
Point processes and patch survival in
metapopulations

Phil Pollett

Department of Mathematics
The University of Queensland

http://www.maths.uq.edu.au/˜pkp

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics
and Statistics of Complex Systems



Collaborator

Ross McVinish
Department of Mathematics
University of Queensland

∗McVinish, R. and Pollett, P.K. (2010) Limits of large metapopulations with patch
dependent extinction probabilities. Advances in Applied Probability 42, 1172-
1186.

∗McVinish, R. and Pollett, P.K. (2011) The limiting behaviour of a mainland-island
metapopulation. Journal of Mathematical Biology. To appear.



Metapopulations



Metapopulations

Colonization



Metapopulations



Metapopulations

Local Extinction



Metapopulations



Metapopulations



Metapopulations



Metapopulations

Total Extinction



Metapopulations



Metapopulations



SPOM

A Stochastic Patch Occupancy Model (SPOM)



SPOM

A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let X(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t ), where X

(n)
i,t is a binary variable

indicating whether or not patch i is occupied.



SPOM

A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let X(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t ), where X

(n)
i,t is a binary variable

indicating whether or not patch i is occupied.

For each n, (X(n)
t , t = 0, 1, . . . ) is assumed to be a Markov

chain.



SPOM

A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let X(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t ), where X

(n)
i,t is a binary variable

indicating whether or not patch i is occupied.

For each n, (X(n)
t , t = 0, 1, . . . ) is assumed to be a Markov

chain.

Colonization and extinction happen in distinct, successive
phases.



SPOM - Phase structure

Colonization and extinction happen in distinct, successive
phases.

t− 1 t t+ 1 t+ 2

We will we assume that the population is observed after
successive extinction phases (CE Model).
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phases, as independent trials.

Colonization: unoccupied patches become occupied
independently with probability c(n−1

∑n

i=1X
(n)
i,t ), where

c : [0, 1] → [0, 1] is continuous, increasing and concave.

Extinction: occupied patch i remains occupied
independently with probability si (fixed or random).
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In the homogeneous case, where si = s (non-random) is
the same for each i, the number N (n)

t of occupied patches
at time t is Markovian.

It has the following Chain Binomial structure:
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A deterministic limit

Letting the initial number N (n)
0 of occupied patches grow

with n . . .

Theorem [BP] If N (n)
0 /n

p
→ x0 (a constant), then

N
(n)
t /n

p
→ xt, for all t ≥ 1,

with (xt) determined by xt+1 = f(xt), where

f(x) = s(x+ (1− x)c(x)).

[BP] Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time
metapopulation models. Probability Surveys 7, 53-83.



Stability

xt+1 = f(xt), where f(x) = s(x+ (1− x)c(x)).

Stationarity : c(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: c(0) = 0 and 1 + c ′(0) ≤ 1/s. Now 0 is the
unique fixed point in [0, 1]. It is stable.

Quasi stationarity : c(0) = 0 and 1 + c ′(0) > 1/s. There are
two fixed points in [0, 1]: 0 (unstable) and x∗ ∈ (0, 1) (stable).

[Notice that c(0) = 0 implies that c ′(0) > 0.]
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CE Model - Quasi stationarity
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SPOM - general case

Returning to the general case, where patch survival
probabilities are random and patch dependent , and we
keep track of which patches are occupied . . .
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Assume now that c(0) = 0 and c ′(0) > 0.
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Recovery of a near-extinct population

Fix the initial configuration X
(n)
0 and let n→ ∞.

The aim is to determine conditions under which a
metapopulation that is close to extinction may recover with
positive probability.

First notice that if c has a continuous second derivative
near 0, then, for fixed m, Bin(n−m, c(m/n))

d
→ Poi(λm) as

n→ ∞, where λ = c ′(0). So, if every patch had the same
survival probability, then we might expect the number of
occupied patches N (n)

t to converge to a Galton-Watson
process (see [BP] for details).
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Recovery of a near-extinct population

Treat the collection of patch survival probabilities of
occupied patches at time t as a point process on [0, 1).

Define (S
(n)
t , t ≥ 0) by S(n)

t = {si : X
(n)
i,t = 1}.

Extinction of the metapopulation by time t corresponds to
the event that S(n)

t is the empty set.

The aim is to show that there is a point process St such that
S
(n)
t ⇒ St as n→ ∞ and to evaluate limt→∞ Pr (St = ∅).



Tools

Define the probability generating functional (p.g.fl) of S(n)
t by

G
S
(n)
t

(ξ) = E

(

∏

s∈Sn
t

ξ(s)
)

,

where ξ : [0, 1) → [0, 1] is some Borel function [DVJ,
Definition 9.4.IV]. It determines the point process uniquely
[DVJ, Theorem 9.4.V]. This, together with [DVJ, Theorem
11.1.VIII], establishes that S(n)

t ⇒ St. Furthermore,

Pr (St = ∅) = limb↓0GSt
(1b(x)).

[DVJ] Daley, D. J. and Vere-Jones, D. (2008) An Introduction to the Theory of Point Pro-
cesses. Volume II: General Theory and Structure, 2nd Edn., Springer, New York.



Convergence

Theorem Suppose there is a probability measure σ on
[0, 1) such that, for all k ≥ 1,

1

n

n
∑

i=1

ski
p
→ σ̄k :=

∫ 1

0

xkσ(dx),

as n→ ∞. Then, S(n)
t converges weakly to a point process

St whose p.g.fl satisfies the recursion G
St+1

(ξ) = G
St
(hξ)

(t ≥ 0), where hξ is given by

hξ(x) = (1− x+ xξ(x)) exp

(

−c ′(0)

∫ 1

0

y(1− ξ(y)) σ(dy)

)

.



Probability of total extinction

Theorem St eventually becomes empty with probability 1

(St = ∅ for some t > 0) if

c ′(0)

∫ 1

0

x

1− x
σ(dx) ≤ 1.

Otherwise, it eventually becomes empty with probability
G

S0
(g), where

g(x) =
ψ(1− x)

1− ψx
,

with ψ (< 1) being the unique solution to

ψ = exp

(

−c ′(0)

∫ 1

0

(1− ψ)x

(1− ψx)
σ(dx)

)

.
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