

AN EPIDEMIC MODEL

The state at time t :
$X(t)$ - number of susceptibles
$Y(t)$ - number of infectives

State space:

$$
S=\{(x, y): x, y=0,1,2, \ldots\}
$$

Transition rates $Q=\left(q_{i j}, i, j \in S\right)$:

$$
\begin{aligned}
& \text { if } i=(x, y) \text {, then } \\
& \qquad q_{i j}= \begin{cases}\beta x y & \text { if } j=(x-1, y+1), \\
\gamma y & \text { if } j=(x, y-1), \\
\alpha & \text { if } j=(x+1, y), \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

TRANSITION DIAGRAM

Transitions of the epidemic model

AN AUTO-CATALYTIC REACTION

Consider the following reaction scheme:

$$
A \xrightarrow{X} B,
$$

where X is a catalyst. Suppose that there are two stages, namely

$$
A+X \xrightarrow{k_{1}} 2 X \quad \text { and } \quad 2 X \xrightarrow{k_{2}} B .
$$

Let $X(t)=$ number of X molecules at time t.

Suppose that the concentration of A is held constant; let a be the number of molecules of A. The state space is $S=\{0,1,2, \ldots\}$ and the transition rates are given by

$$
q_{i j}= \begin{cases}k_{1} a i & \text { if } j=i+1 \\ k_{2}\binom{i}{2} & \text { if } j=i-2 \\ 0 & \text { otherwise }\end{cases}
$$

INGREDIENTS

The state at time $t: X(t) \in S=\{0,1,2, \ldots\}$.
Transition rates $Q=\left(q_{i j}, i, j \in S\right)$: $q_{i j}(\geq 0)$, for $j \neq i$, is the transition rate from state i to state j and $q_{i i}=-q_{i}$, where $q_{i}=\sum_{j \neq i} q_{i j}(<\infty)$ is the transition rate out of state i.

Assumptions: Take 0 to be the sole absorbing state (that is, $q_{0 j}=0$). For simplicity, suppose that $C=\{1,2, \ldots\}$ is "irreducible" and that we reach 0 from C with probability 1 .

State probabilities: $p(t)=\left(p_{j}(t), j \in S\right)$, where $p_{j}(t)=\operatorname{Pr}(X(t)=j)$.

Initial distribution: $a=\left(a_{j}, j \in S\right)\left(a_{0}=0\right)$.
Forward equations: the state probabilities satisfy $p^{\prime}(t)=p(t) Q, p(0)=a$. In particular, since $q_{0 j}=0$,

$$
p_{j}^{\prime}(t)=\sum_{i \in C} p_{i}(t) q_{i j}, \quad j \in S, t>0 .
$$

THE STRUCTURE OF Q

Q has non-negative off-diagonal entries, nonpositive diagonal entries, and zero row sums.

In the present setup we have, additionally, that (i) the first row is zero (because 0 is an absorbing state) and (ii) the first column has at least one positive entry (because we must be able to reach 0 from C).

Example. Birth-death processes

$$
\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Example. The autocatalytic reaction
$\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & \cdots \\ 0 & -k_{1} a & k_{1} a & 0 & 0 & \cdots \\ k_{2} & 0 & -\left(2 k_{1} a+k_{2}\right) & 2 k_{1} a & 0 & \cdots \\ 0 & 3 k_{2} & 0 & -3\left(k_{1} a+k_{2}\right) & 3 k_{1} a & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots\end{array}\right)$

MODELLING QUASI STATIONARITY

Recall that $S=\{0\} \cup C$, where 0 is an absorbing state and $C=\{1,2, \ldots\}$ is the set of transient states.

Conditional state probabilities: Define $m(t)=$ ($\left.m_{j}(t), j \in C\right)$ by

$$
m_{j}(t)=\operatorname{Pr}(X(t)=j \mid X(t) \in C)
$$

the chance of being in state j given that the process has not reached 0 .

Question 1. Can we choose the initial distribution a in order that $m_{j}(t)=a_{j}, j \in C$, for all $t>0$?

