From rabbits in Canberra to convergence in $D[0, t]$: Part II

Phil Pollett

Department of Mathematics and MASCOS
University of Queensland

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Recapitulation - Rabbits in Canberra

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.

Recapitulation - Rabbits in Canberra

Williams, R.T., Fullagar, P.J., Kogon, C. and Davey, C. (1973) Observations on a naturally occurring winter epizootic of myxomatosis at Canberra, Australia, in the presence of Rabbit fleas (spilopsyllus cuniculi dale) and virulent myxoma virus, J. Appl. Ecol. 10, 417-427.

Recapitulation - Growth of yeast

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Biochemische Zeitschrift 57, 313-334.

Recapitulation - Growth of yeast

Carlson, T. (1913) Uber Geschwindigkeit und Grosse der Hefevermehrung in Wurze. Biochemische Zeitschrift 57, 313-334.

Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population
in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.

Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania, Trans. Roy. Soc. Sth. Austral. 62, 342-346.

Recapitulation - The Verhulst-Pearl model

$$
\frac{d n}{d t}=r n(1-n / K) .
$$

Here r is the growth rate with unlimited resources and K is the "natural" population size (the carrying capacity).

Integration gives

$$
n_{t}=\frac{K}{1+\left(\frac{K-n_{0}}{n_{0}}\right) e^{-r t}} \quad(t \geq 0) .
$$

Recapitulation - The Verhulst-Pearl model

Recapitulation - Adding noise

$$
n_{t}=\frac{K}{1+\left(\frac{K-n_{0}}{n_{0}}\right) e^{-r t}}+\text { something random }
$$

or perhaps

$$
\frac{d n}{d t}=r n\left(1-\frac{n}{K}\right)+\sigma \times \text { noise } .
$$

Recapitulation - White noise

Recapitulation - Brownian motion

Random walk simulation: $h=2.5 \mathrm{e}-005, \Delta=0.005$

Recapitulation - Langevin equation

In modern parlance, Langevin described the Brownian particle's velocity as an Ornstein-Uhlenbeck (OU) process.
The Langevin equation (for a particle of unit mass) is

$$
d v_{t}=-\mu v_{t} d t+\sigma d B_{t},
$$

being Newton's law $(-\mu v=$ Force $=m \dot{v})$ plus noise.
The (strong) solution to this SDE is the OU process:

$$
v_{t}=v_{0} e^{-\mu t}+\int_{0}^{t} \sigma e^{-\mu(t-s)} d B_{s} .
$$

A different approach

Let's start from scratch specifying a stochastic model with variation being an inherent property: a Markovian model.

A different approach

We will suppose that n_{t} (integer-valued!) evolves as a birth-death process with rates

$$
q_{n, n+1}=\lambda n\left(1-\frac{n}{N}\right) \quad \text { and } \quad q_{n, n-1}=\mu n,
$$

where λ is the per-capita birth rate (when N is large), and μ is per-capita death rate. Here N is the population ceiling (n_{t} now takes values in $S=\{0,1, \ldots, N\}$).
I will call this model the stochastic logistic (SL) model, though it has many names, having been rediscovered several times since Feller proposed it in 1939.

A different approach

We will suppose that n_{t} (integer-valued!) evolves as a birth-death process with rates

$$
q_{n, n+1}=\lambda n\left(1-\frac{n}{N}\right) \quad \text { and } \quad q_{n, n-1}=\mu n,
$$

where λ is the per-capita birth rate (when N is large), and μ is per-capita death rate. Here N is the population ceiling (n_{t} now takes values in $S=\{0,1, \ldots, N\}$).
I will call this model the stochastic logistic (SL) model, though it has many names, having been rediscovered several times since Feller proposed it in 1939.
It shares an important property with the deterministic logistic model: that of density dependence.

Density dependence

The Verhulst-Pearl model $\frac{d n}{d t}=r n\left(1-\frac{n}{K}\right)$ can be written

$$
\frac{1}{N} \frac{d n}{d t}=r \frac{n}{N}\left(1-\frac{N}{K} \frac{n}{N}\right) .
$$

The state n_{t} changes at a rate that depends on n_{t} only through n_{t} / N.

