Evaluating stationary and quasi-stationary distributions for Markov chains with a large sparse transition structure

Phil Pollett

Australian Research Council
Centre of Excellence for Mathematics and Statistics of Complex Systems

Markovian chain

Let $(X(t), t \geq 0)$ is be a continuous time Markov chain with transition rates

$$
Q=\left(q_{i j}, i, j \in S\right)
$$

so that $q_{i j}$ represents the rate of transition from state i to state j, for $j \neq i$, and $q_{i i}=-q_{i}$, where

$$
q_{i}:=\sum_{j \neq i} q_{i j}(<\infty)
$$

represents the total rate out of state i.

Equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in S\right)$ satisfying the balance equations

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} \sum_{i \neq j} q_{j i}, \quad j \in S
$$

Equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in S\right)$ satisfying the balance equations

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} \sum_{i \neq j} q_{j i} \quad\left(=\pi_{j} q_{j}=-\pi_{j} q_{j j}\right), \quad j \in S
$$

Equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in S\right)$ satisfying the balance equations

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} \sum_{i \neq j} q_{j i} \quad\left(=\pi_{j} q_{j}=-\pi_{j} q_{j j}\right), \quad j \in S
$$

that is, $\sum_{i \in S} \pi_{i} q_{i j}=0, j \in S$.

Equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in S\right)$ satisfying the balance equations

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} \sum_{i \neq j} q_{j i} \quad\left(=\pi_{j} q_{j}=-\pi_{j} q_{j j}\right), \quad j \in S
$$

that is, $\sum_{i \in S} \pi_{i} q_{i j}=0, j \in S$. If, for example, S is irreducible and finite, then the equilibrium distribution exists uniquely and, for all $j \in S$,

$$
\operatorname{Pr}(X(t)=j) \rightarrow \pi_{j} \quad \text { as } t \rightarrow \infty
$$

Equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in S\right)$ satisfying the balance equations

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} \sum_{i \neq j} q_{j i} \quad\left(=\pi_{j} q_{j}=-\pi_{j} q_{j j}\right), \quad j \in S
$$

that is, $\sum_{i \in S} \pi_{i} q_{i j}=0, j \in S$. If, for example, S is irreducible and finite, then the equilibrium distribution exists uniquely and, for all $j \in S$,

$$
\operatorname{Pr}(X(t)=j) \rightarrow \pi_{j} \quad \text { as } t \rightarrow \infty
$$

We need to be able to solve $\pi Q=0$

Example

A frog hops about on n stones, which are labelled in order of increasing temperature (he leaves the hotter ones more quickly). When he hops, he moves to any of other the $n-1$ stones with equal probability. Suppose he leaves stone i at rate $i(n-1)$.

Example

A frog hops about on n stones, which are labelled in order of increasing temperature (he leaves the hotter ones more quickly). When he hops, he moves to any of other the $n-1$ stones with equal probability. Suppose he leaves stone i at rate $i(n-1)$.
So, $S=\{1,2, \ldots, n\}$ and

$$
Q=\left(\begin{array}{cccccc}
-(n-1) & 1 & 1 & \cdots & 1 & 1 \\
2 & -2(n-1) & 2 & \cdots & 2 & 2 \\
3 & 3 & -3(n-1) & \cdots & 3 & 3 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
n & n & n & \cdots & n & -n(n-1)
\end{array}\right)
$$

Example

The balance equations are

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} q_{j}, \quad j=1,2, \ldots, n
$$

Example

The balance equations are

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} q_{j}, \quad j=1,2, \ldots, n
$$

that is,

$$
\sum_{i \neq j} \pi_{i} i=\pi_{j} j(n-1), \quad j=1,2, \ldots, n .
$$

Example

The balance equations are

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} q_{j}, \quad j=1,2, \ldots, n
$$

that is,

$$
\sum_{i \neq j} \pi_{i} i=\pi_{j} j(n-1), \quad j=1,2, \ldots, n .
$$

Therefore, $i \pi_{i}=$ constant.

Example

The balance equations are

$$
\sum_{i \neq j} \pi_{i} q_{i j}=\pi_{j} q_{j}, \quad j=1,2, \ldots, n
$$

that is,

$$
\sum_{i \neq j} \pi_{i} i=\pi_{j} j(n-1), \quad j=1,2, \ldots, n .
$$

Therefore, $i \pi_{i}=$ constant. And so,

$$
\pi_{i}=\frac{1 / i}{\sum_{j=1}^{n} 1 / j}, \quad i=1,2, \ldots, n
$$

Example

Let's do this numerically:

```
\(\mathrm{n}=5\);
for \(i=1: n\)
    for \(j=1: n\)
        if (j ~ \(=\) i) \(Q(i, j)=i ;\) else \(Q(i, j)=-i *(n-1) ;\) end
        end
end
```

disp(Q)

