From rabbits in Canberra to convergence in $D[0, t]$: Part I

Phil Pollett

Department of Mathematics and MASCOS
University of Queensland

Australian Research Council Centre of Excellence for Mathematics and Statistics of Complex Systems

Rabbits in Canberra

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.

Growth of yeast

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Biochemische Zeitschrift 57, 313-334.

Rabbits in Canberra

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.

Rabbits in Canberra

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.

Growth of yeast

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Biochemische Zeitschrift 57, 313-334.

Growth of yeast

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Biochemische Zeitschrift 57, 313-334.

Population growth in USA

Showing result of fitting equation (xviii) to population data.
Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since 1790 and its mathematical representation, Proc. Nat. Academy Sci. 6, 275-288.

A precipitation reaction

A precipitation reaction

A precipitation reaction

Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.

Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.

A deterministic model

$$
\frac{d n}{d t}=n f(n)
$$

The net growth rate per individual is a function of the population size n.

We want $f(n)$ to be positive for small n and negative for large n.

A deterministic model

$$
\frac{d n}{d t}=n f(n)
$$

The net growth rate per individual is a function of the population size n.

We want $f(n)$ to be positive for small n and negative for large n. Simply set $f(n)=r-s n$ to give

$$
\frac{d n}{d t}=n(r-s n) .
$$

A deterministic model

$$
\frac{d n}{d t}=n f(n)
$$

The net growth rate per individual is a function of the population size n.

We want $f(n)$ to be positive for small n and negative for large n. Simply set $f(n)=r-s n$ to give

$$
\frac{d n}{d t}=n(r-s n) .
$$

This is the Verhulst* model (or logistic model):
*Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement, Corr. Math. et Phys. X, 113-121.

The Verhulst model

Pierre Francois Verhulst (1804-1849, Brussels, Belgium)

The Verhulst model

Soit pla population : représentons par $d p$ l'accroissement infiniment petit qu'elle reçoit pendant un terujs infiniment courtdt. Si la population croissait en progression géométrique, nous aurions l'équation $\frac{d p}{d t}=m_{l}$. Mais comme la vitesse d'accroissement de la population est retardéc par l'augmentation méme du nombre des habitans, nous devrons retrancher de mp une fonction inconnue de p; de manière que la formule à intégrer deviendra

$$
\frac{d p}{d t}=m p-\rho(p)
$$

L'hypothèse la plus simple que l'on puisse faire sur la forme de la fonction ρ, est de supposer $p(p)=n p^{2}$. On trouve alors pour intégrale de l'équation ci-dessus

$$
t=\frac{1}{m}[\log \cdot p-\log \cdot(m-n p)]+\text { constante }
$$

et il suffira de trois observations pour déterminer lés deux coefficiens constans m et n et la constante arbitraire.

The Verhulst model

En résolvant la dernièrc équation par rapport à p, il vient

$$
\begin{equation*}
p=\frac{m p^{\prime} e^{m t}}{n p^{\prime} c^{m t}+m-n p^{\prime}} \tag{1}
\end{equation*}
$$

en désignant par p^{\prime} la population qui répond à $t=0$, et par cla base des logarithues népériens. Si l'on fait $t=\infty$, on voit quela valcur de \boldsymbol{p} correspondante cst $\mathrm{P}=\frac{m}{\boldsymbol{n}}$. Tello est dunc la limite supérieure de la population.

Au lieu de supposer $\rho p=r p^{2}$, on peut prendre $\rho p=n p^{2}$, z étant quelconque, $0 u p p=r \log \cdot p$. Toutes ces hjpothèses satisfont également bien aux faits observés; mais elles donnent des valcurs très-différentes pour la limite supéricure de la population.

J'ai supposé successivement

$$
\xi p=n p^{2}, \varphi p=n p^{3}, \xi p=n p^{4}, \xi p=n \log \cdot p ;
$$

et les différences entro les propulations calculées et celles que fournit l'observation ont été sensiblement les mèmes.