Density dependence

So, letting $x_{t}=n_{t} / N$ be the "population density", we get

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{E}\right), \quad \text { where } \quad E=K / N .
$$

This is a convenient space scaling. We could have set $x_{t}=n_{t} / A$, where A is habitat area, and then

$$
\frac{d x}{d t}=r x\left(1-\frac{x}{D E}\right), \quad \text { where } \quad D=N / A .
$$

Markovian models

Let $\left(n_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S \subseteq \mathrm{Z}^{k}$ with transition rates $Q=\left(q_{n m}, n, m \in S\right)$. We identify a quantity N, usually related to the size of the system being modelled.
Definition (Kurtz*) The model is density dependent if there is a subset E of R^{k} and a continuous function $f: \mathrm{Z}^{k} \times E \rightarrow \mathrm{R}$, such that

$$
q_{n, n+l}=N f_{l}\left(\frac{n}{N}\right), \quad l \neq 0 \quad\left(l \in \mathrm{Z}^{k}\right) .
$$

(So, the idea is the same: the rate of change of n_{t} depends on n_{t} only through the "density" n_{t} / N.)
*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, J. of Appl. Probab. 7, 49-58.

Markovian models

Let $\left(n_{t}, t \geq 0\right)$ be a continuous-time Markov chain taking values in $S \subseteq \mathrm{Z}^{k}$ with transition rates $Q=\left(q_{n m}, n, m \in S\right)$. We identify a quantity N, usually related to the size of the system being modelled.
Definition (Kurtz*) The model is density dependent if there is a subset E of R^{k} and a continuous function $f: \mathrm{Z}^{k} \times E \rightarrow \mathrm{R}$, such that

$$
q_{n, n+l}=N f_{l}\left(\frac{n}{N}\right), \quad l \neq 0 \quad\left(l \in \mathrm{Z}^{k}\right) .
$$

(So, the idea is the same: the rate of change of n_{t} depends on n_{t} only through the "density" n_{t} / N.)
*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, J. of Appl. Probab. 7, 49-58.

Tom Kurtz

Thomas Kurtz (taken in 2003)

Density dependence

Consider the forward equations for $p_{n}(t):=\operatorname{Pr}\left(n_{t}=n\right)$. Let $q_{n}=\sum_{m \neq n} q_{n m}$. Then,

$$
p_{n}^{\prime}(t)=-q_{n} p_{n}(t)+\sum_{m \neq n} p_{m}(t) q_{m n},
$$

Density dependence

Consider the forward equations for $p_{n}(t):=\operatorname{Pr}\left(n_{t}=n\right)$. Let $q_{n}=\sum_{m \neq n} q_{n m}$. Then,

$$
p_{n}^{\prime}(t)=-q_{n} p_{n}(t)+\sum_{m \neq n} p_{m}(t) q_{m n},
$$

and so (formally) $\mathbb{E}\left(n_{t}\right)=\sum_{n} n p_{n}(t)$ satisfies

$$
\frac{d}{d t} \mathbb{E}\left(n_{t}\right)=-\sum_{n} q_{n} n p_{n}(t)+\sum_{m} p_{m}(t) \sum_{n \neq m} n q_{m n} .
$$

Density dependence

Consider the forward equations for $p_{n}(t):=\operatorname{Pr}\left(n_{t}=n\right)$. Let $q_{n}=\sum_{m \neq n} q_{n m}$. Then,

$$
p_{n}^{\prime}(t)=-q_{n} p_{n}(t)+\sum_{m \neq n} p_{m}(t) q_{m n},
$$

and so (formally) $\mathbb{E}\left(n_{t}\right)=\sum_{n} n p_{n}(t)$ satisfies

$$
\frac{d}{d t} \mathbb{E}\left(n_{t}\right)=-\sum_{n} q_{n} n p_{n}(t)+\sum_{m} p_{m}(t) \sum_{n \neq m} n q_{m n} .
$$

So if $q_{n, n+l}=N f_{l}(n / N)$, then

$$
\begin{aligned}
& \frac{d}{d t} \mathbb{E}\left(n_{t}\right)=-\sum_{n} \sum_{l \neq 0} N f_{l}(n / N) n p_{n}(t) \\
& \quad+\sum_{m} p_{m}(t) \sum_{l \neq 0}(m+l) N f_{l}(m / N) \\
& =\sum_{m} p_{m}(t) N \sum_{l \neq 0} l f_{l}(m / N)=N \mathbb{E}\left(\sum_{l \neq 0} l f_{l}\left(n_{t} / N\right)\right) .
\end{aligned}
$$