Question 2. Does $m(t) \rightarrow m$ as $t \rightarrow \infty$?
Definition. A distribution $m=\left(m_{j}, j \in C\right)$ satisfying $m(t)=m$ for all $t>0$ is called a quasi-stationary distribution. If $m(t) \rightarrow m$ then m is called a limiting-conditional distribution.

SOME CALCULATIONS

For $j \in C$,

$$
\begin{aligned}
m_{j}(t) & =\operatorname{Pr}(X(t)=j \mid X(t) \in C) \\
& =\frac{\operatorname{Pr}(X(t)=j)}{\operatorname{Pr}(X(t) \in C)} \\
& =\frac{p_{j}(t)}{\sum_{k \in C} p_{k}(t)}=\frac{p_{j}(t)}{1-p_{0}(t)}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
m_{j}^{\prime}(t) & =\frac{p_{j}^{\prime}(t)}{1-p_{0}(t)}+p_{j}(t) \frac{p_{0}^{\prime}(t)}{\left(1-p_{0}(t)\right)^{2}} \\
& =\frac{p_{j}^{\prime}(t)}{1-p_{0}(t)}+m_{j}(t) \frac{p_{0}^{\prime}(t)}{1-p_{0}(t)} \\
& =\sum_{k \in C} m_{k}(t) q_{k j}+m_{j}(t) \sum_{k \in C} m_{k}(t) q_{k 0} .
\end{aligned}
$$

$$
m_{j}^{\prime}(t)=\sum_{k \in C} m_{k}(t) q_{k j}+m_{j}(t) \sum_{k \in C} m_{k}(t) q_{k 0} .
$$

Since $\sum_{j \in S} q_{i j}=0$, this can be written $m^{\prime}(t)=$ $m(t) A-c_{t} m(t)$, where $c_{t}=m(t) A 1$ and A is the restriction of Q to C.

QUASI-STATIONARY DISTRIBUTIONS

Since a is the initial distribution (with $a_{0}=0$),

$$
p_{j}(t)=\sum_{i \in C} a_{i} p_{i j}(t), \quad j \in C, t<0,
$$

where $p_{i j}(t)=\operatorname{Pr}(X(t)=j \mid X(0)=i)$. Therefore, if m is a quasi-stationary distribution, then

$$
\sum_{i \in C} m_{i} p_{i j}(t)=g(t) m_{j}, \quad j \in C, t>0,
$$

where $g(t)=\sum_{i \in C} p_{i}(t)$. It is easy to show that g satisfies: $g(s+t)=g(s) g(t), s, t \geq 0$, and $0<g(t)<1$. Thus, $g(t)=e^{-\mu t}$, for some $\mu>0$. The converse is also true.

Proposition. A probability distribution $m=$ ($m_{j}, j \in C$) is a quasi-stationary distribution if and only if, for some $\mu>0, m$ is a μ-invariant measure, that is

$$
\begin{equation*}
\sum_{i \in C} m_{i} p_{i j}(t)=e^{-\mu t} m_{j}, \quad j \in C, t \geq 0 \tag{1}
\end{equation*}
$$

CAN WE DETERMINE m from Q ?

Rewrite (1) as
$\sum_{i \in C: i \neq j} m_{i} p_{i j}(t)=\left(\left(1-p_{j j}(t)\right)-\left(1-e^{-\mu t}\right)\right) m_{j}$
and use the fact that $q_{i j}$ is the right-hand derivative of $p_{i j}(\cdot)$ near 0 . On dividing by t and letting $t \downarrow 0$, we get (formally)

$$
\sum_{i \in C: i \neq j} m_{i} q_{i j}=\left(q_{j}-\mu\right) m_{j}, \quad j \in C
$$

or, equivalently,

$$
\begin{equation*}
\sum_{i \in C} m_{i} q_{i j}=-\mu m_{j}, \quad j \in C \tag{2}
\end{equation*}
$$

Accordingly, we shall say that m is a μ-invariant measure for Q whenever (2) holds.

Proposition. If m is a quasi-stationary distribution then, for some $\mu>0, m$ is a μ-invariant measure for Q.

IS THE CONVERSE TRUE?