-4	1	1	1	1
2	-8	2	2	2
3	3	-12	3	3
4	4	4	-16	4
5	5	5	5	-20

Example

$\begin{aligned} & A=Q^{\prime} ; \% \text { Matlab } \\ & {[V, D]=e i g(A) ;} \end{aligned}$				
disp(D)				
0	0	0	0	0
0 -	-6.7778	0	0	0
0	$0-1$	-12.2804	0	0
0	0	0	-23.2222	0
0	0	0	0	-17.7196
disp(V)				
-0.8266	$66-0.8516$	$6-0.2260$	0.0831	-0.1294
-0.4133	330.4699	$9-0.7216$	0.1145	-0.2132
-0.2755	550.1841	10.6051	0.1841	-0.6051
-0.2066	660.1145	$5 \quad 0.2132$	0.4699	0.7216
-0.1653	30.0831	10.1294	-0.8516	0.2260

Example

Extract the eigenvector corresponding to the eigenvalue with maximum real part (which is $\nu=0$):

```
[nu,I]=max(real(diag(D)));
m=V(:,I);
pi=m/sum(m);
disp(pi')
    0.4380 0.2190 0.1460 0.1095 0.0876
```

Compare this with the one evaluated analytically:
$a=1 . /(1: n) ;$
disp(a/sum(a))
0.4380
0.2190
0.1460
0.1095
0.0876

Quasi-equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in C\right)$ satisfying

$$
\sum_{i \in C} \pi_{i} q_{i j}=-\left(\sum_{i \in C} \pi_{i} q_{i 0}\right) \pi_{j}, \quad j \in C
$$

where C is an irreducible transient class and $S=\{0\} \cup C$, where 0 is an absorbing state which is accessible from C.

Quasi-equilibrium distribution

This is a probability distribution $\pi=\left(\pi_{i}, i \in C\right)$ satisfying

$$
\sum_{i \in C} \pi_{i} q_{i j}=-\left(\sum_{i \in C} \pi_{i} q_{i 0}\right) \pi_{j}, \quad j \in C
$$

where C is an irreducible transient class and $S=\{0\} \cup C$, where 0 is an absorbing state which is accessible from C.

If, for example, C is finite, the quasi-equilibrium distribution exists uniquely and, for all $j \in C$,

$$
\operatorname{Pr}(X(t)=j \mid X(t) \neq 0) \rightarrow \pi_{j} \quad \text { as } t \rightarrow \infty
$$

Quasi-equilibrium distribution

We need to be able to solve $\pi Q_{C}=\nu \pi$
Here Q_{C} is the restriction of Q to the transient states C (first row and column of Q removed).

Quasi-equilibrium distribution

We need to be able to solve $\pi Q_{C}=\nu \pi$

Here Q_{C} is the restriction of Q to the transient states C (first row and column of Q removed). Notice that

$$
\sum_{i \in C} \pi_{i} q_{i j}=\nu \pi_{j}, \quad j \in C
$$

implies $\nu=\nu \sum_{j \in C} \pi_{j}=\sum_{i \in C} \pi_{i} \sum_{j \in C} q_{i j}=-\sum_{i \in C} \pi_{i} q_{i o}$.

Quasi-equilibrium distribution

We need to be able to solve $\pi Q_{C}=\nu \pi$

Here Q_{C} is the restriction of Q to the transient states C (first row and column of Q removed). Notice that

$$
\sum_{i \in C} \pi_{i} q_{i j}=\nu \pi_{j}, \quad j \in C
$$

implies $\nu=\nu \sum_{j \in C} \pi_{j}=\sum_{i \in C} \pi_{i} \sum_{j \in C} q_{i j}=-\sum_{i \in C} \pi_{i} q_{i 0}$. Compare with

$$
\sum_{i \in C} \pi_{i} q_{i j}=-\left(\sum_{i \in C} \pi_{i} q_{i 0}\right) \pi_{j}, \quad j \in C
$$

The SIS model

Let $X(t)$ be the number of occupied patches at time t in a metapopulation consisting of n patches.

The SIS model

Let $X(t)$ be the number of occupied patches at time t in a metapopulation consisting of n patches.
Then, $S=\{0,1, \ldots, n\}$, and $q_{i, i+1}=c i(1-i / n)$ and $q_{i, i-1}=e i$, where c is the colonization rate and e is the local extinction rate.

The SIS model

Let $X(t)$ be the number of occupied patches at time t in a metapopulation consisting of n patches.
Then, $S=\{0,1, \ldots, n\}$, and $q_{i, i+1}=c i(1-i / n)$ and $q_{i, i-1}=e i$, where c is the colonization rate and e is the local extinction rate.

$$
Q=\left(\begin{array}{cccccc}
0 & 0 & 0 & \cdots & 0 & 0 \\
e & -e-c(1-1 / n) & c(1-1 / n) & \cdots & 0 & 0 \\
0 & 2 e & -2 e-c(1-2 / n) & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & e n & -e n
\end{array}\right)
$$

The SIS model

Let $X(t)$ be the number of occupied patches at time t in a metapopulation consisting of n patches.
Then, $S=\{0,1, \ldots, n\}$, and $q_{i, i+1}=c i(1-i / n)$ and $q_{i, i-1}=e i$, where c is the colonization rate and e is the local extinction rate.

$$
Q_{C}=\left(\begin{array}{ccccc}
-e-c(1-1 / n) & c(1-1 / n) & \cdots & 0 & 0 \\
2 e & -2 e-c(1-2 / n) & \cdots & 0 & 0 \\
0 & 3 e & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & e n & -e n
\end{array}\right)
$$

$C=\{1,2, \ldots, n\}$.

