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Expertise

Phil Pollett
Mathematical modelling, stochastic process theory and applica-
tions: ecology, epidemiology, parasitology, telecommunications
and chemical kinetics.
A current project: Modelling population processes with random
initial conditions.

Ross McVinish
Lévy processes and stochastic processes displaying long mem-
ory, Bayesian nonparametrics, computation for Bayesian statis-
tics and time series analysis.

A current project: Statistical inference for partially observed pop-
ulation processes.

Iadine Chadès
Markov decision processes. Mathematical modelling and deci-
sion making in ecology and conservation biology.

A current project: Strategies for managing invasive species in
space: deciding whether to eradicate, contain or control .
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PhD Projects

Robert Cope (July 2009 – )

Animal Movement Between Popula-
tions Deduced from Family Trees

The aim is to develop a new method for estimating animal movements using infor-
mation contained in family trees. Movement estimates are essential to population
models that assist natural resource managers to plan species recovery and to
predict the effect of future challenges, such as human-mediated activities and cli-
mate change. We will evaluate ways of constructing family trees from genetic data
and develop a statistic that describes animal movement between populations that
is based on the families whose members were sampled in more than one popula-
tion; empirical data has been sourced from a long-term mark-recapture study of
dugongs in Moreton Bay, and new samples from two adjacent populations.
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PhD Projects

Daniel Pagendam (March 2007 – )

Optimal Design for Statistical
Inference in Stochastic Processes

Stochastic processes have been used to model a wide range of phenomena such
as population dynamics, chemical reactions, epidemics and telecommunications
traffic. However, the statistical methods for these processes have not received a
great deal of attention. There are two key aspects of statistical inference that are
being investigated: parameter estimation for stochastic processes, and optimal
design of experiments that can be formulated as stochastic processes. Whilst
the former has received attention by a number of authors, the latter is a largely
unexplored, with great potential to improve the utility of stochastic processes as
statistical models in an experimental context. Our approach is to use Gaussian
diffusion approximations to obtain analytical approximations to Fisher’s informa-
tion matrix, which then leads to optimal sampling schemes for stochastic popula-
tion models.
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PhD Projects

Nimmy Thaliath (February 2009 – )

Minimum Risk Optimal Portfolio Alloca-
tion: a Game Theoretic Approach

We are concerned with allocating capital among a set of risky assets so as to
obtain an optimal portfolio allocation. A game theoretic approach is proposed,
based on the notion of Conditional Value at Risk. Since Conditional Value at
Risk (CVaR) is a coherent risk measure, it can potentially reduce the likelihood of
substantial losses.

We adopt the coalitional games concept, interpreting the different portfolios as dif-
ferent players. The Aumann Shapley Principle of game theory will then be used
to compute allocations. If we consider risk assessment as a linear optimization
problem, then the Shapely value can be computed more easily. Since CVaR al-
lows for optimization shortcuts through linear programming, it can be used in this
context. Both game theory and CVaR have been used independently in portfo-
lio management, and we expect that, in combination, they will prove to be very
effective.
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Recent highlights

Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals of type i in a population with k types and a
total number of N individuals.
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Recent highlights

Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals of type i in a population with k types and a
total number of N individuals.

Suppose that (nt, t ≥ 0) is a continuous-time Markov
chain taking values in a (finite) subset S of Z

k.
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Recent highlights

Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals of type i in a population with k types and a
total number of N individuals.

Suppose that (nt, t ≥ 0) is a continuous-time Markov
chain taking values in a (finite) subset S of Z

k.

Suppose that the transition rates Q = (qnm, n,m ∈ S)

have the following property (density dependence):
there is a subset E of R

k and a continuous function
f : Z

k × E → R, such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Z
k).
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Recent highlights

Let X (N)

i,t = ni,t/N be the proportion of individuals of
type i and call (X (N)

t ) the density process.
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Recent highlights

Let X (N)

i,t = ni,t/N be the proportion of individuals of
type i and call (X (N)

t ) the density process.

Theorem Let F (x) :=
∑

l 6=0 lfl (x) (x ∈ E) and suppose
that F is Lipschitz.