The Verhulst model

Mathexatiege et parsteri.
Kor
Tableaz des progrds de la population de la France depais 1817 jusqu'ब̀ 1831, d'apris l'Annwaire pour 1834.

axsfis.	D'Amisi'trixatil.	D'apis LA monxcti.	$\begin{gathered} \text { cazazez } \\ \text { proportion } 10 \end{gathered}$	Logarithmes de la population calculie.
1817	$\begin{array}{r} 29,981,336 \\ 185,902 \end{array}$	$\begin{array}{r} 29,981,336 \\ 208,231 \end{array}$	0,0000	7,4788-900
1818	$\begin{array}{r} 30,277,238 \\ 161,943 \end{array}$	$\begin{array}{r} 30,1 \varepsilon 9,500 \\ 201,500 \end{array}$	+0,0004	7,4793565
1819	$\begin{array}{r} 30,339,186 \\ 199,863 \end{array}$	$\begin{array}{r} 30,594,000 \\ 200,500 \end{array}$	+0,0018	7,48278i5
1820	$\begin{array}{r} 30,639,049 \\ 183,237 \end{array}$	$\begin{array}{r} 30,694,500 \\ 197,300 \end{array}$	$+0,0018$	7,4858981
1821	$\begin{array}{r} 30,727,276 \\ 212,144 \end{array}$	$\begin{array}{r} 30,791,803 \\ 192,703 \end{array}$	+0,0021	7,4884310
1822	$\begin{array}{r} 30,939,420 \\ 199,634 \end{array}$	$\begin{array}{r} 30,084,600 \\ 189,600 \end{array}$	+0,0014	7,4911453
1823	$\begin{array}{r} 31,138,054 \\ 221,286 \end{array}$	$\begin{array}{r} 31,174,000 \\ 185,223 \end{array}$	+0,0012	7,4937907
1824	$\begin{array}{r} 31,359,340 \\ 220,5 \pm 6 \end{array}$	$\begin{array}{r} 31,350,340 \\ 182,777 \end{array}$	0,0000	7,4963719
1825	$\begin{array}{r} 31,579,888 \\ 178,974 \end{array}$	$\begin{array}{r} 31,542,000 \\ 178,000 \end{array}$	-0,0012	7,4988850
1826	$\begin{array}{r} 31,755,880 \\ 157,633 \end{array}$	$\begin{array}{r} 31,720,000 \\ 173,000 \end{array}$	-0,0011	7,5013386
1827	$\begin{array}{r} 31,913,393 \\ 180,071 \end{array}$	$\begin{array}{r} 31,895,000 \\ 172,000 \end{array}$	-0,0005	7,5037257
1823	$\begin{array}{r} 32,102,464 \\ 139,402 \end{array}$	$\begin{array}{r} 32,087,000 \\ 163,000 \end{array}$	-0,0011	7,5060547
1829	$\begin{array}{r} 32,241,866 \\ 161,074 \end{array}$	$\begin{array}{r} 33,235,000 \\ 164,500 \end{array}$	-0,0002	2,5083251
1830	$\begin{array}{r} 32,402,940 \\ 157,904 \end{array}$	$\begin{array}{r} 32,390,500 \\ 161,434 \end{array}$	0,0000	7,5105385
$\begin{gathered} 1831 \\ \text { 1r janv. } \end{gathered}$	$32,5 e 0,934$ (Chiffre du recenat.)	32,560,934	0,0000	7,5126965

The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K being the "natural" population size (the carrying capacity). We put $f(n)=r(1-n / K)$ giving

$$
\frac{d n}{d t}=r n(1-n / K),
$$

which is the original model with $s=r / K$.

The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K being the "natural" population size (the carrying capacity). We put $f(n)=r(1-n / K)$ giving

$$
\frac{d n}{d t}=r n(1-n / K),
$$

which is the original model with $s=r / K$.
Integration gives

$$
n_{t}=\frac{K}{1+\left(\frac{K-n_{0}}{n_{0}}\right) e^{-r t}} \quad(t \geq 0) .
$$

Verhulst-Pearl model

This formulation is due to Raymond Pearl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since 1790 and its mathematical representation, Proc. Nat. Academy Sci. 6, 275-288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New York.

Pearl, R. (1927) The growth of populations, Quart. Rev. Biol. 2, 532-548.

Verhulst-Pearl model

Raymond Pearl (1879-1940, Farmington, N.H., USA)

Pearl was a "social drinker"

Pearl was widely known for his lust for life and his love of food, drink, music and parties. He was a key member of the Saturday Night Club. Prohibition made no dent in Pearl's drinking habits (which were legendary).

Pearl was a "social drinker"

Pearl was widely known for his lust for life and his love of food, drink, music and parties. He was a key member of the Saturday Night Club. Prohibition made no dent in Pearl's drinking habits (which were legendary).