The SIS model

Evaluate the quasi-stationary distribution:

```
n=5; c=2; e=1; Q=zeros (n, n);
\(Q(1,2)=c *(1-1 / n) ; Q(1,1)=-(c *(1-1 / n)+e) ;\)
for \(i=2:(n-1)\)
    \(Q(i, i+1)=c * i *(1-i / n) ; ~ Q(i, i-1)=e * i ;\)
    Q(i,i)=-i*(c*(1-i/n)+e);
end
\(Q(n, n-1)=e * n ; Q(n, n)=-e * n ;\)
disp(Q)
\begin{tabular}{rrrrr}
-2.6000 & 1.6000 & 0 & 0 & 0 \\
2.0000 & -4.4000 & 2.4000 & 0 & 0 \\
0 & 3.0000 & -5.4000 & 2.4000 & 0 \\
0 & 0 & 4.0000 & -5.6000 & 1.6000 \\
0 & 0 & 0 & 5.0000 & -5.0000
\end{tabular}
```


The SIS model

```
A=Q'; % Matlab calculates right eigenvectors
[V,D]=eig(A);
disp(D)
    -10.0783 0
\begin{tabular}{rrrrr}
0 & -6.8050 & 0 & 0 & 0 \\
0 & 0 & -0.2350 & 0 & 0 \\
0 & 0 & 0 & -4.0381 & 0 \\
0 & 0 & 0 & 0 & -1.8436
\end{tabular}
disp(V)
\begin{tabular}{rrrrr}
0.1054 & 0.3523 & -0.4876 & 0.6927 & -0.8441 \\
-0.3942 & -0.7406 & -0.5766 & -0.4981 & -0.3192 \\
0.6899 & 0.4059 & -0.5404 & -0.4295 & 0.1781 \\
-0.5703 & 0.3018 & -0.3519 & 0.1526 & 0.3499 \\
0.1797 & -0.2675 & -0.1182 & 0.2538 & 0.1774
\end{tabular}
```


The SIS model

```
[nu,I]=max(real(diag(D)));
m=V(:,I);
pi=m/sum(m);
disp(pi');
    0.2350 0.2779 0.2605 0.1696 0.0570
```


The SIS model

Evaluate the quasi-stationary distribution for $n=100$:

```
n=100; c=2; e=1; Q=zeros(n,n);
Q(1,2)=c*(1-1/n); Q(1,1)=-(c*(1-1/n)+e);
for i=2:(n-1)
    Q(i,i+1)=C*i*(1-i/n);
    Q(i,i-1)=e*i;
    Q(i,i)=-i*(c*(1-i/n)+e);
end
Q(n,n-1)=e*n; Q (n,n)=-e*n;
[V,D]=eig(Q');
[nu,I]=max(real(diag(D)));
m=V(:,I); pi=m/sum(m);
plot(pi);
title('QSD for the SIS model');
xlabel('Occupied patches');
ylabel('Probability');
```


The SIS model

An epidemic model

Let $X(t)=(S(t), I(t))$, where $S(t)$ is the number of susceptibles at time t and $I(t)$ is the number of infectives at time t.

An epidemic model

Let $X(t)=(S(t), I(t))$, where $S(t)$ is the number of susceptibles at time t and $I(t)$ is the number of infectives at time t.

The state space is $S=\{(x, y): x, y=0,1, \ldots\}$ and the transition rates are given by

$$
\begin{gathered}
q_{(x y),(x+1 y)}=\alpha, \quad q_{(x y),(x y-1)}=\gamma y \\
q_{(x y),(x-1 y+1)}=\beta x y
\end{gathered}
$$

where $\alpha, \gamma, \beta>0$ are the immigration, removal and infection rates.

An epidemic model

An epidemic model

Clearly,

$$
C=\{(x, y): x=0,1, \ldots ; y=1,2, \ldots\}
$$

is an irreducible transient class, and the abscissa is absorbing.

An epidemic model

Clearly,

$$
C=\{(x, y): x=0,1, \ldots ; y=1,2, \ldots\}
$$

is an irreducible transient class, and the abscissa is absorbing.

Ridler-Rowe (1967) proved that Q is regular (non-explosive) and absorption occurs with probability 1.

An epidemic model

Clearly,

$$
C=\{(x, y): x=0,1, \ldots ; y=1,2, \ldots\}
$$

is an irreducible transient class, and the abscissa is absorbing.

Ridler-Rowe (1967) proved that Q is regular (non-explosive) and absorption occurs with probability 1.

However, absorption is not observed over any reasonable time scale.

An epidemic model

The Progress of an Epidemic

Evaluate a QSD

We must solve

$$
\begin{aligned}
& \pi_{(0 y+1)} \gamma(y+1)+\pi_{(0 y-1)} \beta(y-1) \\
& =\pi_{(0 y)}(\alpha+\gamma y-\lambda), \quad y=1,2, \ldots \\
& \pi_{(x-1 y)} \alpha+\pi_{(x y+1)} \gamma(y+1)+\pi_{(x+1 y-1)} \beta(x+1)(y-1) \\
& =\pi_{(x y)}(\alpha+(\beta x+\gamma) y-\lambda), \\
& \quad x=1,2, \ldots ; y=1,2, \ldots
\end{aligned}
$$

for $\left(\pi_{(x y)}, x=1,2, \ldots ; y=1,2, \ldots\right)$, where $\lambda>0$.

