


AN EPIDEMIC MODEL

The state at time t:

X(t) - number of susceptibles

Y (t) - number of infectives

State space:

S = {(x, y) : x, y = 0,1,2, . . . }

Transition rates Q = (qij, i, j ∈ S):

if i = (x, y), then

qij =



βxy if j = (x− 1, y + 1),

γy if j = (x, y − 1),

α if j = (x + 1, y),

0 otherwise.



TRANSITION DIAGRAM

Transitions of the epidemic model



AN AUTO-CATALYTIC REACTION

Consider the following reaction scheme:

A
X→ B,

where X is a catalyst. Suppose that there are

two stages, namely

A + X
k1→ 2X and 2X

k2→ B.

Let X(t) = number of X molecules at time t.

Suppose that the concentration of A is held

constant; let a be the number of molecules of

A. The state space is S = {0,1,2, . . . } and the

transition rates are given by

qij =



k1ai if j = i + 1,

k2

(
i
2

)
if j = i− 2,

0 otherwise.





INGREDIENTS

The state at time t : X(t) ∈ S = {0,1,2, . . . }.

Transition rates Q = (qij, i, j ∈ S): qij (≥ 0),
for j 6= i, is the transition rate from state i to
state j and qii = −qi, where qi =

∑
j 6=i qij (< ∞)

is the transition rate out of state i.

Assumptions : Take 0 to be the sole absorbing
state (that is, q0j = 0). For simplicity, suppose
that C = {1,2, . . . } is “irreducible” and that we
reach 0 from C with probability 1.

State probabilities : p(t) = (pj(t), j ∈ S), where
pj(t) = Pr(X(t) = j).

Initial distribution : a = (aj, j ∈ S) (a0 = 0).

Forward equations : the state probabilities sat-
isfy p ′(t) = p(t)Q, p(0) = a. In particular, since
q0j = 0,

p ′j(t) =
∑
i∈C

pi(t)qij, j ∈ S, t > 0.



THE STRUCTURE OF Q

Q has non-negative off-diagonal entries, non-
positive diagonal entries, and zero row sums.

In the present setup we have, additionally, that
(i) the first row is zero (because 0 is an ab-
sorbing state) and (ii) the first column has at
least one positive entry (because we must be
able to reach 0 from C).

Example. Birth-death processes
0 0 0 0 . . .
µ1 −(λ1 + µ1) λ1 0 . . .
0 µ2 −(λ2 + µ2) λ2 . . .
... ... ... ... . . .


Example. The autocatalytic reaction

0 0 0 0 0 . . .
0 −k1a k1a 0 0 . . .
k2 0 −(2k1a + k2) 2k1a 0 . . .
0 3k2 0 −3(k1a + k2) 3k1a . . .
... ... ... ... ... . . .





MODELLING QUASI STATIONARITY

Recall that S = {0}∪C, where 0 is an absorbing
state and C = {1,2, . . . } is the set of transient
states.

Conditional state probabilities : Define m(t) =
(mj(t), j ∈ C) by

mj(t) = Pr(X(t) = j |X(t) ∈ C),

the chance of being in state j given that the
process has not reached 0.

Question 1. Can we choose the initial distri-
bution a in order that mj(t) = aj, j ∈ C, for
all t > 0?

Question 2. Does m(t) → m as t →∞?

Definition. A distribution m = (mj, j ∈ C)
satisfying m(t) = m for all t > 0 is called a
quasi-stationary distribution. If m(t) → m then
m is called a limiting-conditional distribution.



SOME CALCULATIONS

For j ∈ C,

mj(t) = Pr(X(t) = j |X(t) ∈ C)

=
Pr(X(t) = j)

Pr(X(t) ∈ C)

=
pj(t)∑

k∈C pk(t)
=

pj(t)

1− p0(t)

Therefore,

m ′
j(t) =

p ′j(t)

1− p0(t)
+ pj(t)

p ′0(t)

(1− p0(t))2

=
p ′j(t)

1− p0(t)
+ mj(t)

p ′0(t)

1− p0(t)

=
∑
k∈C

mk(t)qkj + mj(t)
∑
k∈C

mk(t)qk0.

m ′
j(t) =

∑
k∈C

mk(t)qkj + mj(t)
∑
k∈C

mk(t)qk0.

