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Expertise

Phil Pollett
Mathematical modelling, stochastic process theory and applica-
tions: ecology, epidemiology, parasitology, telecommunications
and chemical kinetics.
A current project: Stochastic models for metapopulation net-
works.

Ross McVinish
Lévy processes and stochastic processes displaying long mem-
ory, Bayesian nonparametrics, computation for Bayesian statis-
tics and time series analysis.

A current project: Limits of large metapopulations with site-
dependent extinction.
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PhD Projects

Fionnuala Buckley (April 2007 – )

Discrete-time Stochastic
Metapopulation Models

A metapopulation is a population that occupies several geographically separated
habitat patches. Although the individual patches may become empty through
local extinction, they may be recolonized through migration from other patches.
Empirical evidence suggests that a balance between migration and extinction is
reached that enables metapopulations to persist for long periods, and there has
been considerable interest in developing methods that account for their persis-
tence populations and which provide an effective means of studying their long-
term behaviour before extinction occurs.

For many populations, extinction and colonization happen in distinct phases, cor-
responding to stages in the organism’s life cycle, and the natural stochastic model
is a (time-inhomogeneous) Markov chain in discrete time. We have developed a
device that accounts for colonization potential of occupied patches, and we are
developing deterministic and distributional approximations to analyse these mod-
els that build on our direct methods for "mainland-island" models.
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PhD Projects

Dejan Jovanovi ć (March 2009 – )

Fault Detection in Complex
and Distributed Systems

The primary goal is to develop a theoretical framework based on Markov pro-
cesses in order to detect, identify and isolate faults in complex and distributed
systems. The aim is to improve overall safety and reduce any negative impact
on the environment due to a fault. There are three main tasks. The first is de-
velopment of local stochastic models, which need to be capable of interpreting
the local environment’s state. At the core is estimation of transition probabilities.
The second is extracting the features of local models in the case of non-faulty and
faulty operating conditions. In order to assist local models to achieve satisfactory
results, design and implementation of a multi-agent system is proposed. The next
task is planning an optimal action to protect the environment. Finally, the frame-
work has to allow for the possibility of incorporating local expert knowledge about
the system.
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PhD Projects

Andrew Smith (July 2009 – )

Models for Spatially
Structured Metapopulations

We aim to extend continuous-time stochastic models for metapopulations to ac-
count for the spatial arrangement of patches. We begin by looking at basic
patch-occupancy models for population networks, ones that merely record which
patches are occupied. The main aim is to exploit recent developments in stochas-
tic network theory by adapting models that were developed originally for the study
of telecommunications systems. By recording the numbers of individuals in the
various patches we can incorporate local patch dynamics, spatial structure and
migration patterns. We will adopt the powerful diffusion approximation technique
that has been used so effectively elsewhere in the analysis of patch-occupancy
models.
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Metapopulations
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Metapopulations

Colonization
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Metapopulations
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Metapopulations

Local Extinction
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Metapopulations
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Metapopulations
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Metapopulations
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Metapopulations

Total Extinction
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Metapopulations
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Recent highlights - Ross McVinish

Let X
(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t ), where X

(n)
i,t is a binary

variable indicating whether or not patch i is occupied.
(For each n, (X

(n)
t , t = 0, 1, . . . , T ) is a Markov chain.)
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Colonization: unoccupied patches become occupied
independently with probability f(n−1

∑n
i=1 X

(n)
i,t ), where

f : [0, 1] → [0, 1] is continuous, increasing and concave.

Extinction: occupied patch i remains occupied
independently with probability Si (random).
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Recent highlights - Ross McVinish

Theorem Suppose that

n−1
∑n

i=1 Sk
i

P→ s(k) and n−1
∑n

i=1 Sk
i X

(n)
i,0

P→ d0(k),

for all k = 0, 1, . . . , T . Then, there is a deterministic
triangular array (dt(k)) (t = 0, . . . , T , k = 0, . . . , T − t)

defined by

dt+1(k) = dt(k + 1) + f(dt(0))(s(k + 1) − dt(k + 1)),

such that

n−1
∑n

i=1 Sk
i X

(n)
i,t

P→ dt(k).
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Recent highlights

Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals at site i in a population network with k sites
and a total number of N individuals.
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Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals at site i in a population network with k sites
and a total number of N individuals. Suppose that
(nt, t ≥ 0) is a continuous-time Markov chain taking
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Recent highlights

Let nt = (n1,t, . . . , nk,t), where ni,t is the number of
individuals at site i in a population network with k sites
and a total number of N individuals. Suppose that
(nt, t ≥ 0) is a continuous-time Markov chain taking
values in a (finite) subset S of Z

k, and suppose that
the transition rates Q = (qnm, n,m ∈ S) satisfy . . .