Density dependence

For an arbitrary density dependent model, define $F: E \rightarrow \mathrm{R}$ by $F(x)=\sum_{l \neq 0} l f_{l}(x)$. Then,

$$
\frac{d}{d t} \mathbb{E}\left(n_{t}\right)=N \mathbb{E}\left(F\left(\frac{n_{t}}{N}\right)\right),
$$

or, setting $X_{t}=n_{t} / N$ (the density process),

$$
\frac{d}{d t} \mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(F\left(X_{t}\right)\right) .
$$

Density dependence

For an arbitrary density dependent model, define $F: E \rightarrow \mathrm{R}$ by $F(x)=\sum_{l \neq 0} l f_{l}(x)$. Then,

$$
\frac{d}{d t} \mathbb{E}\left(n_{t}\right)=N \mathbb{E}\left(F\left(\frac{n_{t}}{N}\right)\right),
$$

or, setting $X_{t}=n_{t} / N$ (the density process),

$$
\frac{d}{d t} \mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(F\left(X_{t}\right)\right) .
$$

Warning: I'm not saying that $\frac{d}{d t} \mathbb{E}\left(X_{t}\right)=F\left(\mathbb{E}\left(X_{t}\right)\right)$.

Density dependence

For an arbitrary density dependent model, define $F: E \rightarrow \mathrm{R}$ by $F(x)=\sum_{l \neq 0} l f_{l}(x)$. Then,

$$
\frac{d}{d t} \mathbb{E}\left(n_{t}\right)=N \mathbb{E}\left(F\left(\frac{n_{t}}{N}\right)\right),
$$

or, setting $X_{t}=n_{t} / N$ (the density process),

$$
\frac{d}{d t} \mathbb{E}\left(X_{t}\right)=\mathbb{E}\left(F\left(X_{t}\right)\right) .
$$

Warning: I'm not saying that $\frac{d}{d t} \mathbb{E}\left(X_{t}\right)=F\left(\mathbb{E}\left(X_{t}\right)\right)$.
(But, I am hoping for something like that to be true!)

Density dependence

For the SL model we have $S=\{0,1, \ldots, N\}$ and

$$
q_{n, n+1}=\lambda n\left(1-\frac{n}{N}\right) \quad \text { and } \quad q_{n, n-1}=\mu n .
$$

Therefore, $f_{+1}(x)=\lambda x(1-x)$ and $f_{-1}(x)=\mu x$, $x \in E:=[0,1]$, and so $F(x)=\lambda x(1-\rho-x), x \in E$, where $\rho=\mu / \lambda$.

Density dependence

For the SL model we have $S=\{0,1, \ldots, N\}$ and

$$
q_{n, n+1}=\lambda n\left(1-\frac{n}{N}\right) \quad \text { and } \quad q_{n, n-1}=\mu n .
$$

Therefore, $f_{+1}(x)=\lambda x(1-x)$ and $f_{-1}(x)=\mu x$, $x \in E:=[0,1]$, and so $F(x)=\lambda x(1-\rho-x), x \in E$, where $\rho=\mu / \lambda$.

Now compare $F(x)$ with the right-hand side of the Verhulst-Pearl model for the density process:

$$
\begin{equation*}
\frac{d x}{d t}=r x\left(1-\frac{x}{E}\right), \quad \text { where } \quad E=K / N . \tag{2}
\end{equation*}
$$

If $K \sim \beta N$ for N large, so that $K / N \rightarrow \beta$, then we may identify β with $1-\rho$ and r with $\lambda \beta$, and discover that (2) can be rewritten as $d x / d t=F(x)$.

Recall that

Recall that $\left(n_{t}, t \geq 0\right)$ is a continuous-time Markov chain taking values in $S \subseteq Z^{k}$ with transition rates $Q=\left(q_{n m}, n, m \in S\right)$, and we have identified a quantity N, usually related to the size of the system being modelled.

Recall that

Recall that $\left(n_{t}, t \geq 0\right)$ is a continuous-time Markov chain taking values in $S \subseteq Z^{k}$ with transition rates $Q=\left(q_{n m}, n, m \in S\right)$, and we have identified a quantity N, usually related to the size of the system being modelled.

The model is assumed to be density dependent: there is a subset E of R^{k} and a continuous function $f: \mathrm{Z}^{k} \times E \rightarrow \mathrm{R}$, such that

$$
q_{n, n+l}=N f_{l}\left(\frac{n}{N}\right), \quad l \neq 0 \quad\left(l \in Z^{k}\right) .
$$

Recall that

Recall that $\left(n_{t}, t \geq 0\right)$ is a continuous-time Markov chain taking values in $S \subseteq Z^{k}$ with transition rates $Q=\left(q_{n m}, n, m \in S\right)$, and we have identified a quantity N, usually related to the size of the system being modelled.