In 1926, his book, Alcohol and Longevity, demonstrated that drinking alcohol in moderation is associated with greater longevity than either abstaining or drinking heavily.

[^0]
Verhulst-Pearl model

Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.

Sheep in Tasmania

(With the deterministic trajectory subtracted)

A stochastic model

We really need to account for the variation observed.
A common approach to stochastic modelling in Applied Mathematics can be summarised as follows:
"I suspect that the world is not deterministic - I should add some noise"

A stochastic model

We really need to account for the variation observed.
A common approach to stochastic modelling in Applied Mathematics can be summarised as follows:
"I suspect that the world is not deterministic - I should add some noise"

[^1]
Adding noise

In our case,

$$
n_{t}=\frac{K}{1+\left(\frac{K-n_{0}}{n_{0}}\right) e^{-r t}}+\text { something random }
$$

or perhaps

$$
\frac{d n}{d t}=r n\left(1-\frac{n}{K}\right)+\sigma \times \text { noise } .
$$

Noise?

The usual model for "noise" is white noise (or pure Gaussian noise).

Imagine a random process $\left(\xi_{t}, t \geq 0\right)$ with $\xi_{t} \sim N(0,1)$ for all t and $\xi_{t_{1}}, \ldots, \xi_{t_{n}}$ independent for all finite sequences of times t_{1}, \ldots, t_{n}.

White noise

Brownian motion

The white noise process ($\xi_{t}, t \geq 0$) is formally defined as the derivative of standard Brownian motion ($B_{t}, t \geq 0$).
Brownian motion (or Wiener process) can be constructed by way of a random walk. A particle starts at 0 and takes small steps of size $+\Delta$ or $-\Delta$ with equal probability $p=1 / 2$ after successive time steps of size h. If $\Delta \sim \sqrt{h}$, as $h \rightarrow 0$, then the limit process is standard Brownian motion.

Symmetric random walk: $\Delta=\sqrt{h}$

Random walk simulation: $h=2.5 \mathrm{e}-005, \Delta=0.005$

Brownian motion

The white noise process ($\xi_{t}, t \geq 0$) is formally defined as the derivative of standard Brownian motion ($B_{t}, t \geq 0$).
Brownian motion (or Wiener process) can be constructed by way of a random walk. A particle starts at 0 and takes small steps of size $+\Delta$ or $-\Delta$ with equal probability $p=1 / 2$ after successive time steps of size h. If $\Delta \sim \sqrt{h}$, as $h \rightarrow 0$, then the limit process is standard Brownian motion.

Brownian motion

This construction permits us to write $d B_{t}=\xi_{t} \sqrt{d t}$, with the interpretation that a change in B_{t} in time $d t$ is a Gaussian random variable with $\mathbb{E}\left(d B_{t}\right)=0$,
$\operatorname{Var}\left(d B_{t}\right)=d t$ and $\operatorname{Cov}\left(d B_{t}, d B_{s}\right)=0(s \neq t)$.

Brownian motion

This construction permits us to write $d B_{t}=\xi_{t} \sqrt{d t}$, with the interpretation that a change in B_{t} in time $d t$ is a Gaussian random variable with $\mathbb{E}\left(d B_{t}\right)=0$,
$\operatorname{Var}\left(d B_{t}\right)=d t$ and $\operatorname{Cov}\left(d B_{t}, d B_{s}\right)=0(s \neq t)$.
The correct interpretation is by way of the Itô integral:

$$
B_{t}=\int_{0}^{t} d B_{s}=\int_{0}^{t} \xi_{s} d s
$$

Brownian motion

General Brownian motion ($W_{t}, t \geq 0$), with drift μ and variance σ^{2}, can be constructed in the same way but with $\Delta \sim \sigma \sqrt{h}$ and $p=\frac{1}{2}(1+(\mu / \sigma) \sqrt{h})$, and we may write

$$
d W_{t}=\mu d t+\sigma d B_{t},
$$

with the interpretation that a change in W_{t} in time $d t$ is a Gaussian random variable with $\mathbb{E}\left(d W_{t}\right)=\mu d t$, $\operatorname{Var}\left(d W_{t}\right)=\sigma^{2} d t$ and $\operatorname{Cov}\left(d W_{t}, d W_{s}\right)=0$.

