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A model for cell proliferation

Starting point. Talks given by Kerry Landman at recent UQ Mathematics Colloquia
(August 2015 and July 2016).

The model in question is described in . . .

Hywood, J.D., Hackett-Jones, E.J. and Landman, K.A. (2013) Modeling biological tissue growth:

Discrete to continuum representations. Physical Review E , 8, 032704.

Broad aim. Improve our understanding of the role of cell proliferation in tissue growth.

Specific instance. Neural crest cells, present in the gut tissue of the developing human
embryo, form neurons that construct the enteric nervous system (ENS). Failure of these
cells to invade the gut tissue completely can cause imperfect formation of the ENS, and
lead to Hirschsprung’s disease, which can result in potentially life-threating
complications.

Modelling. We investigate a one-dimensional lattice model for tissue growth with lattice
spacing ∆. (A continuum model is obtained in the limit as ∆→ 0.)
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A model for cell proliferation

We investigate a one-dimensional lattice model for tissue growth with lattice spacing ∆.
(A continuum model is obtained in the limit as ∆→ 0.)

Lattice site i is at position x = i∆.

Let N(t) be the number of cells at time t, so that L(t) = ∆N(t) is the length of the
growing tissue segment.

Proliferation. A cell is selected uniformly at random. If the cell at site i is selected, it
moves to site i + 1 pushing all cells to the right of it up by one. A new unmarked cell
now occupies site i .

Times between proliferation events are iid exp(λ).

Equivalently. You can think of independent homogenous rate-λ Poisson processes at
each site triggering proliferation events.

The state X (t) of the system at time t is a binary vector of length N(t), whose i-th
entry is 1 or 0 according to whether site i is occupied by a marked cell. It takes values in
the (countable) subset of {0, 1}N whose elements have only finitely many 1s.
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Q & A. What can we say about the model?

The process (X (t), t ≥ 0) is a

continuous-time Markov chain.

Consider a particular marked cell. Is its position I (t) at time t Markovian?

Yes.

If that cell is in position i , it moves to the right at rate

λi .

The position of any particular marked cell evolves as a

Yule Process, that is, a
pure-birth process with birth rates λi = λi (in the usual notation).

Therefore, the distance travelled by any particular marked cell up to time t (its
position relative to its starting site j) has a

negative binomial

distribution.

That distance will be k (≥ 0) with probability

(
j + k − 1

k

)
e jt(1− et)

k , where et = exp(−λt).

Finally note that if we start with all marked cells in adjacent sites, then, at any
future time, the gaps between them will be independent, and thus the positions of
the marked cells at any fixed time t will follow a discrete renewal process with
negative binomial lifetimes. (We have not exploited this fact in our analysis so far,
but we have plans!)
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The approach of Hywood, Hackett-Jones, and Landman

They focussed attention on the expected occupancy (occupancy probability) Ci (t), the
chance that site i is occupied by a marked cell at time t, and derived a continuum model
for occupation density C(x , t) at position x (taking ∆ to its limit 0).

Simulation experiments suggested that they might approximate the movement of the
marked cells by independent Yule processes, one for each marked cell .
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The approach of Hywood, Hackett-Jones, and Landman

Solutions, in red, to
∂

∂t
C(x, t) = −λ

∂

∂x
[xC(x, t)] +

λ∆

2

∂2

∂x2
[xC(x, t)],

and expected occupancy estimates (1000 runs), in black, for t = 1, 2, 3, 4, with

L(0) = 24, λ = 0.69, and marked cells initially in [12, 18]: (a) ∆ = 1, (b) ∆ = 1/2.
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The expected occupancy

We observed that the expected occupancy is the same for both models, and easy to write
down.

If the marked cells are initially located at adjacent sites j = r + 1, . . . s, the expected
occupancy for site k at time t is

Ck(t) =

min{s,k}∑
j=r+1

(
k − 1

k − j

)
e jt(1− et)

k−j , where et = exp(−λt).

To see this, generate a Yule process starting j using an ensemble of independent rate-λ
Poisson processes {N(j)

i (t), i = 1, 2, . . . } (one for each site i), and superimpose these
processes (s − r of them).