Evaluate a QSD

We must solve

$$
\begin{aligned}
& \pi_{(0 y+1)} \gamma(y+1)+\pi_{(0 y-1)} \beta(y-1) \\
& \quad=\pi_{(0 y)}(\alpha+\gamma y-\lambda), \quad y=1,2, \ldots \\
& \pi_{(x-1 y)} \alpha+\pi_{(x y+1)} \gamma(y+1)+\pi_{(x+1 y-1)} \beta(x+1)(y-1) \\
& =\pi_{(x y)}(\alpha+(\beta x+\gamma) y-\lambda), \\
& \quad x=1,2, \ldots ; y=1,2, \ldots
\end{aligned}
$$

for $\left(\pi_{(x y)}, x=1,2, \ldots ; y=1,2, \ldots\right)$, where $\lambda>0$.
(In our dreams)

An epidemic model

How to evaluate the QSD

First truncate C to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and restrict Q to C_{N}.

How to evaluate the QSD

First truncate C to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and restrict Q to C_{N}.
Then, use the transformation $i=y+N x$ to convert the restricted transition matrix into an $n \times n$ matrix, $R=\left(q_{i j}, i, j=1,2, \ldots, n\right)$, where $n=N^{2}$.

How to evaluate the QSD

First truncate C to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and restrict Q to C_{N}.
Then, use the transformation $i=y+N x$ to convert the restricted transition matrix into an $n \times n$ matrix, $R=\left(q_{i j}, i, j=1,2, \ldots, n\right)$, where $n=N^{2}$.

Construct a sequence $\left\{\pi^{(n)}\right\}$ of normalized eigenvectors and hope that this converges to the quasi-stationary distribution of the full epidemic model. (In practice, we choose N as large as possible.)

How to evaluate the QSD

Open questions

- Does a quasi-stationary distribution π exist for the epidemic model?

How to evaluate the QSD

Open questions

- Does a quasi-stationary distribution π exist for the epidemic model?
- Does a limiting-conditional distribution exist?

How to evaluate the QSD

Open questions

- Does a quasi-stationary distribution π exist for the epidemic model?
- Does a limiting-conditional distribution exist?
- Is $C \lambda$-positive recurrent?

How to evaluate the QSD

Open questions

- Does a quasi-stationary distribution π exist for the epidemic model?
- Does a limiting-conditional distribution exist?
- Is $C \lambda$-positive recurrent?
- Does $\left\{\pi^{(n)}\right\} \rightarrow \pi$?

How to evaluate the QSD

Open questions

- Does a quasi-stationary distribution π exist for the epidemic model?
- Does a limiting-conditional distribution exist?
- Is $C \lambda$-positive recurrent?
- Does $\left\{\pi^{(n)}\right\} \rightarrow \pi$?
- Pointwise? Or, only in the likelihood ratio sense?

How to evaluate the QSD

Implement the transformation $i=y+N x$:

```
function i=index(st)
% (x,y) -> i
x=st(1); y=st(2); N=st(3);
i=y+x*N;
```

Implement the inverse transformation:

```
function state=state(index)
% i -> (x,y)
i=index(1); N=index(2);
x=fix((i-1)/N); y=i-N*x;
state=[x,y];
```


How to evaluate the QSD

Set up the truncated transition rate matrix and evaluate the dominant eigenvalue:

```
N=100; n=N^2;
a=1.0; b=4.0; c=2.0; alpha=a*N; beta=b/N; gamma=c;
R=zeros(n,n);
for x=0:(N-1)
    for y=1:N
        i=index([x,y,N]);
        if x<(N-1) R(i,index([x+1,y,N]))=alpha; end
        if ((x>0) & (y<N)) R(i,index([x-1,y+1,N]))=beta*x*y; end
        if y>1 R(i,index([x,y-1,N]))=gamma*y; end
        R(i,i)=-(alpha+(beta*x+gamma) *y);
    end
end
[V,D]=eig(R');
[nu,in]=max(real(diag(D))); m=V(:,in);
```


Preliminary numerical results

```
For N=92 we get
??? Error using ==> zeros
Out of memory. Type HELP MEMORY for your options.
Error in ==> C:\docs\talks\UQ2004c\quasi.m
On line 3 ==> R=zeros(n,n);
For N=70 we get
??? Error using ==> eig
Out of memory. Type HELP MEMORY for your options.
Error in ==> C:\docs\talks\UQ2004c\quasi.m
On line 13 ==> [V,D]=eig(R');
```


How to evaluate the QSD

Normalize the dominant eigenvalue and transform its support back to two dimensions:

```
pi0=m/sum(m);
for x=0:(N-1)
    for y=1:N
            i=index([x,y,N]);
            pil(x+1,y)=pi0(i);
    end
end
surf(0:(N-1),1:N,pil)
title('QSD for the epidemic model');
xlabel('Susceptibles');
ylabel('Infectives');
zlabel('Probability');
```

For $N=40$ it took about 20 minutes to produce the graph.