Suppose that, for some $\mu>0, m$ is a μ-invariant measure for Q, that is

$$
\sum_{i \in C} m_{i} q_{i j}=-\mu m_{j}, \quad j \in C
$$

Is m a quasi-stationary distribution?

Sum this equation over $j \in C$: we get (formally)

$$
\begin{gathered}
\sum_{i \in C} m_{i} q_{i 0}=-\sum_{i \in C} m_{i} \sum_{j \in C} q_{i j}=-\sum_{j \in C} \sum_{i \in C} m_{i} q_{i j} \\
=\mu \sum_{j \in C} m_{j}=\mu .
\end{gathered}
$$

Theorem. Let $m=\left(m_{j}, j \in C\right)$ be a probability distribution over C and suppose that m is a μ-invariant measure for Q. Then, $\mu \leq$ $\sum_{j \in C} m_{j} q_{j 0}$ with equality if and only if m is a quasi-stationary distribution.

AN EXAMPLE

The birth-death-catastrophe process. Let $S=\{0,1,2, \ldots\}$ and suppose that

$$
\begin{array}{cc}
q_{i, i+1}=a \rho i, & i \geq 0, \\
q_{i, i}=-\rho i, & i \geq 0, \\
q_{i, i-k}=\rho i b_{k}, & i \geq 2, \\
q_{i, 0}=\rho i \sum_{k=i}^{\infty} b_{k}, & i \geq 1,2 \ldots i-1,
\end{array}
$$

where $\rho, a>0, b_{i}>0$ for at least one $i \geq 1$ and $a+\sum_{i=1}^{\infty} b_{i}=1$. Jumps occur at a constant "per-capita" rate ρ and, at a jump time, a birth occurs with probability a, or otherwise a catastrophe occurs, the size of which is determined by the probabilities $b_{i}, i \geq 1$.

Clearly, 0 is an absorbing state and $C=\{1,2, \ldots\}$ is an irreducible class.

So, does the process admit a quasi-stationary distribution?

CALCULATIONS

On substituting the transition rates into the equations $\sum_{i \in C} m_{i} q_{i j}=-\mu m_{j}, j \in C$, we get:

$$
-(\rho-\mu) m_{1}+\sum_{k=2}^{\infty} k \rho b_{k-1} m_{k}=0
$$

and, for $j \geq 2$,

$$
(j-1) \rho a m_{j-1}-(j \rho-\mu) m_{j}+\sum_{k=j+1}^{\infty} k \rho b_{k-j} m_{k}=0 .
$$

If we try a solution of the form $m_{j}=t^{j}$, the first equation tells us that $\mu=-\rho\left(f^{\prime}(t)-1\right)$, where

$$
f(s)=a+\sum_{i \in C} b_{i} s^{i+1}, \quad|s| \leq 1,
$$

and, on substituting both of these quantities in the second equation, we find that $f(t)=t$. This latter equation has a unique solution σ on $[0,1]$. Thus, by setting $t=\sigma$ we obtain a positive μ-invariant measure $m=\left(m_{j}, j \in C\right)$ for Q, which satisfies $\sum_{j \in C} m_{j}=1$ whenever $\sigma<1$.

The condition $\sigma<1$ is satisfied only in the subcritical case, that is, when (the drift) $D=$ $a-\sum_{i \in C} i b_{i}<0$; this also guarantees that absorption occurs with probability 1.

Further, it is easy to show that $\sum_{i \in C} m_{i} q_{i 0}=\mu$:

$$
\begin{aligned}
\sum_{i \in C} m_{i} q_{i 0} & =\sum_{i=1}^{\infty}(1-\sigma) \sigma^{i-1} \rho i \sum_{k=i}^{\infty} b_{k} \\
& =\rho \sum_{k=1}^{\infty} b_{k} \sum_{i=1}^{k}(1-\sigma) i \sigma^{i-1} \\
& \vdots \\
& =\rho\left(1-f^{\prime}(\sigma)\right)=\mu .
\end{aligned}
$$

Proposition. The subcritical birth-death-catastrophe process has a geometric quasi-stationary distribution $m=\left(m_{j}, j \in C\right)$. This is given by

$$
m_{j}=(1-\sigma) \sigma^{j-1}, \quad j \in C,
$$

where σ is the unique solution to $f(t)=t$ on the interval $[0,1]$.