The model is assumed to be density dependent: there is a subset E of R^{k} and a continuous function $f: \mathrm{Z}^{k} \times E \rightarrow \mathrm{R}$, such that

$$
q_{n, n+l}=N f_{l}\left(\frac{n}{N}\right), \quad l \neq 0 \quad\left(l \in Z^{k}\right) .
$$

We set $F(x)=\sum_{l \neq 0} l f_{l}(x), x \in E$.

The density process

We now formally define the density process $\left(X_{t}^{(N)}\right)$ by $X_{t}^{(N)}=n_{t} / N, t \geq 0$. We hope that $\left(X_{t}^{(N)}\right)$ becomes more deterministic as N gets large.

The density process

We now formally define the density process $\left(X_{t}^{(N)}\right)$ by $X_{t}^{(N)}=n_{t} / N, t \geq 0$. We hope that $\left(X_{t}^{(N)}\right)$ becomes more deterministic as N gets large.

To simplify the statement of results, I'm going to assume that the state space S is finite.

A law of large numbers

The following functional law of large numbers establishes convergence of the family $\left(X_{t}^{(N)}\right)$ to the unique trajectory of an appropriate approximating deterministic model.

Theorem (Kurtz*) Suppose F is Lipschitz on E (that is, $\left.|F(x)-F(y)|<M_{E}|x-y|\right)$. If $\lim _{N \rightarrow \infty} X_{0}^{(N)}=x_{0}$, then the density process $\left(X_{t}^{(N)}\right)$ converges uniformly in probability on $[0, t]$ to $\left(x_{t}\right)$, the unique (deterministic) trajectory satisfying

$$
\frac{d}{d s} x_{s}=F\left(x_{s}\right), \quad x_{s} \in E, s \in[0, t] .
$$

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, J. of Appl. Probab. 7, 49-58.

A law of large numbers

Theorem (Kurtz*) Suppose F is Lipschitz on E (that is, $\left.|F(x)-F(y)|<M_{E}|x-y|\right)$. If $\lim _{N \rightarrow \infty} X_{0}^{(N)}=x_{0}$, then the density process $\left(X_{t}^{(N)}\right)$ converges uniformly in probability on $[0, t]$ to $\left(x_{t}\right)$, the unique (deterministic) trajectory satisfying

$$
\frac{d}{d s} x_{s}=F\left(x_{s}\right), \quad x_{s} \in E, s \in[0, t] .
$$

*Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, J. of Appl. Probab. 7, 49-58.
(If S is an infinite set, we have the additional conditions $\sup _{x \in E} \sum_{l \neq 0}|l| f_{l}(x)<\infty$ and $\lim _{d \rightarrow \infty} \sum_{|l|>d}|l| f_{l}(x)=0$, $x \in E$.)

A law of large numbers

Convergence uniformly in probability on $[0, t]$ means that for every $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\sup _{s \leq t}\left|X_{t}^{(N)}-x_{t}\right|>\epsilon\right)=0 .
$$

A law of large numbers

Convergence uniformly in probability on $[0, t]$ means that for every $\epsilon>0$,

$$
\lim _{N \rightarrow \infty} \operatorname{Pr}\left(\sup _{s \leq t}\left|X_{t}^{(N)}-x_{t}\right|>\epsilon\right)=0 .
$$

The conditions of the theorem hold for the SL model: since $F(x)=\lambda x(1-\rho-x)$, we have, for all $x, y \in E=[0,1]$, that

$$
|F(x)-F(y)|=\lambda|x-y||1-\rho-(x+y)| \leq(1+\rho) \lambda|x-y| .
$$

That is, F is Lipschitz on E.

A law of large numbers

So, provided $X_{0}^{(N)} \rightarrow x_{0}$ as $N \rightarrow \infty$, the population density ($X_{t}^{(N)}$) converges (uniformly in probability on finite time intervals) to the solution $\left(x_{t}\right)$ of the deterministic model

$$
\frac{d x}{d t}=\lambda x(1-\rho-x) \quad\left(x_{t} \in E\right) .
$$

The SL model $(N=20)$

The SL model $(N=50)$

The SL model $(N=100)$

The SL model $(N=200)$

The SL model $(N=500)$

The $\mathbf{S L}$ model $(N=1000)$

The SL model $(N=10000)$

Simulation of the SL model

(Solution to the deterministic model is in green)

A central limit law

In a later paper Kurtz* proved a functional central limit law which establishes that, for large N, the fluctuations about the deterministic trajectory follow a Gaussian diffusion, provided that some mild extra conditions are satisfied.

