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The progress of an epidemic
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An autocatalytic reaction

Consider the reaction scheme A
X→ B, where X is a catalyst.

Suppose that there are two stages, namely

A + X
k1→ 2X and 2X

k2→ B.

Let nt be the number of X molecules at time t.

Let a be the number of A molecules. Suppose that the
concentration of A is held constant.

The state space is S = {0, 1, 2, . . . } and the transitions are:

n → n + 1 at rate k1
V an = k1[A]n

n → n − 2 at rate k2
V

(

n
2

)

(V is volume)
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An autocatalytic reaction
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A population network

There are N “patches” of habitat. Each occupied patch
becomes empty at rate µ and colonization of empty patches
by occupied patches occurs at rate λ/N for each suitable pair.

Let nt be the number of occupied patches at time t. The state
space is S = {0, 1, . . . , N} and the transitions are:

n → n + 1 at rate λ
N n (N − n)

n → n − 1 at rate µn

I will call this model the stochastic logistic (SL) model , though
it has many names, having been rediscovered several times
since Feller∗ proposed it.

∗Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein

in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11–40.
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The SL model (λ < µ)
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The SL model (λ > µ)
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The SL model (λ > µ)
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Markov chains–ingredients

The state at time t : nt ∈ S (a countable set).

Transition rates Q = (qnm, n, m ∈ S): qnm (≥ 0), for m 6= n, is
the transition rate from state n to state m and qnn = −qn,
where qn =

∑

m6=n qnm, is the transition rate out of state n.
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Markov chains–ingredients

The state at time t : nt ∈ S (a countable set).

Transition rates Q = (qnm, n, m ∈ S): qnm (≥ 0), for m 6= n, is
the transition rate from state n to state m and qnn = −qn,
where qn =

∑

m6=n qnm, is the transition rate out of state n.

Example . The autocatalytic reaction A + X
k1→ 2X, 2X

k2→ B

Q=



















0 0 0 0 0 . . .

0 −k1
V a k1

V a 0 0 . . .
k2
V 0 − 1

V (2k1a + k2) 2k1
V a 0 . . .

0 3k2
V 0 − 3

V (k1a + k2) 3k1
V a . . .

...
...

...
...

...
. . .



















(

n → n + 1 at rate k1
V an and n → n − 2 at rate k2

V

(

n
2

)

)
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n → n + 1 at rate k1
V an and n → n − 2 at rate k2

V

(

n
2

)

)

MASCOS LAAS Toulouse, June 2010 - Page 10



More ingredients

Assumptions: take 0 to be the sole absorbing state (that is,
q0n = 0). For simplicity, suppose that C = S − {0} is
“irreducible” and that we reach 0 from C with probability 1.

State probabilities: p(t) = (pn(t), n ∈ S), pn(t) = Pr(nt = n).

Initial distribution: p(0) = a = (an, n ∈ S) (a0 = 0).

Forward equations (FEs): the state probabilities satisfy

p ′(t) = p(t)Q, p(0) = a.

In particular, since q0n = 0,

p ′
n(t) =

∑

m∈C pm(t)qmn (n ∈ S, t > 0).

Or, written as a master equation:

p ′
n(t) =

∑

m∈C {pm(t)qmn − pn(t)qnm} (n ∈ S, t > 0).
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Solution to FEs?

If S is a finite set (or, more generally, if supn qn < ∞), then the
forward equations p ′(t) = p(t)Q, with p(0) = a, have the
unique solution p(t) = a exp(Qt), t ≥ 0, where exp is the
matrix exponential :

exp(A) = I + A + A2

2! + · · · + An

n! + . . .
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forward equations p ′(t) = p(t)Q, with p(0) = a, have the
unique solution p(t) = a exp(Qt), t ≥ 0, where exp is the
matrix exponential :

exp(A) = I + A + A2

2! + · · · + An

n! + . . .

So, if we have at our disposal good methods for evaluating
exp, we can in principle answer any question about our
model.
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Solution to FEs?

If S is a finite set (or, more generally, if supn qn < ∞), then the
forward equations p ′(t) = p(t)Q, with p(0) = a, have the
unique solution p(t) = a exp(Qt), t ≥ 0, where exp is the
matrix exponential :

exp(A) = I + A + A2

2! + · · · + An

n! + . . .

So, if we have at our disposal good methods for evaluating
exp, we can in principle answer any question about our
model.

Moler, C.B. and Van Loan, C.F. (1978) Nineteen dubious ways to compute the expo-

nential of a matrix, SIAM Rev. 20, 801–836.
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Solution to FEs?