SOME RECENT TECHNOLOGY

Theorem. If the equations

$$
\sum_{i \in C} y_{i} q_{i j}=\nu y_{j}, \quad j \in C,
$$

have no non-trivial, non-negative solution such that $\sum_{i \in C} y_{i}<\infty$, for some (and then all) $\nu>$ 0 , then all μ-invariant probability measures for Q are quasistationary distributions.
[More generally, writing α_{i} for the probability of absorption starting in i, we have the following:

Theorem. If the equations

$$
\sum_{i \in C} y_{i} q_{i j}=\nu y_{j}, \quad j \in C,
$$

have no non-trivial, non-negative solution such that $\sum_{i \in C} y_{i} \alpha_{i}<\infty$, for some (and then all) $\nu>$ 0 , then all μ-invariant measures for Q satisfying $\sum_{i \in C} m_{i} \alpha_{i}<\infty$, are μ-invariant for P.]

COMPUTATIONAL METHODS

Finite S. Mandl (1960) showed that the restriction of Q to C has eigenvalues with negative real parts and the one with maximal real part (called $-\mu$ above) is real and has multiplicity 1 , and, the corresponding left eigenvector $l=\left(l_{j}, j \in C\right)$ has positive entries; this is, of course, a μ-invariant measure for Q (unique up to constant multiples). Since S is finite, the quasi-stationary distribution $m=(m, i \in C)$ exists and is given by

$$
m_{j}=\frac{l_{j}}{\sum_{k \in C} l_{k}}, \quad j \in C .
$$

Infinite S. Truncate the restriction of Q to an $n \times n$ matrix, $Q^{(n)}$, and construct a sequence, $\left\{l^{(n)}\right\}$, of eigenvectors and hope that this converges to a μ-invariant measure l for Q, et cetera.

HOW SHOULD WE EVALUATE $m ?$

Consider once again our epidemic model.

First truncate C to

$$
C_{N}=\{(x, y): x=0, \ldots, N-1 ; y=1, \ldots, N\}
$$

and restrict Q to C_{N}. Use the transformation $i=x+N(y-1)$ to convert the restricted q matrix into an $n \times n$ matrix, $Q=\left(q_{i j}, i, j=\right.$ $0,1, \ldots, n-1)$, where $n=N^{2}$.

Evaluation of the eigenvectors of Q is not completely trivial. For example, if (as well shall assume) $N=100$, that is $n=10^{4}, Q$ needs 400 Mbytes of storage.

However, for N large, this matrix is large and sparse. Does this help?

THE ARNOLDI METHOD

We need to solve $A x=\lambda x$, where $A=Q^{T}$.

Using an initial estimate of x, the basic Arnoldi method produces an $m \times m$ (upper-Hessenberg) matrix H_{m} and an $n \times m$ matrix V_{m} with

$$
V_{m}^{T} A V_{m}=H_{m},
$$

and such that if z_{m} is an eigenvector of H_{m}, then, for m large, $V_{m} z_{m}$ is close to an eigenvector of A.

We solve for z_{m} using standard (dense-matrix) methods.

AN ITERATIVE ARNOLDI METHOD

Take m small (we found that $m=20$ worked best). Then, using an initial estimate v_{1} of the eigenvector x, apply the basic Arnoldi method (to obtain H_{m} and V_{m}) and set $\hat{\lambda}$ to be the dominant eigenvalue of H_{m} if this is real, or set $\hat{\lambda}$ equal to zero otherwise.

Now solve

$$
\left(H_{m}-\hat{\lambda} I\right) u_{1}=z
$$

with z chosen at random and repeat the procedure with a new initial estimate, given by

$$
v_{1}=V_{m} u_{1} /\left\|V_{m} u_{1}\right\|_{2} .
$$

Continue until the residual, $\left\|A v_{1}-\hat{\lambda} v_{1}\right\|_{2}$, is sufficiently small.