If limN→∞ X (N)

0 = x0, then (X (N)

t ) converges (uniformly
in probability over [0, t]) to (xt), the unique
(deterministic) trajectory satisfying

x ′
s = F (xs) (xs ∈ E, s ∈ [0, t]).
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Recent highlights

Define (Z(N)

t ) (scaled fluctuations about the
deterministic trajectory) by

Z(N)
s =

√
N

(

X (N)
s − xs

)

(0 ≤ s ≤ t).
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Recent highlights

Define (Z(N)

t ) (scaled fluctuations about the
deterministic trajectory) by

Z(N)
s =

√
N

(

X (N)
s − xs

)

(0 ≤ s ≤ t).

Idea: (Z(N)

t ) looks like a Gaussian diffusion for large N .
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Recent highlights

Theorem Suppose that F is Lipschitz and has
uniformly continuous first derivative on E, and that the
k × k matrix G(x), defined for x ∈ E by
Gij(x) =

∑

l 6=0 liljfl(x), is uniformly continuous on E.

Let (xt) be the unique deterministic trajectory starting
at x0 and suppose that limN→∞

√
N

(

X (N)

0 − x0

)

= z.

Then, (Z(N)

t ) converges weakly in D[0, t] (the space of
right-continuous, left-hand limits functions on [0, t]) to a
Gaussian diffusion (Zt) with initial value Z0 = z and
with mean and covariance given by µs := E(Zs) = Msz,
where Ms = exp(

∫ s

0 Bu du) and Bs = ∂F (xs), and

Vs := Cov(Zs) = Ms

(∫ s

0 M−1
u G(xu)(M−1

u )⊤ du
)

M⊤
s .
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Recent highlights

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .
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Recent highlights

Corollary If xeq satisfies F (xeq) = 0, then, under the
conditions of the previous theorem, the family (Z(N)

t )

defined by

Z(N)
s =

√
N(X (N)

s − xeq) (0 ≤ s ≤ t),

converges weakly in D[0, t] to an OU process (Zt) with
initial value Z0 = z, local drift matrix B = ∂F (xeq) and
local covariance matrix G(xeq). In particular, Zs is
normally distributed with mean and covariance given
by µs := E(Zs) = eBsz and

Vs := Cov(Zs) =
∫ s

0 eBuG(xeq)e
B⊤u du .
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Recent highlights

Note that

Vt =
∫ t

0 eBuG(xeq)e
B⊤u du = V∞ − eBtV∞eB⊤t,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞B⊤ + G(xeq) = 0.

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .
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Recent highlights

Parameter estimation . Let pn(t) = Pr(nt = n) and
pnm(t) = Pr(ns+t = m|ns = n) (the state probabilities and
transition probabilities of our Markov chain population
model). The likelihood of observing a set of K

observations yk = ntk
(k = 1, . . . , K) of the state of the

Markov chain (nt) at times (0 ≤) t1 < · · · < tK is

L(y|θ) = py1 (θ; t1)
n

∏

k=2

pyk−1,yk
(θ; tk − tk−1) ,

which we can use to estimate a parameter (or vector
of parameters) θ.
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Recent highlights

Idea: We approximate the above likelihood using the
likelihood of observing our Gaussian process (Zt) at
times t1, . . . , tK .
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Recent highlights

Idea: We approximate the above likelihood using the
likelihood of observing our Gaussian process (Zt) at
times t1, . . . , tK .

Ross, J.V., Taimre, T. and Pollett, P.K. (2006) On parameter estimation in popula-
tion models, Theoret. Pop. Biol. 70, 498-510.

Ross, J.V., Pagendam, D.E. and Pollett, P.K. (2009) On parameter estimation in
population models II: multi-dimensional processes and transient dynamics, The-
oret. Pop. Biol. 75, 123-132.
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Recent highlights

Idea: We approximate the above likelihood using the
likelihood of observing our Gaussian process (Zt) at
times t1, . . . , tK .

Ross, J.V., Taimre, T. and Pollett, P.K. (2006) On parameter estimation in popula-
tion models, Theoret. Pop. Biol. 70, 498-510.

Ross, J.V., Pagendam, D.E. and Pollett, P.K. (2009) On parameter estimation in
population models II: multi-dimensional processes and transient dynamics, The-
oret. Pop. Biol. 75, 123-132.

Joshua Ross Thomas Taimre
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Recent highlights

This is made possible because the cross-covariance
can be evaluated:

Vt,t+s := Cov(Zt, Zt+s)

= Mt

∫ t

0
M−1

u G(xu) (M−1
u )⊤duM⊤

t+s

= Cov(Zt)(M
⊤
t )−1M⊤

t+s

= Vt (Mt+sM
−1
t )⊤

= Vt exp(
∫ t+s

t
∂F (xu)⊤du).
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Recent highlights

Random initial conditions .