Brownian motion

$$
d W_{t}=\mu d t+\sigma d B_{t}
$$

This stochastic differential equation (SDE) can be integrated to give $W_{t}=\mu t+\sigma B_{t}$.

Brownian motion

$$
d W_{t}=\mu d t+\sigma d B_{t},
$$

This stochastic differential equation (SDE) can be integrated to give $W_{t}=\mu t+\sigma B_{t}$.

It does not require an enormous leap of faith for us now to write down, and properly interpret, the SDE

$$
d n_{t}=r n_{t}\left(1-n_{t} / K\right) d t+\sigma d B_{t}
$$

as a model for growth.

Adding noise

The idea (indeed the very idea of an SDE) can be traced back to Paul Langevin's 1908 paper "On the theory of Brownian Motion":

Langevin, P. (1908) Sur la théorie du mouvement brownien, Comptes
Rendus 146, 530-533.

He derived a "dynamic theory" of Brownian Motion three years after Einstein's ground breaking paper on Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in stationary liquids required by the molecular-kinetic theory of heat, Ann. Phys. 17, 549-560 [English translation by Anna Beck in The Collected Papers of Albert Einstein, Princeton University Press, Princeton, USA, 1989, Vol. 2, pp. 123-134.]

Langevin

Langevin introduced a "stochastic force" (his phrase "complementary force"-complimenting the viscous drag μ) pushing the Brownian particle around in velocity space (Einstein worked in configuration space).

Langevin

In modern terminology, Langevin described the Brownian particle's velocity as an Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity, while Einstein described its position as a Wiener process.
The Langevin equation (for a particle of unit mass) is

$$
d v_{t}=-\mu v_{t} d t+\sigma d B_{t}
$$

This is Newton's law $(-\mu v=$ Force $=m \dot{v})$ plus noise.

Langevin

In modern terminology, Langevin described the Brownian particle's velocity as an Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity, while Einstein described its position as a Wiener process.
The Langevin equation (for a particle of unit mass) is

$$
d v_{t}=-\mu v_{t} d t+\sigma d B_{t}
$$

This is Newton's law $(-\mu v=$ Force $=m \dot{v})$ plus noise.
The (strong) solution to this SDE is the OU process.

Langevin

In modern terminology, Langevin described the Brownian particle's velocity as an Ornstein-Uhlenbeck $(O U)$ process and its position as the time integral of its velocity, while Einstein described its position as a Wiener process.
The Langevin equation (for a particle of unit mass) is

$$
d v_{t}=-\mu v_{t} d t+\sigma d B_{t} .
$$

This is Newton's law $(-\mu v=$ Force $=m \dot{v})$ plus noise. The (strong) solution to this SDE is the OU process.
Warning: $\int_{0}^{t} v_{s} d s \neq B_{t}$; this functional is not even Markovian.

Langevin

Paul Langevin (1872 - 1946, Paris, France)

Langevin

Einstein said of Langevin
"... It seems to me certain that he would have developed the special theory of relativity if that had not been done elsewhere, for he had clearly recognized the essential points."

Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

The person on the right is not Langevin, but Langevin's PhD supervisor Pierre Curie.

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$.

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$. Differentiation (Itô calculus!) gives $d y_{t}=e^{\mu t} d v_{t}+\mu e^{\mu t} v_{t} d t$.

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$. Differentiation (Itô calculus!) gives $d y_{t}=e^{\mu t} d v_{t}+\mu e^{\mu t} v_{t} d t$.
But, from Langevin's equation we have that

$$
e^{\mu t} d v_{t}=-\mu e^{\mu t} v_{t} d t+\sigma e^{\mu t} d B_{t},
$$

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$. Differentiation (Itô calculus!) gives $d y_{t}=e^{\mu t} d v_{t}+\mu e^{\mu t} v_{t} d t$.
But, from Langevin's equation we have that

$$
e^{\mu t} d v_{t}=-\mu e^{\mu t} v_{t} d t+\sigma e^{\mu t} d B_{t},
$$

and hence that $d y_{t}=\sigma e^{\mu t} d B_{t}$.