The SIS model

QSD for the epidemic model

How to evaluate the QSD

Recall that we restricted Q to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and then used the transformation $i=y+N x$ to convert this to an $n \times n$ matrix, $R=\left(q_{i j}, i, j=1,2, \ldots, n\right)$, where $n=N^{2}$.

How to evaluate the QSD

Recall that we restricted Q to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and then used the transformation $i=y+N x$ to convert this to an $n \times n$ matrix, $R=\left(q_{i j}, i, j=1,2, \ldots, n\right)$, where $n=N^{2}$.

Numerical evaluation of the eigenvectors of R is obviously a non-trivial problem when N is large.

How to evaluate the QSD

Recall that we restricted Q to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and then used the transformation $i=y+N x$ to convert this to an $n \times n$ matrix, $R=\left(q_{i j}, i, j=1,2, \ldots, n\right)$, where $n=N^{2}$.

Numerical evaluation of the eigenvectors of R is obviously a non-trivial problem when N is large.

For example, if $N=100$, that is $n=10^{4}$, so that Q has 10^{8} entries, we would need 400 Mbytes of storage to even store Q, let alone evaluate its eigenvectors.

How to evaluate the QSD

R is a sparse matrix: the number of of non-zero entries of R is $(2 N-1)^{2}$ and so the proportion is $O\left(1 / N^{2}\right)=O(1 / n)$.

The Arnoldi Method

We need to solve $A x=\nu x$ (at least for dominant eigenvectors), where A is $n \times n$ and n is large.

The Arnoldi Method

We need to solve $A x=\nu x$ (at least for dominant eigenvectors), where A is $n \times n$ and n is large.

Using an initial estimate of x, the basic Arnoldi method produces an $m \times m$ (upper-Hessenberg) matrix H_{m} and an $n \times m$ matrix V_{m} with

$$
V_{m}^{T} A V_{m}=H_{m}
$$

The Arnoldi Method

We need to solve $A x=\nu x$ (at least for dominant eigenvectors), where A is $n \times n$ and n is large.

Using an initial estimate of x, the basic Arnoldi method produces an $m \times m$ (upper-Hessenberg) matrix H_{m} and an $n \times m$ matrix V_{m} with

$$
V_{m}^{T} A V_{m}=H_{m}
$$

It has the property that if z_{m} is an eigenvector of H_{m}, then, for m large, $V_{m} z_{m}$ is close to an eigenvector of A.

The Arnoldi Method

We need to solve $A x=\nu x$ (at least for dominant eigenvectors), where A is $n \times n$ and n is large.

Using an initial estimate of x, the basic Arnoldi method produces an $m \times m$ (upper-Hessenberg) matrix H_{m} and an $n \times m$ matrix V_{m} with

$$
V_{m}^{T} A V_{m}=H_{m}
$$

It has the property that if z_{m} is an eigenvector of H_{m}, then, for m large, $V_{m} z_{m}$ is close to an eigenvector of A.

We solve for z_{m} using standard (dense-matrix) methods. For example, n might be 100, 000 and m might be 20 .

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

First, the vector $w_{1}=A v_{1}$ is computed.

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

First, the vector $w_{1}=A v_{1}$ is computed. Then, the components of w_{1} in the direction of v_{1} are subtracted to give the "residual" $r_{1}=w_{1}-\left(v_{1}^{T} w_{1}\right) v_{1}$.

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

First, the vector $w_{1}=A v_{1}$ is computed. Then, the components of w_{1} in the direction of v_{1} are subtracted to give the "residual" $r_{1}=w_{1}-\left(v_{1}^{T} w_{1}\right) v_{1}$. This vector is normalized, using the Euclidean norm to form v_{2} : $v_{2}=r_{1} /\left\|r_{1}\right\|_{2}$.

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

First, the vector $w_{1}=A v_{1}$ is computed. Then, the components of w_{1} in the direction of v_{1} are subtracted to give the "residual" $r_{1}=w_{1}-\left(v_{1}^{T} w_{1}\right) v_{1}$. This vector is normalized, using the Euclidean norm to form $v_{2}: v_{2}=r_{1} /\left\|r_{1}\right\|_{2}$. Next, $w_{2}=A v_{2}$ is computed and then the components of w_{2} in the directions of v_{1} and v_{2} are subtracted to give the second residual r_{2}.

The Basic Arnoldi Method

The basic Arnoldi method starts with an arbitrary "seed" vector $v_{1} \in \mathbb{R}^{n}$ from which a sequence, v_{1}, v_{2}, \ldots, of orthonormal vectors is constructed as follows.

First, the vector $w_{1}=A v_{1}$ is computed. Then, the components of w_{1} in the direction of v_{1} are subtracted to give the "residual" $r_{1}=w_{1}-\left(v_{1}^{T} w_{1}\right) v_{1}$. This vector is normalized, using the Euclidean norm to form $v_{2}: v_{2}=r_{1} /\left\|r_{1}\right\|_{2}$. Next, $w_{2}=A v_{2}$ is computed and then the components of w_{2} in the directions of v_{1} and v_{2} are subtracted to give the second residual r_{2}. This is normalized to give v_{3}, and so on.

