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Metapopulations

A metapopulation is a population that is confined
to a network of geographically separated habitat
patches (for example a group of islands).

Individual patches may suffer local extinction.

Recolonization can occur through dispersal of
individuals from other patches.
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SPOM

A Stochastic Patch Occupancy Model (SPOM)
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SPOM

A Stochastic Patch Occupancy Model (SPOM)

Suppose that there are n patches.

Let X(n)
t = (X

(n)
1,t , . . . , X

(n)
n,t ), where X

(n)
i,t is a binary

variable indicating whether or not patch i is occupied.
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Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
independently with probability f(n−1
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f : [0, 1] → [0, 1] is continuous, increasing and concave,
and f ′(0) > 0.
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SPOM

We will assume that the population is observed after
each extinction phase.

Thus, we have a Chain Bernoulli structure:

X
(n)
i,t+1

d
= Bin

(

X
(n)
i,t + Bin

(

1 −X
(n)
i,t , f

(

1
n

∑n
j=1X

(n)
j,t

))

, Si

)
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Notation: Bin(m, p) is a binomial random variable with
m trials and success probability p.
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SPOM

Compare this with the homogenous case, where Si = s

(non-random) is the same for each i, and we merely
count the number N (n)

t of occupied patches at time t.

We have the following Chain Binomial structure:

N
(n)
t+1

d
= Bin

(

N
(n)
t + Bin

(

n−N
(n)
t , f

(

1
n
N

(n)
t

))

, s
)
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A deterministic limit

Theorem ∗ If N (n)
0 /n

p
→ x0 (a constant), then

N
(n)
t /n

p
→ xt for all t ≥ 1,

where (xt) is determined by

xt+1 = s(xt + (1 − xt)f(xt)).

∗Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for
discrete-time metapopulation models. Probability Surveys 7, 53-
83.
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Stability

xt+1 = s(xt + (1 − xt)f(xt))

Stationarity : f(0) > 0. There is a unique fixed point
x∗ ∈ [0, 1]. It satisfies x∗ ∈ (0, 1) and is stable.

Evanescence: f(0) = 0 and 1 + f ′(0) ≤ 1/s. Now 0

is the unique fixed point in [0, 1]. It is stable.

Quasi stationarity : f(0) = 0 and 1 + f ′(0) > 1/s.
There are two fixed points in [0, 1]: 0 (unstable) and
x∗ ∈ (0, 1) (stable).
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A deterministic limit

Returning to the general case, where patch survival
probabilities are random and patch dependent, and
we keep track of which patches are occupied . . .

X
(n)
i,t+1

d
= Bin

(

X
(n)
i,t + Bin

(

1 −X
(n)
i,t , f
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(n)
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A deterministic limit

Returning to the general case, where patch survival
probabilities are random and patch dependent, and
we keep track of which patches are occupied . . .

X
(n)
i,t+1

d
= Bin

(

X
(n)
i,t + Bin

(

1 −X
(n)
i,t , f

(

1
n

∑n
j=1X

(n)
j,t

))

, Si

)

First, . . .

Notation: If σ is a probability measure on [0, 1) and let
s̄k denote its k-th moment, that is,

s̄k =
∫ 1
0 λ

kσ(dλ).
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A deterministic limit

Theorem Suppose that there is a probability measure
σ and deterministic sequence {d(0, k)} such that

1
n

∑n
i=1 S

k
i

p
→ s̄k and 1

n

∑n
i=1 S

k
i X

n
i,0

p
→ d(0, k)

for all k = 0, 1, . . . , T . Then, there is a (deterministic)
triangular array {d(t, k)} such that, for all t = 0, 1, . . . , T

and k = 0, 1, . . . , T − t,

1
n

∑n
i=1 S

k
i X

n
i,t

p
→ d(t, k),

where

d(t+ 1, k) = d(t, k + 1) + f (d(t, 0)) (s̄k+1 − d(t, k + 1)) .
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Remarks

Typically, we are only interested in d(t, 0), being the
asymptotic proportion of occupied patches.

However, we may still interpret the ratio
d(t, k)/d(t, 0) (k ≥ 1) as the k-th moment of the
conditional distribution of the patch survival
probability given that the patch is occupied. (From
these moments, the conditional distribution could
then be reconstructed.)
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Remarks

When s̄k = s̄k1 for all k, that is the patch survival
probabilities are the same, then it is possible to
simplify

d(t+ 1, k) = d(t, k + 1) + f (d(t, 0)) (s̄k+1 − d(t, k + 1)) .

We can show by induction that d(t, k) = s̄k1xt, where

xt+1 = s̄1 (xt + (1 − xt) f(xt)) .

(Compare this with the earlier result.)
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Stability

Theorem The fixed points are given by

d(k) =
∫ 1
0

f(ψ)λk+1

1−λ+f(ψ)λσ(dλ),

where ψ solves

R(ψ) =
∫ 1
0

f(ψ)λ
1−λ+f(ψ)λσ(dλ) = ψ. (1)

If f(0) > 0, there exists a unique ψ > 0. If f(0) = 0 and

f ′(0)
∫ 1
0

λ
1−λσ(dλ) ≤ 1,

then ψ = 0 is the unique solution to (1). Otherwise, (1)
has two solutions, one of which is ψ = 0.
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Stability

Theorem If f(0) = 0 and

f ′(0)
∫ 1
0

λ
1−λσ(dλ) ≤ 1,

then d(k) ≡ 0 is a stable fixed point. Otherwise, the
non-zero solution to

R(ψ) =
∫ 1
0

f(ψ)λ
1−λ+f(ψ)λσ(dλ) = ψ

provides the stable fixed point through

d(k) =
∫ 1
0

f(ψ)λk+1

1−λ+f(ψ)λσ(dλ).
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