Pollett, P.K., Dooley, A.H. and Ross, J.V. (2010) Modelling population processes
with random initial conditions, Math. Biosci. (to appear).
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Recent highlights

Random initial conditions .

Pollett, P.K., Dooley, A.H. and Ross, J.V. (2010) Modelling population processes
with random initial conditions, Math. Biosci. (to appear).

(I have internodally collaborated with Tony Dooley!)
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Recent highlights

Ingredients . . .
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Ingredients . . .

Population model (nt, t ≥ 0) (nt ∈ Z
k), X (N)

t = nt/N .

qn,n+l = Nfl

(

n
N

)

(l 6= 0, l ∈ Z
k)

F (x) :=
∑

l 6=0 lfl (x) (x ∈ E)

(X (N)

t ) ≃ (xt) ( large N)

x ′
t = F (xt) (xt ∈ E, s ∈ [0, t]) (initial value x0)
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Recent highlights

Ingredients . . .

Population model (nt, t ≥ 0) (nt ∈ Z
k), X (N)

t = nt/N .

qn,n+l = Nfl

(

n
N

)

(l 6= 0, l ∈ Z
k)

F (x) :=
∑

l 6=0 lfl (x) (x ∈ E)

(X (N)

t ) ≃ (xt) ( large N)

x ′
t = F (xt) (xt ∈ E, s ∈ [0, t]) (initial value x0)

Cov(X (N)

t ) ≃ Vt/N

Vt = Mt

(

∫ t

0 M−1
u G(xu)(M−1

u )⊤ du
)

M⊤
t

Mt = exp(
∫ t

0 Bu du) and Bt = ∂F (xt)
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Recent highlights

Write xt = xt(x0), and,

Vt(x0) = Mt

(

∫ t

0 M−1
u G(xu(x0))(M

−1
u )⊤ du

)

M⊤
t ,

Mt = exp(
∫ t

0 Bu du) and Bt = ∂F (xt(x0)).
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Recent highlights

Write xt = xt(x0), and,

Vt(x0) = Mt

(

∫ t

0 M−1
u G(xu(x0))(M

−1
u )⊤ du

)

M⊤
t ,

Mt = exp(
∫ t

0 Bu du) and Bt = ∂F (xt(x0)).

Now think of x0 as a random variable X0.
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Recent highlights

Write xt = xt(x0), and,

Vt(x0) = Mt

(

∫ t

0 M−1
u G(xu(x0))(M

−1
u )⊤ du

)

M⊤
t ,

Mt = exp(
∫ t

0 Bu du) and Bt = ∂F (xt(x0)).

Now think of x0 as a random variable X0.

Use conditional expectation (drop superscript (N)):

E Xt = E E(Xt|X0) ≃ E xt(X0).

Cov(Xt) = Cov(E(Xt|X0)) + E Cov(Xt|X0)

≃ Cov(xt(X0)) + 1
N

EVt(X0).
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Recent highlights

Suppose X0 has pdf f0.
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Recent highlights

Suppose X0 has pdf f0.

In determining the action of the map x0 7→ xt(x0) (for
simplicity, assumed to be injective) on f0, we obtain a
pdf ft that summarises the effect of random initial
conditions in our population assuming deterministic
dynamics: for any t > 0,

ft(y) = |Jt(y)|f0

(

x−1
t (y)

)

(y ∈ Rt),

where Jt(y) is the Jacobian of x−1
t (y) and Rt = xt(E) is

the image of E under xt.
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Recent highlights

In the one-dimensional case (k = 1) we can exhibit ft

explicitly.
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In the one-dimensional case (k = 1) we can exhibit ft

explicitly.

Let L(u) be the primitive L(u) =
∫ u

dw/F (w). Suppose
L is injective (it is sufficient that F be everywhere
positive or everywhere negative).
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Recent highlights

In the one-dimensional case (k = 1) we can exhibit ft

explicitly.

Let L(u) be the primitive L(u) =
∫ u

dw/F (w). Suppose
L is injective (it is sufficient that F be everywhere
positive or everywhere negative).

Then,

ft(y) =
∣

∣

∣

F (L−1(L(y)−t))
F (y)

∣

∣

∣
f0(L

−1(L(y) − t)).
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