Since
∑

j∈S qij = 0, this can be written m ′(t) =
m(t)A−ctm(t), where ct = m(t)A1 and A is the
restriction of Q to C.



QUASI-STATIONARY DISTRIBUTIONS

Since a is the initial distribution (with a0 = 0),

pj(t) =
∑
i∈C

aipij(t), j ∈ C, t < 0,

where pij(t) = Pr(X(t) = j|X(0) = i). There-
fore, if m is a quasi-stationary distribution, then∑

i∈C

mipij(t) = g(t)mj, j ∈ C, t > 0,

where g(t) =
∑

i∈C pi(t). It is easy to show
that g satisfies: g(s + t) = g(s)g(t), s, t ≥ 0,
and 0 < g(t) < 1. Thus, g(t) = e−µt, for some
µ > 0. The converse is also true.

Proposition. A probability distribution m =
(mj, j ∈ C) is a quasi-stationary distribution if
and only if, for some µ > 0, m is a µ-invariant
measure, that is∑

i∈C

mipij(t) = e−µtmj, j ∈ C, t ≥ 0. (1)



CAN WE DETERMINE m from Q?

Rewrite (1) as∑
i∈C: i6=j

mipij(t) =
(
(1− pjj(t))− (1− e−µt)

)
mj

and use the fact that qij is the right-hand deriva-

tive of pij(·) near 0. On dividing by t and let-

ting t ↓ 0, we get (formally)∑
i∈C: i6=j

miqij = (qj − µ)mj, j ∈ C,

or, equivalently,∑
i∈C

miqij = −µmj, j ∈ C. (2)

Accordingly, we shall say that m is a µ-invariant

measure for Q whenever (2) holds.

Proposition. If m is a quasi-stationary distri-

bution then, for some µ > 0, m is a µ-invariant

measure for Q.



IS THE CONVERSE TRUE?

Suppose that, for some µ > 0, m is a µ-invariant

measure for Q, that is∑
i∈C

miqij = −µmj, j ∈ C.

Is m a quasi-stationary distribution?

Sum this equation over j ∈ C: we get (for-

mally)∑
i∈C

miqi0 = −
∑
i∈C

mi

∑
j∈C

qij = −
∑
j∈C

∑
i∈C

miqij

= µ
∑
j∈C

mj = µ.

Theorem. Let m = (mj, j ∈ C) be a proba-

bility distribution over C and suppose that m

is a µ-invariant measure for Q. Then, µ ≤∑
j∈C mjqj0 with equality if and only if m is a

quasi-stationary distribution.



AN EXAMPLE

The birth-death-catastrophe process. Let

S = {0,1,2, . . . } and suppose that

qi,i+1 = aρi, i ≥ 0,

qi,i = −ρi, i ≥ 0,
qi,i−k = ρibk, i ≥ 2, k = 1,2 . . . i− 1,

qi,0 = ρi
∑∞

k=i bk, i ≥ 1,

where ρ, a > 0, bi > 0 for at least one i ≥ 1 and

a +
∑∞

i=1 bi = 1. Jumps occur at a constant

“per-capita” rate ρ and, at a jump time, a birth

occurs with probability a, or otherwise a catas-

trophe occurs, the size of which is determined

by the probabilities bi, i ≥ 1.

Clearly, 0 is an absorbing state and C = {1,2, . . . }
is an irreducible class.

So, does the process admit a quasi-stationary

distribution?



CALCULATIONS

On substituting the transition rates into the
equations

∑
i∈C miqij = −µmj, j ∈ C, we get:

−(ρ− µ)m1 +
∞∑

k=2

kρbk−1mk = 0,

and, for j ≥ 2,

(j−1)ρamj−1−(jρ−µ)mj+
∞∑

k=j+1

kρbk−jmk = 0.

If we try a solution of the form mj = tj, the
first equation tells us that µ = −ρ(f ′(t) − 1),
where

f(s) = a +
∑
i∈C

bis
i+1, |s| ≤ 1,

and, on substituting both of these quantities
in the second equation, we find that f(t) = t.
This latter equation has a unique solution σ
on [0,1]. Thus, by setting t = σ we obtain a
positive µ-invariant measure m = (mj, j ∈ C)
for Q, which satisfies

∑
j∈C mj = 1 whenever

σ < 1.