Definition (Kurtz∗) The model is density dependent if
there is a subset E of R

k and a continuous function
f : Z

k × E → R, such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Z
k).

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure
jump Markov processes, J. of Appl. Probab. 7, 49–58.
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Recent highlights

Let X (N)

i,t = ni,t/N be the proportion of individuals at
site i.
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Recent highlights

Let X (N)

i,t = ni,t/N be the proportion of individuals at
site i.

Call (X (N)

t ) the population density process.

Idea: (X (N)

t ) looks deterministic when N is large.
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Recent highlights

Theorem Let F (x) :=
∑

l 6=0 lfl (x) (x ∈ E) and suppose
that F is Lipschitz.

If limN→∞ X (N)

0 = x0, then (X (N)

t ) converges (uniformly
in probability over [0, t]) to (xt), the unique
(deterministic) trajectory satisfying

x ′
s = F (xs) (xs ∈ E, s ∈ [0, t]).
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Recent highlights

Define (Z(N)

t ) (scaled fluctuations about the
deterministic trajectory) by

Z(N)
s =

√
N

(

X (N)
s − xs

)

(0 ≤ s ≤ t).
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Recent highlights

Define (Z(N)

t ) (scaled fluctuations about the
deterministic trajectory) by

Z(N)
s =

√
N

(

X (N)
s − xs

)

(0 ≤ s ≤ t).

Idea: (Z(N)

t ) looks like a Gaussian diffusion for large N .

This next result follows almost immediately from . . .

∗Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes
approximating ordinary differential processes. J. Appl. Probab. 8, 344–356.
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Recent highlights

Theorem Suppose that F is Lipschitz and has
uniformly continuous first derivative on E, and that the
k × k matrix G(x), defined for x ∈ E by
Gij(x) =

∑

l 6=0 liljfl(x), is uniformly continuous on E.

Let (xt) be the unique deterministic trajectory starting
at x0 and suppose that limN→∞

√
N

(

X (N)

0 − x0

)

= z.

Then, (Z(N)

t ) converges weakly in D[0, t] (the space of
right-continuous, left-hand limits functions on [0, t]) to a
Gaussian diffusion (Zt) with initial value Z0 = z and
with mean and covariance given by µs := E(Zs) = Msz,
where Ms = exp(

∫ s

0 Bu du) and Bs = ∂F (xs), and

Vs := Cov(Zs) = Ms

(∫ s

0 M−1
u G(xu)(M−1

u )⊤ du
)

M⊤
s .
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Recent highlights

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .
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t = BtVt + VtB
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Recent highlights

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .

Note: V ′
t = BtVt + VtB

⊤
t + G(xt),

where Bt = ∂F (xt) and x ′
t = F (xt).

Jun Zhao (Workshop 29/06/2009) "Sync theory for
complex networks with non-identical nodes"?

V ′
t = BtVt + VtB

⊤
t + Gt.
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Recent highlights

Corollary If xeq satisfies F (xeq) = 0, then, under the
conditions of the previous theorem, the family (Z(N)

t )

defined by

Z(N)
s =

√
N(X (N)

s − xeq) (0 ≤ s ≤ t),

converges weakly in D[0, t] to an OU process (Zt) with
initial value Z0 = z, local drift matrix B = ∂F (xeq) and
local covariance matrix G(xeq). In particular, Zs is
normally distributed with mean and covariance given
by µs := E(Zs) = eBsz and

Vs := Cov(Zs) =
∫ s

0 eBuG(xeq)e
B⊤u du .
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Recent highlights

Note that

Vt =
∫ t

0 eBuG(xeq)e
B⊤u du = V∞ − eBtV∞eB⊤t,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞B⊤ + G(xeq) = 0.

We conclude that, for N large, X (N)

t has an
approximate Gaussian distribution with
Cov(X (N)

t ) ≃ Vt/N .
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