If the {N(j)}, j = r + 1, . . . s, are independent ensembles of Poisson processes, we get
trajectories the approximating model. However, if they are the same ensemble, we get
trajectories of the original model. The above formula is a simple consequence of noticing
that the approximating model is the empirical process, which counts the numbers of
“particles” in each state.
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The expected occupancy
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Estimates (blue), based on 10, 000 runs, of the expected occupancy of the pro-

liferation process (left) and the corresponding ensemble of Yule processes (right)

over 600 sites, with ∆ = 1, t = 4.0, proliferation rate λ = 0.69, and initially

7 marked cells located at sites 12 up to 18. Also plotted (solid red) is Ci (t) for

i = 1, . . . , 600.
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Estimates (blue), based on 10, 000 runs, of the expected occupancy of the prolifer-

ation process (left) and the corresponding ensemble of Yule processes (right) over

2, 500 sites, with ∆ = 1, t = 4.0, proliferation rate λ = 0.69, and initially 107

marked cells located at sites 12 up to 118. Also plotted (solid red) is Ci (t) for

i = 1, . . . , 2, 500.
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The occupancy density

Since the PDE model for the occupation density C(x , t) obtained by Hywood,
Hackett-Jones, Landman was not really a continuum model, we tried to derive an explicit
expression for occupation density, as follows:

Suppose cells are situated at points in the interval [a, b] with equal spacing ∆ (> 0):

a + ∆, a + 2∆, . . . , a + N∆ (= b),

where N = (b − a)/∆ is the number of points. The idea is that the initial “cell mass”
b − a is distributed evenly among these N points. We are now interested in the expected
occupancy at position x at time t, namely

C∆(x , t) =

min{b/∆,x/∆}∑
j=a/∆+1

(
x/∆− 1

x/∆− j

)
e jt(1− et)

x/∆−j .

What happens to C∆(x , t) as ∆→ 0?

Phil. Pollett (UQ School of Maths and Physics) A model for cell proliferation 13 / 26



The occupancy density

Since the PDE model for the occupation density C(x , t) obtained by Hywood,
Hackett-Jones, Landman was not really a continuum model, we tried to derive an explicit
expression for occupation density, as follows:

Suppose cells are situated at points in the interval [a, b] with equal spacing ∆ (> 0):

a + ∆, a + 2∆, . . . , a + N∆ (= b),

where N = (b − a)/∆ is the number of points. The idea is that the initial “cell mass”
b − a is distributed evenly among these N points. We are now interested in the expected
occupancy at position x at time t, namely

C∆(x , t) =

min{b/∆,x/∆}∑
j=a/∆+1

(
x/∆− 1

x/∆− j

)
e jt(1− et)

x/∆−j .

What happens to C∆(x , t) as ∆→ 0?

Phil. Pollett (UQ School of Maths and Physics) A model for cell proliferation 13 / 26



The occupancy density

Since the PDE model for the occupation density C(x , t) obtained by Hywood,
Hackett-Jones, Landman was not really a continuum model, we tried to derive an explicit
expression for occupation density, as follows:

Suppose cells are situated at points in the interval [a, b] with equal spacing ∆ (> 0):

a + ∆, a + 2∆, . . . , a + N∆ (= b),

where N = (b − a)/∆ is the number of points. The idea is that the initial “cell mass”
b − a is distributed evenly among these N points. We are now interested in the expected
occupancy at position x at time t, namely

C∆(x , t) =

min{b/∆,x/∆}∑
j=a/∆+1

(
x/∆− 1

x/∆− j

)
e jt(1− et)

x/∆−j .

What happens to C∆(x , t) as ∆→ 0?

Phil. Pollett (UQ School of Maths and Physics) A model for cell proliferation 13 / 26



The occupancy density
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The left-hand pane shows C∆(x, t) at t = 4.0 for values of ∆ from 1 down to

1/n, where n = 10. The initial cell mass is on the interval [12, 18], and λ = 0.69.

The right-hand pane shows C∆(x, t) for x = 228 (approximately where the peaks

occur) for values of ∆ = 1/n up to n = 100. The code uses nbinpdf(k-j,j,e).
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The occupancy density
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C∆(x, t) at t = 4.0 for values of ∆ from 1 down to 1/n, where n = 5. The initial

cell mass is on the interval [12, 118], and λ = 0.69. Decreasing ∆ corresponds to

an increasing amount of flatness in the curves and decreasing tail mass.
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The occupancy density - an approximation

Recall that

C∆(x , t) =

min{b/∆,x/∆}∑
j=a/∆+1

(
x/∆− 1

x/∆− j

)
e jt(1− et)

x/∆−j , where et = exp(−λt).