He considered the family of processes $\left\{\left(Z_{t}^{(N)}\right)\right\}$ defined by

$$
Z_{s}^{(N)}=\sqrt{N}\left(X_{s}^{(N)}-x_{s}\right), \quad 0 \leq s \leq t .
$$

*Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, 344-356.

The SL model $(N=20)$

The SL model $(N=50)$

The SL model $(N=100)$

The SL model $(N=200)$

The SL model $(N=500)$

The SL model $(N=1000)$

The SL model $(N=10000)$

Recapitulation - Brownian motion

Random walk simulation: $h=2.5 \mathrm{e}-005, \Delta=0.005$

The SL model $(N=10000)$

A central limit law

Theorem Suppose that F is Lipschitz and has uniformly continuous first derivative on E, and that the $k \times k$ matrix $G(x)$, defined for $x \in E$ by $G_{i j}(x)=\sum_{l \neq 0} l_{i} l_{j} f_{l}(x)$, is uniformly continuous on E. Let $\left(x_{t}\right)$ be the unique deterministic trajectory starting at x_{0} and suppose that $\lim _{N \rightarrow \infty} \sqrt{N}\left(X_{0}^{(N)}-x_{0}\right)=z$.
Then, $\left\{\left(Z_{t}^{(N)}\right)\right\}$ converges weakly in $D[0, t]$ (the space of right-continuous, left-hand limits functions on $[0, t]$) to a Gaussian diffusion $\left(Z_{t}\right)$ with initial value $Z_{0}=z$ and with mean and covariance given by $\mu_{s}:=\mathbb{E}\left(Z_{s}\right)=M_{s} z$, where $M_{s}=\exp \left(\int_{0}^{s} B_{u} d u\right)$ and $B_{s}=\partial F\left(x_{s}\right)$, and

$$
V_{s}:=\operatorname{Cov}\left(Z_{s}\right)=M_{s}\left(\int_{0}^{s} M_{u}^{-1} G\left(x_{u}\right)\left(M_{u}^{-1}\right)^{T} d u\right) M_{s}^{T} .
$$

A central limit law

The functional central limit theorem tells us that, for large N, the scaled density process $Z_{t}^{(N)}$ can be approximated over finite time intervals by the Gaussian diffusion $\left(Z_{t}\right)$.

In particular, for all $t>0, X_{t}^{(N)}$ has an approximate normal distribution with $\operatorname{Cov}\left(X_{t}^{(N)}\right) \simeq V_{t} / N$.

We would usually take $x_{0}=X_{0}^{(N)}$, thus giving $\mathbb{E}\left(X_{t}^{(N)}\right) \simeq x_{t}$.

A central limit law

For the SL model we have $F(x)=\lambda x(1-\rho-x)$, and the solution to $d x / d t=F(x)$ is

$$
x(t)=\frac{(1-\rho) x_{0}}{x_{0}+\left(1-\rho-x_{0}\right) e^{-\lambda(1-\rho) t}}
$$

We also have $F^{\prime}(x)=\lambda(1-\rho-2 x)$ and

$$
G(x)=\sum_{l} l^{2} f_{l}(x)=\lambda x(1+\rho-x)=F(x)+2 \mu x,
$$

giving

$$
M_{t}=\exp \left(\int_{0}^{t} F^{\prime}\left(x_{s}\right) d s\right)=\frac{(1-\rho)^{2} e^{-\lambda(1-\rho) t}}{\left(x_{0}+\left(1-\rho-x_{0}\right) e^{-\lambda(1-\rho t t}\right)^{2}} .
$$

We can evaluate

$$
V_{t}:=\operatorname{Var}\left(Z_{t}\right)=M_{t}^{2}\left(\int_{0}^{t} G\left(x_{s}\right) / M_{s}^{2} d s\right)
$$

numerically, or ...