The Basic Arnoldi Method

The procedure described gives

$$
\begin{aligned}
& \text { for } \\
& \\
& \\
& w_{j} \leftarrow 1,2, \ldots\{ \\
& h_{i j} \leftarrow v_{i}^{T} w_{j} \quad(\text { for } i=1,2, \ldots, j) \\
& r_{j} \leftarrow w_{j}-\sum_{i=1}^{j} h_{i j} v_{i} \\
& v_{j+1} \leftarrow r_{j} /\left\|r_{j}\right\|_{2} \\
& h_{j+1, j} \leftarrow\left\|r_{j}\right\|_{2} \\
& \}
\end{aligned}
$$

The Basic Arnoldi Method

If the procedure is halted at say $j=m$, then we shall have that

$$
A v_{k}= \begin{cases}\sum_{i=1}^{k+1} h_{i k} v_{i} & \text { for } k<m \\ \sum_{i=1}^{m} h_{i k} v_{i}+r_{m} & \text { for } k=m\end{cases}
$$

The Basic Arnoldi Method

If the procedure is halted at say $j=m$, then we shall have that

$$
A v_{k}= \begin{cases}\sum_{i=1}^{k+1} h_{i k} v_{i} & \text { for } k<m \\ \sum_{i=1}^{m} h_{i k} v_{i}+r_{m} & \text { for } k=m\end{cases}
$$

Here $H_{m}=\left(h_{i j}\right)$ is an $m \times m$ upper-Hessenberg matrix given by

$$
h_{i j}= \begin{cases}v_{i}^{T} w_{j} & \text { for } i=1,2, \ldots, j \\ \left\|r_{j}\right\|_{2} & \text { for } i=j+1 \\ 0 & \text { otherwise }\end{cases}
$$

The Basic Arnoldi Method

If the procedure is halted at say $j=m$, then we shall have that

$$
A v_{k}= \begin{cases}\sum_{i=1}^{k+1} h_{i k} v_{i} & \text { for } k<m \\ \sum_{i=1}^{m} h_{i k} v_{i}+r_{m} & \text { for } k=m\end{cases}
$$

Thus, if we let $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ (columns), then

$$
A V_{m}=V_{m} H_{m}+r_{m} e_{m}^{T}
$$

where e_{m} is the unit vector with a 1 as its $m^{\text {th }}$ entry, and so, since the columns of V_{m} are orthonormal and r_{m} is orthogonal to each of them, we deduce that $V_{m}^{T} A V_{m}=H_{m}$.

The Basic Arnoldi Method

Claim. If z_{m} is an eigenvector of H_{m}, then, for m sufficiently large, $V_{m} z_{m}$ should be close to an eigenvector of A.

The Basic Arnoldi Method

Claim. If z_{m} is an eigenvector of H_{m}, then, for m sufficiently large, $V_{m} z_{m}$ should be close to an eigenvector of A.

Suppose that z_{m} satisfies $H_{m} z_{m}=\hat{\nu}_{m} z_{m}$, for some $\hat{\nu}_{m}$, and let $x_{m}=V_{m} z_{m}$. Then, on multiplying $A V_{m}=V_{m} H_{m}+r_{m} e_{m}^{T}$ (just obtained) by z_{m}, we get

$$
\begin{aligned}
A x_{m} & =V_{m}\left(H_{m} z_{m}\right)+r_{m}\left(z_{m}\right)_{m}=V_{m}\left(\hat{\nu}_{m} z_{m}\right)+r_{m}\left(z_{m}\right)_{m} \\
& =\hat{\nu}_{m} x_{m}+r_{m}\left(z_{m}\right)_{m}
\end{aligned}
$$

The Basic Arnoldi Method

Claim. If z_{m} is an eigenvector of H_{m}, then, for m sufficiently large, $V_{m} z_{m}$ should be close to an eigenvector of A.

Suppose that z_{m} satisfies $H_{m} z_{m}=\hat{\nu}_{m} z_{m}$, for some $\hat{\nu}_{m}$, and let $x_{m}=V_{m} z_{m}$. Then, on multiplying $A V_{m}=V_{m} H_{m}+r_{m} e_{m}^{T}$ (just obtained) by z_{m}, we get

$$
\begin{aligned}
A x_{m} & =V_{m}\left(H_{m} z_{m}\right)+r_{m}\left(z_{m}\right)_{m}=V_{m}\left(\hat{\nu}_{m} z_{m}\right)+r_{m}\left(z_{m}\right)_{m} \\
& =\hat{\nu}_{m} x_{m}+r_{m}\left(z_{m}\right)_{m}
\end{aligned}
$$

Thus, $\left(A-E_{m}\right) x_{m}=\hat{\nu}_{m} x_{m}$, where E_{m} is given by

$$
E_{m}=r_{m}\left(z_{m}\right)_{m} x_{m}^{T} /\left\|x_{m}\right\|_{2}^{2}
$$

The Basic Arnoldi Method

$\left(A-E_{m}\right) x_{m}=\hat{\nu}_{m} x_{m}$, where E_{m} is given by

$$
E_{m}=r_{m}\left(z_{m}\right)_{m} x_{m}^{T} /\left\|x_{m}\right\|_{2}^{2}
$$

It follows, from standard sensitivity analysis (see, for example, Section 7.2 of Golub and Van Loan*), that the error in the eigenvalue can be estimated by $\left\|r_{m}\right\|_{2}\left|\left(z_{m}\right)_{m}\right| /\left\|x_{m}\right\|_{2}$.
*Golub, G.H. and Van Loan, C. (1996) Matrix Computations, 3rd Edition, John Hopkins Press.

