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).
[Notice that $c(0)=0$ implies that $\left.c^{\prime}(0)>0.\right]$

CE Model - Evanescence

CE Model - Quasi stationarity

CE Model simulation $(n=100, s=0.8, c(x)=c x$ with $c=0.7)$

SPOM - general case

Returning to the general case, where patch survival probabilities are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right) .
$$

SPOM - general case

Returning to the general case, where patch survival probabilities are random and patch dependent, and we keep track of which patches are occupied ...

$$
X_{i, t+1}^{(n)} \stackrel{d}{=} \operatorname{Bin}\left(X_{i, t}^{(n)}+\operatorname{Bin}\left(1-X_{i, t}^{(n)}, c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\right), s_{i}\right) .
$$

Assume now that $c(0)=0$ and $c^{\prime}(0)>0$.

Recovery of a near-extinct population

Fix the initial configuration $X_{0}^{(n)}$ and let $n \rightarrow \infty$.
The aim is to determine conditions under which a metapopulation that is close to extinction may recover with positive probability.

Recovery of a near-extinct population

Fix the initial configuration $X_{0}^{(n)}$ and let $n \rightarrow \infty$.
The aim is to determine conditions under which a metapopulation that is close to extinction may recover with positive probability.

First notice that if c has a continuous second derivative near 0, then, for fixed $m, \operatorname{Bin}(n-m, c(m / n)) \xrightarrow{d} \operatorname{Poi}(\lambda m)$ as $n \rightarrow \infty$, where $\lambda=c^{\prime}(0)$. So, if every patch had the same survival probability, then we might expect the number of occupied patches $N_{t}^{(n)}$ to converge to a Galton-Watson process (see [BP] for details).

Recovery of a near-extinct population

Treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1)$.

Recovery of a near-extinct population

Treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1)$.

Define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.

Recovery of a near-extinct population

Treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1)$.

Define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.
Extinction of the metapopulation by time t corresponds to the event that $S_{t}^{(n)}$ is the empty set.

Recovery of a near-extinct population

Treat the collection of patch survival probabilities of occupied patches at time t as a point process on $[0,1)$.

Define $\left(S_{t}^{(n)}, t \geq 0\right)$ by $S_{t}^{(n)}=\left\{s_{i}: X_{i, t}^{(n)}=1\right\}$.
Extinction of the metapopulation by time t corresponds to the event that $S_{t}^{(n)}$ is the empty set.

The aim is to show that there is a point process S_{t} such that $S_{t}^{(n)} \Rightarrow S_{t}$ as $n \rightarrow \infty$ and to evaluate $\lim _{t \rightarrow \infty} \operatorname{Pr}\left(S_{t}=\varnothing\right)$.

Tools

Define the probability generating functional (p.g.fl) of $S_{t}^{(n)}$ by

$$
G_{s_{t}^{(n)}}(\xi)=\mathbb{E}\left(\prod_{s \in S_{t}^{n}} \xi(s)\right),
$$

where $\xi:[0,1) \rightarrow[0,1]$ is some Borel function [DVJ, Definition 9.4.IV]. It determines the point process uniquely [DVJ, Theorem 9.4.V]. This, together with [DVJ, Theorem 11.1.VIII], establishes that $S_{t}^{(n)} \Rightarrow S_{t}$. Furthermore,

$$
\operatorname{Pr}\left(S_{t}=\varnothing\right)=\lim _{b \downarrow 0} G_{S_{t}}\left(1_{b}(x)\right) .
$$

[DVJ] Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Processes. Volume II: General Theory and Structure, 2nd Edn., Springer, New York.

Convergence

Theorem Suppose there is a probability measure σ on $[0,1)$ such that, for all $k \geq 1$,

$$
\frac{1}{n} \sum_{i=1}^{n} s_{i}^{k} \xrightarrow{p} \bar{\sigma}_{k}:=\int_{0}^{1} x^{k} \sigma(d x),
$$

as $n \rightarrow \infty$. Then, $S_{t}^{(n)}$ converges weakly to a point process S_{t} whose p.g.fl satisfies the recursion $G_{S_{t+1}}(\xi)=G_{S_{t}}\left(h_{\xi}\right)$ $(t \geq 0)$, where h_{ξ} is given by

$$
h_{\xi}(x)=(1-x+x \xi(x)) \exp \left(-c^{\prime}(0) \int_{0}^{1} y(1-\xi(y)) \sigma(d y)\right) .
$$

Probability of total extinction

Theorem S_{t} eventually becomes empty with probability 1 ($S_{t}=\varnothing$ for some $t>0$) if

$$
c^{\prime}(0) \int_{0}^{1} \frac{x}{1-x} \sigma(d x) \leq 1 .
$$

Otherwise, it eventually becomes empty with probability $G_{S_{0}}(g)$, where

$$
g(x)=\frac{\psi(1-x)}{1-\psi x},
$$

with $\psi(<1)$ being the unique solution to

$$
\psi=\exp \left(-c^{\prime}(0) \int_{0}^{1} \frac{(1-\psi) x}{(1-\psi x)} \sigma(d x)\right) .
$$