Suppose that all quantities are chosen so that i := x/∆− 1, l := a/∆− 1, m := b/∆− 1,
and n := (b − a)/∆ = m − l are integers, and in particular when ∆ becomes small.

Then, we may write

C∆(x , t) =

min{n,i−l}∑
j=1

(
i

i − l − j

)
θj+l+1(1− θ)i−l−j , where θ = et ,

noting that i , l , m, and n, increase at the same rate when ∆→ 0, and in particular,
l/i → a/x and m/i → b/x .
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The occupancy density - an approximation

Next observe that

C∆(x , t) = θ

min{n+l,i}∑
j=l+1

(
i

j

)
θj(1− θ)i−j = θ Pr(l + 1 ≤ Si ≤ min{n + l , i}),

where Si has a binomial B(i , θ) distribution (θ = exp(−λt)).

So, we may employ the normal approximation to the binomial distribution to approximate
C∆(x , t) where ∆ is small (and hence i is large). We get C∆(x , t) ' Capprox(x , t), where

Capprox(x , t) = θ Pr

(
a/x − θ√
θ(1− θ)

√
i ≤ Z ≤ min{b/x , 1} − θ√

θ(1− θ)

√
i

)
,

where Z is a standard normal random variable.
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The occupancy density - normal approximation
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Evaluation of C∆(x, t) at t = 4.0 with λ = 0.69, and with initial cell mass on

the interval [12, 18] (left pane) and on the interval [12, 118] (right pane). The

corresponding normal approximation is shown in bold red. The code uses normcdf.
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The occupancy density - normal approximation
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The normal approximation with ∆ quite small (∆ = 0.001). A clearer picture is

emerging of the shape of occupation density curve C(x, t).
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The occupancy density

Theorem. If, initially, the marked cells lie in the interval [a, b], the occupation density at
time t is given by

C(x , t) := lim
∆→0

C∆(x , t) =



0 if 0 < x < aeλt

1
2
e−λt if x = aeλt

e−λt if aeλt < x < beλt

1
2
e−λt if x = beλt

0 if x > beλt .

Proof . Recall that C∆(x , t) = θ Pr(l + 1 ≤ Si ≤ min{m, i}), where Si has a binomial
B(i , θ) distribution (θ = exp(−λt)), and l/i → a/x and m/i → b/x as i →∞.

We use Theorem 2 of . . .

Arratia, R. and Gordon, L. (1989) Tutorial on large deviations for the binomial distribution.

Bulletin of Mathematical Biology 51, 125–131.

. . . which provides an approximation for Pr(Si ≥ ai), a > 0, when i is large.
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The result of Arratia and Gordon

Let H(ε, θ) be Kullback-Leibler divergence between an ε-coin and a θ-coin:

H(ε, θ) = ε log
( ε
θ

)
+ (1− ε) log

(
1− ε
1− θ

)
.

Let r be the “odds ratio” between an ε-coin and a θ-coin:

r = r(ε, θ) =

(
θ

1− θ

)/( ε

1− ε

)
=
θ(1− ε)
ε(1− θ)

.

This satisfies 0 < r < 1 whenever θ < ε < 1.

Suppose Si has a binomial B(i , θ) distribution. If θ < ε < 1,

Pr(Si ≥ iε) ∼ 1

(1− r)
√

2πε(1− ε)i
e−iH(ε,θ), as i →∞.
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The occupancy density
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Evaluation of the occupation density C(x, t) at times t = 0, 0.5, 1.0, . . . , 5.0,

with λ = 0.69, and with initial cell mass on the interval [12, 18].
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The occupancy density

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

Position x

O
cc
u
p
a
n
cy

d
en
si
ty

C
(x
,t
)

Evaluation of the occupation density C(x, t) at times t = 0, 0.5, 1.0, . . . , 5.0,

with λ = 0.69, and with initial cell mass on the interval [12, 18]. The green bars

indicate relative cell mass.
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The occupancy density
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Evaluation of the occupation density C(x, t) at times t = 0, 0.5, 1.0, . . . , 5.0,

with λ = 0.69, and with initial cell mass on the interval [0, 18].
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The occupancy density
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Evaluation of the occupation density C(x, t) at times t = 0, 0.5, 1.0, . . . , 5.0,

with λ = 0.69, and with initial cell mass on the interval [0, 18]. The green bars

indicate relative cell mass.
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