The Basic Arnoldi Method

$\left(A-E_{m}\right) x_{m}=\hat{\nu}_{m} x_{m}$, where E_{m} is given by

$$
E_{m}=r_{m}\left(z_{m}\right)_{m} x_{m}^{T} /\left\|x_{m}\right\|_{2}^{2}
$$

It follows, from standard sensitivity analysis (see, for example, Section 7.2 of Golub and Van Loan*), that the error in the eigenvalue can be estimated by $\left\|r_{m}\right\|_{2}\left|\left(z_{m}\right)_{m}\right| /\left\|x_{m}\right\|_{2}$.
*Golub, G.H. and Van Loan, C. (1996) Matrix Computations, 3rd Edition, John Hopkins Press.

Hence, if the residual vector r_{m} is small or $\left|\left(z_{m}\right)_{m}\right|$ is small, then the approximation will be good.

Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its eigenvalues are real. The Arnoldi method reduces to the Lanczos method, and H is a symmetric (of necessity tridiagonal) matrix.

Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its eigenvalues are real. The Arnoldi method reduces to the Lanczos method, and H is a symmetric (of necessity tridiagonal) matrix. However, let $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$, where v_{1}, v_{2}, \ldots is any sequence of orthonormal vectors in \mathbb{R}^{n}, and let $H_{m}=V_{m}^{T} A V_{m}$.

Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its eigenvalues are real. The Arnoldi method reduces to the Lanczos method, and H is a symmetric (of necessity tridiagonal) matrix. However, let $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$, where v_{1}, v_{2}, \ldots is any sequence of orthonormal vectors in \mathbb{R}^{n}, and let $H_{m}=V_{m}^{T} A V_{m}$. Let $\nu_{1}(A)$ and $\nu_{n}(A)$ be the maximum and minimum eigenvalues of A.

Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its eigenvalues are real. The Arnoldi method reduces to the Lanczos method, and H is a symmetric (of necessity tridiagonal) matrix. However, let $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$, where v_{1}, v_{2}, \ldots is any sequence of orthonormal vectors in \mathbb{R}^{n}, and let $H_{m}=V_{m}^{T} A V_{m}$. Let $\nu_{1}(A)$ and $\nu_{n}(A)$ be the maximum and minimum eigenvalues of A.

Claim. $\nu_{n}(A) \leq \nu_{m}\left(H_{m}\right) \leq \nu_{1}\left(H_{m}\right) \leq \nu_{1}(A)$.

Which eigenvectors does it give?

For simplicity, suppose A is symmetric, so that all its eigenvalues are real. The Arnoldi method reduces to the Lanczos method, and H is a symmetric (of necessity tridiagonal) matrix. However, let $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$, where v_{1}, v_{2}, \ldots is any sequence of orthonormal vectors in \mathbb{R}^{n}, and let $H_{m}=V_{m}^{T} A V_{m}$. Let $\nu_{1}(A)$ and $\nu_{n}(A)$ be the maximum and minimum eigenvalues of A.

Claim. $\nu_{n}(A) \leq \nu_{m}\left(H_{m}\right) \leq \nu_{1}\left(H_{m}\right) \leq \nu_{1}(A)$.
The proof uses the fact that the Rayleigh quotient $r(x)=x^{T} A x / x^{T} x, x \neq 0$, is maximized (resp. minimized) by the maximum and (resp. minimum) eigenvalue of A.

Which eigenvectors does it give?

Next, it can be shown that $\nu_{m+1}\left(H_{m+1}\right)<\nu_{m}\left(H_{m}\right)$ and $\nu_{1}\left(H_{m}\right)<\nu_{1}\left(H_{m+1}\right)$ (that is, we move closer to the maximum and minimum eigenvalues of A) if

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}=\operatorname{span}\left\{v_{1}, A v_{1}, A^{2} v_{1}, \ldots, A^{k} v_{1}\right\}
$$

for both $k=m$ and $k=m+1$. The Arnoldi method (Lanczos method) achieves this.

Which eigenvectors does it give?

Next, it can be shown that $\nu_{m+1}\left(H_{m+1}\right)<\nu_{m}\left(H_{m}\right)$ and $\nu_{1}\left(H_{m}\right)<\nu_{1}\left(H_{m+1}\right)$ (that is, we move closer to the maximum and minimum eigenvalues of A) if

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}=\operatorname{span}\left\{v_{1}, A v_{1}, A^{2} v_{1}, \ldots, A^{k} v_{1}\right\}
$$

for both $k=m$ and $k=m+1$. The Arnoldi method (Lanczos method) achieves this. Note that

$$
\mathcal{K}(A, v, m)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{m} v\right\}, \quad m=1,2, \ldots, n,
$$

are called the Krylov subspaces of A generated by v.