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$. Differentiation (Itô calculus!) gives $d y_{t}=e^{\mu t} d v_{t}+\mu e^{\mu t} v_{t} d t$.
But, from Langevin's equation we have that

$$
e^{\mu t} d v_{t}=-\mu e^{\mu t} v_{t} d t+\sigma e^{\mu t} d B_{t},
$$

and hence that $d y_{t}=\sigma e^{\mu t} d B_{t}$. Integration gives

$$
y_{t}=y_{0}+\int_{0}^{t} \sigma e^{\mu s} d B_{s},
$$

Solution to Langevin's equation

To solve $d v_{t}=-\mu v_{t} d t+\sigma d B_{t}$, consider the process $y_{t}=v_{t} e^{\mu t}$. Differentiation (Itô calculus!) gives $d y_{t}=e^{\mu t} d v_{t}+\mu e^{\mu t} v_{t} d t$.
But, from Langevin's equation we have that

$$
e^{\mu t} d v_{t}=-\mu e^{\mu t} v_{t} d t+\sigma e^{\mu t} d B_{t},
$$

and hence that $d y_{t}=\sigma e^{\mu t} d B_{t}$. Integration gives

$$
y_{t}=y_{0}+\int_{0}^{t} \sigma e^{\mu s} d B_{s},
$$

and so (the Ornstein-Uhlenbeck process)

$$
v_{t}=v_{0} e^{-\mu t}+\int_{0}^{t} \sigma e^{-\mu(t-s)} d B_{s} .
$$

Solution to Langevin's equation

The Ornstein-Uhlenbeck process:

$$
v_{t}=v_{0} e^{-\mu t}+\int_{0}^{t} \sigma e^{-\mu(t-s)} d B_{s}
$$

We can deduce much from this. For example, v_{t} is a
Gaussian process with $\mathbb{E}\left(v_{t}\right)=v_{0} e^{-\mu t}$ and
$\operatorname{Var}\left(v_{t}\right)=\frac{\sigma^{2}}{2 \mu}\left(1-e^{-2 \mu t}\right)$, and

$$
\operatorname{Cov}\left(v_{t}, v_{t+s}\right)=\operatorname{Var}\left(v_{t}\right) e^{-\mu|s|} .
$$

Where were we?

We had just added noise to our logistic model:

$$
\begin{equation*}
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} . \tag{1}
\end{equation*}
$$

Where were we?

We had just added noise to our logistic model:

$$
\begin{equation*}
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} . \tag{1}
\end{equation*}
$$

So, what is wrong with (1)?

Sheep in Tasmania

Growth of Tasmanian sheep population from 1818 to 1936

Solution to SDE (Run 1)

Solution to SDE (one sample path)

(Solution to the deterministic model is in green)

Solution to SDE (Run 2)

Solution to SDE (one sample path)

(Solution to the deterministic model is in green)

Solution to SDE (Run 3)

Solution to SDE (one sample path)

(Solution to the deterministic model is in green)

Solution to SDE (Run 4)

Solution to SDE (one sample path)

(Solution to the deterministic model is in green)

Solution to SDE (Run 5)

Solution to SDE (one sample path)

(Solution to the deterministic model is in green)

Solution to SDE

(Solution to the deterministic model is in green)

Solution to SDE

(With the solution to the deterministic model subtracted)

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

For a start:

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

For a start:

- 0 is reflecting;

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

For a start:

- 0 is reflecting;
- The mean path of the SDE solution does not follow a logistic curve;

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

For a start:

- 0 is reflecting;
- The mean path of the SDE solution does not follow a logistic curve;
- The variance in the solution is large for the nonequilibrium phase - is this okay?

Logistic model with noise

So, what is wrong with the model?

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma d B_{t} .
$$

For a start:

- 0 is reflecting;
- The mean path of the SDE solution does not follow a logistic curve;
- The variance in the solution is large for the nonequilibrium phase - is this okay?
\ldots not to mention the fact that n_{t} is a continuous variable, yet population size is an integer-valued process!

The variance!

Since the variance is not uniform over time, we should at least have

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma\left(n_{t}\right) d B_{t},
$$

if not

$$
d n_{t}=r n_{t}\left(1-\frac{n_{t}}{K}\right) d t+\sigma\left(n_{t}, t\right) d B_{t} .
$$

[^0]: Pearl, R. (1926) Alcohol and Longevity, Alfred A. Knopf, New York.

[^1]: *Zen Maxim (for survival in a modern university): Before you criticize someone, you should walk a mile in their shoes. That way, when you criticize them, you're a mile away and you have their shoes.