The condition σ < 1 is satisfied only in the

subcritical case, that is, when (the drift) D =

a −
∑

i∈C ibi < 0; this also guarantees that ab-

sorption occurs with probability 1.

Further, it is easy to show that
∑

i∈C miqi0 = µ:

∑
i∈C miqi0 =

∑∞
i=1(1− σ)σi−1ρi

∑∞
k=i bk

= ρ
∑∞

k=1 bk
∑k

i=1(1− σ)iσi−1

...
= ρ(1− f ′(σ)) = µ.

Proposition. The subcritical birth-death-catas-

trophe process has a geometric quasi-stationary

distribution m = (mj, j ∈ C). This is given by

mj = (1− σ)σj−1, j ∈ C,

where σ is the unique solution to f(t) = t on

the interval [0,1].



SOME RECENT TECHNOLOGY

Theorem. If the equations∑
i∈C

yiqij = νyj, j ∈ C,

have no non-trivial, non-negative solution such

that
∑

i∈C yi < ∞, for some (and then all) ν >

0, then all µ-invariant probability measures for

Q are quasistationary distributions.

[More generally, writing αi for the probability of

absorption starting in i, we have the following:

Theorem. If the equations∑
i∈C

yiqij = νyj, j ∈ C,

have no non-trivial, non-negative solution such

that
∑

i∈C yiαi < ∞, for some (and then all) ν >

0, then all µ-invariant measures for Q satisfying∑
i∈C miαi < ∞, are µ-invariant for P .]



COMPUTATIONAL METHODS

Finite S. Mandl (1960) showed that the re-

striction of Q to C has eigenvalues with nega-

tive real parts and the one with maximal real

part (called −µ above) is real and has multiplic-

ity 1, and, the corresponding left eigenvector

l = (lj, j ∈ C) has positive entries; this is, of

course, a µ-invariant measure for Q (unique up

to constant multiples). Since S is finite, the

quasi-stationary distribution m = (m, i ∈ C)

exists and is given by

mj =
lj∑

k∈C lk
, j ∈ C.

Infinite S. Truncate the restriction of Q to

an n × n matrix, Q(n), and construct a se-

quence, {l(n)}, of eigenvectors and hope that

this converges to a µ-invariant measure l for

Q, et cetera.



HOW SHOULD WE EVALUATE m?

Consider once again our epidemic model.

First truncate C to

CN = {(x, y) : x = 0, . . . , N − 1; y = 1, . . . , N}

and restrict Q to CN . Use the transformation

i = x + N(y − 1) to convert the restricted q-

matrix into an n × n matrix, Q = (qij, i, j =

0,1, . . . , n− 1), where n = N2.

Evaluation of the eigenvectors of Q is not com-

pletely trivial. For example, if (as well shall as-

sume) N = 100, that is n = 104, Q needs 400

Mbytes of storage.

However, for N large, this matrix is large and

sparse. Does this help?



THE ARNOLDI METHOD

We need to solve Ax = λx, where A = QT .

Using an initial estimate of x, the basic Arnoldi

method produces an m×m (upper-Hessenberg)

matrix Hm and an n×m matrix Vm with

V T
mAVm = Hm,

and such that if zm is an eigenvector of Hm,

then, for m large, Vmzm is close to an eigen-

vector of A.

We solve for zm using standard (dense-matrix)

methods.



AN ITERATIVE ARNOLDI
METHOD

Take m small (we found that m = 20 worked

best). Then, using an initial estimate v1 of the

eigenvector x, apply the basic Arnoldi method

(to obtain Hm and Vm) and set λ̂ to be the

dominant eigenvalue of Hm if this is real, or

set λ̂ equal to zero otherwise.

Now solve

(Hm − λ̂I)u1 = z

with z chosen at random and repeat the pro-

cedure with a new initial estimate, given by

v1 = Vmu1/‖Vmu1‖2.

Continue until the residual, ‖Av1 − λ̂v1‖2, is

sufficiently small.