Which eigenvectors does it give?

Next, it can be shown that $\nu_{m+1}\left(H_{m+1}\right)<\nu_{m}\left(H_{m}\right)$ and $\nu_{1}\left(H_{m}\right)<\nu_{1}\left(H_{m+1}\right)$ (that is, we move closer to the maximum and minimum eigenvalues of A) if

$$
\operatorname{span}\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{k}\right\}=\operatorname{span}\left\{v_{1}, A v_{1}, A^{2} v_{1}, \ldots, A^{k} v_{1}\right\}
$$

for both $k=m$ and $k=m+1$. The Arnoldi method (Lanczos method) achieves this. Note that

$$
\mathcal{K}(A, v, m)=\operatorname{span}\left\{v, A v, A^{2} v, \ldots, A^{m} v\right\}, \quad m=1,2, \ldots, n,
$$

are called the Krylov subspaces of A generated by v. The Arnoldi method provides a means of computing a set of orthonormal bases for these subspaces.

Some properties

The most important property of the Arnoldi method is:

Some properties

The most important property of the Arnoldi method is:

- The Arnoldi method does not work.

Some properties

The most important property of the Arnoldi method is:

- The Arnoldi method does not work.

Why? The algorithm is vulnerable to round off error: in particular, loss of orthogonality of the columns of V_{m}.

Some properties

The most important property of the Arnoldi method is:

- The Arnoldi method does not work.

Why? The algorithm is vulnerable to round off error: in particular, loss of orthogonality of the columns of V_{m}.

This was addressed in
Pollett, P.K. and Stewart, D.E. (1994) An efficient procedure for computing quasistationary distributions of Markov chains with sparse transition structure. Advances in Applied Probability 26, 68-79.

The Iterative Arnoldi Method

Take m small (we found that $m=20$ worked best). Then, using an initial estimate v_{1} of the eigenvector x, apply the Basic Arnoldi Method (to obtain H_{m} and V_{m}) and set $\hat{\nu}$ to be the dominant eigenvalue of H_{m} if this is real, or set $\hat{\nu}$ equal to zero otherwise.

The Iterative Arnoldi Method

Take m small (we found that $m=20$ worked best). Then, using an initial estimate v_{1} of the eigenvector x, apply the Basic Arnoldi Method (to obtain H_{m} and V_{m}) and set $\hat{\nu}$ to be the dominant eigenvalue of H_{m} if this is real, or set $\hat{\nu}$ equal to zero otherwise.

Now solve

$$
\left(H_{m}-\hat{\nu} I\right) u_{1}=z
$$

with z chosen at random and repeat the procedure with a new initial estimate, given by

$$
v_{1}=V_{m} u_{1} /\left\|V_{m} u_{1}\right\|_{2} .
$$

The Iterative Arnoldi Method

Take m small (we found that $m=20$ worked best). Then, using an initial estimate v_{1} of the eigenvector x, apply the Basic Arnoldi Method (to obtain H_{m} and V_{m}) and set $\hat{\nu}$ to be the dominant eigenvalue of H_{m} if this is real, or set $\hat{\nu}$ equal to zero otherwise.

Now solve

$$
\left(H_{m}-\hat{\nu} I\right) u_{1}=z
$$

with z chosen at random and repeat the procedure with a new initial estimate, given by

$$
v_{1}=V_{m} u_{1} /\left\|V_{m} u_{1}\right\|_{2} .
$$

Continue until the residual $\left\|A v_{1}-\hat{\nu} v_{1}\right\|_{2}$ is sufficiently small.

The Iterative Arnoldi Method

An explanation of why this works is that the computed \hat{u}_{1} is an exact solution of a perturbed system

$$
\left(H_{m}+E-\hat{\lambda} I\right) \hat{u}_{1}=z,
$$

where $\|E\|_{2} \approx c_{m} \boldsymbol{u}\left\|H_{m}-\hat{\lambda} I\right\|_{2},\left\{c_{m}\right\}$ is a sequence of constants that grows slowly and u is the "machine epsilon" or "unit roundoff" for the arithmetic used; see Section 3.3 of Golub and Van Loan.

In Matlab use eigs instead of eig

Replace the command

$$
\mathrm{R}=\operatorname{zeros}(\mathrm{n}, \mathrm{n}) \text {; }
$$

by

```
R=sparse([]);
```

Replace the commands

```
[V,D]=eig(R'); [nu,I]=max(real(diag(D))); m=V(:,I);
```

by

```
[m,nu,FL]=eigs(R',1,'lr');
if FL==1 disp(' Warning - did not converge'); end
```

There are many other options, including the ability to control the value of m.

The Arnoldi Method

For $N=320$ my code successfully evaluated the quasi-stationary distribution in about 40 minutes (the iterative Arnoldi method converged).

Remember that the system had 102, 400 states!

The Arnoldi Method

QSD for the epidemic model

Convergence

Convergence