Or

$$
\begin{aligned}
& \quad V_{t}=x_{0}\left(\rho x_{0}^{3}+x_{0}^{2}(1+5 \rho)\left(1-\rho-x_{0}\right) e^{-\lambda(1-\rho) t}\right. \\
& \quad+2 x_{0}(1+2 \rho)\left(1-\rho-x_{0}\right)^{2}(\lambda(1-\rho) t) e^{-2 \lambda(1-\rho) t} \\
& -\left(\left(1-\rho-x_{0}\right)\left[3 \rho x_{0}^{2}+(2+\rho)(1-\rho) x_{0}-((1+2 \rho))(1-\rho)^{2}\right]\right. \\
& \left.\quad+\rho(1-\rho)^{3}\right) e^{-2 \lambda(1-\rho) t} \\
& \left.-(1+\rho)\left(1-\rho-x_{0}\right)^{3} e^{-3 \lambda(1-\rho) t}\right) /\left(x_{0}+\left(1-\rho-x_{0}\right) e^{-\lambda(1-\rho) t}\right)^{4}
\end{aligned}
$$

The SL model

Simulation of SL Model $(N=10000, \lambda=0.78593, \mu=0.65468, K=1670)$

(Deterministic trajectory plus or minus two standard deviations in green)

The OU approximation

If the initial point x_{0} of the deterministic trajectory is chosen to be an equilibrium point of the deterministic model, we can be far more precise about the approximating diffusion.

The OU approximation

Corollary If $x_{\text {eq }}$ satisfies $F\left(x_{\text {eq }}\right)=0$, then, under the conditions of the theorem, the family $\left\{\left(Z_{t}^{(N)}\right)\right\}$, defined by

$$
Z_{s}^{(N)}=\sqrt{N}\left(X_{s}^{(N)}-x_{\mathrm{eq}}\right), \quad 0 \leq s \leq t,
$$

converges weakly in $D[0, t]$ to an OU process $\left(Z_{t}\right)$ with initial value $Z_{0}=z$, local drift matrix $B=\partial F\left(x_{\text {eq }}\right)$ and local covariance matrix $G\left(x_{\mathrm{eq}}\right)$. In particular, Z_{s} is normally distributed with mean and covariance given by $\mu_{s}:=\mathbb{E}\left(Z_{s}\right)=e^{B s} z$ and

$$
V_{s}:=\operatorname{Cov}\left(Z_{s}\right)=\int_{0}^{s} e^{B u} G\left(x_{\mathrm{eq}}\right) e^{B^{T} u} d u .
$$

The OU approximation

Note that

$$
V_{s}=\int_{0}^{s} e^{B u} G\left(x_{\mathrm{eq}}\right) e^{B^{T} u} d u=V_{\infty}-e^{B s} V_{\infty} e^{B^{T} s}
$$

where V_{∞}, the stationary covariance matrix, satisfies

$$
B V_{\infty}+V_{\infty} B^{T}+G\left(x_{\mathrm{eq}}\right)=0 .
$$

The OU approximation

Note that

$$
V_{s}=\int_{0}^{s} e^{B u} G\left(x_{\mathrm{eq}}\right) e^{B^{T} u} d u=V_{\infty}-e^{B s} V_{\infty} e^{B^{T} s},
$$

where V_{∞}, the stationary covariance matrix, satisfies

$$
B V_{\infty}+V_{\infty} B^{T}+G\left(x_{\mathrm{eq}}\right)=0 .
$$

We conclude that, for N large, $X_{t}^{(N)}$ has an approximate Gaussian distribution with
$\operatorname{Cov}\left(X_{t}^{(N)}\right) \simeq V_{t} / N$.

The OU approximation

Note that

$$
V_{s}=\int_{0}^{s} e^{B u} G\left(x_{\mathrm{eq}}\right) e^{B^{T} u} d u=V_{\infty}-e^{B s} V_{\infty} e^{B^{T} s},
$$

where V_{∞}, the stationary covariance matrix, satisfies

$$
B V_{\infty}+V_{\infty} B^{T}+G\left(x_{\mathrm{eq}}\right)=0 .
$$

We conclude that, for N large, $X_{t}^{(N)}$ has an approximate Gaussian distribution with
$\operatorname{Cov}\left(X_{t}^{(N)}\right) \simeq V_{t} / N$.
For the SL model, $\operatorname{Var}\left(X_{t}^{(N)}\right) \simeq \rho\left(1-e^{-2 \lambda(1-\rho) t}\right) / N$.

The OU approximation

This brings us "full circle" to the approximating SDE

$$
d n_{t}=-\alpha\left(n_{t}-K\right) d t+\sqrt{2 N \alpha \rho} d B_{t},
$$

where $\alpha=\lambda(1-\rho)$.

The SL model

(Deterministic equilibrium plus or minus two standard deviations is in black)