If S is a finite set (or, more generally, if supn qn < ∞), then the
forward equations p ′(t) = p(t)Q, with p(0) = a, have the
unique solution p(t) = a exp(Qt), t ≥ 0, where exp is the
matrix exponential :

exp(A) = I + A + A2

2! + · · · + An

n! + . . .

So, if we have at our disposal good methods for evaluating
exp, we can in principle answer any question about our
model.

Moler, C.B. and Van Loan, C.F. (1978) Nineteen dubious ways to compute the expo-

nential of a matrix, SIAM Rev. 20, 801–836.

Use Matlab’s expm or, better (especially if Q is sparse), Roger
Sidje’s expokit : www.maths.uq.edu.au/expokit/
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The SL model (λ > µ)
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Exercise 1

Suppose that at any given time during your office hours there
are n students waiting with probability pn := (1 − p)pn where
say p = 0.1, so that, for example, the chance that there are no
students waiting is p0 = 1 − p = 0.9.

There is a knock at the door. What is the probability that there
are n students waiting?
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Exercise 1

Suppose that at any given time during your office hours there
are n students waiting with probability pn := (1 − p)pn where
say p = 0.1, so that, for example, the chance that there are no
students waiting is p0 = 1 − p = 0.9.

There is a knock at the door. What is the probability that there
are n students waiting?

Answer : pn/(1 − p0) = (1 − p)pn−1 = (0.9) × (0.1)n−1 (n ≥ 1).
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Modelling quasi stationarity

Recall that S = {0} ∪ C, where 0 is an absorbing state and C
is the set of transient states.

Define conditional state probabilities r(t) = (rn(t), n ∈ C) by

rn(t) = Pr(nt = n |nt ∈ C),

the chance of being in state n given that the process has not
reached 0.
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Conditional state probabilities for the SL Model (N =20, λ =0.1625, µ =0.0325)

n

P
ro

b
ab

il
it
y

Pr(nt = n|nt > 0)

(t = 40)

MASCOS LAAS Toulouse, June 2010 - Page 25



Conditional state probabilities
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Conditional state probabilities
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Conditional state probabilities

0 2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Conditional state probabilities for the SL Model (N =20, λ =0.1625, µ =0.0325)

n

P
ro

b
ab

il
it
y

Pr(nt = n|nt > 0)

(t = ∞)

MASCOS LAAS Toulouse, June 2010 - Page 28



Modelling quasi stationarity

Recall that S = {0} ∪ C, where 0 is an absorbing state and C
is the set of transient states.

Define conditional state probabilities r(t) = (rn(t), n ∈ C) by

rn(t) = Pr(nt = n |nt ∈ C),

the chance of being in state n given that the process has not
reached 0.
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Modelling quasi stationarity

Recall that S = {0} ∪ C, where 0 is an absorbing state and C
is the set of transient states.

Define conditional state probabilities r(t) = (rn(t), n ∈ C) by

rn(t) = Pr(nt = n |nt ∈ C),

the chance of being in state n given that the process has not
reached 0.

Does r(t) → r as t → ∞?
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Modelling quasi stationarity

Recall that S = {0} ∪ C, where 0 is an absorbing state and C
is the set of transient states.

Define conditional state probabilities r(t) = (rn(t), n ∈ C) by

rn(t) = Pr(nt = n |nt ∈ C),

the chance of being in state n given that the process has not
reached 0.

Does r(t) → r as t → ∞?

Definition . A distribution r = (rn, n ∈ C) satisfying r(t) = r for
all t > 0 is called a quasi-stationary distribution (QSD). If
r(t) → r then r is a limiting-conditional distribution (LCD).
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Modelling quasi stationarity

Definition . A distribution r = (rn, n ∈ C) satisfying r(t) = r for
all t > 0 is called a quasi-stationary distribution (QSD). If
r(t) → r then r is a limiting-conditional distribution (LCD).

So, we may think of a QSD as being an equilibrium point r of
the master equation governing the evolution of the conditional
state probabilities r(t) = (rn(t), n ∈ C), where recall that

rn(t) = Pr(nt = n |nt ∈ C) (n ∈ C, t > 0).

And, if r is asymptotically stable, then r is an LCD.
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Modelling quasi stationarity

Definition . A distribution r = (rn, n ∈ C) satisfying r(t) = r for
all t > 0 is called a quasi-stationary distribution (QSD). If
r(t) → r then r is a limiting-conditional distribution (LCD).

So, we may think of a QSD as being an equilibrium point r of
the master equation governing the evolution of the conditional
state probabilities r(t) = (rn(t), n ∈ C), where recall that

rn(t) = Pr(nt = n |nt ∈ C) (n ∈ C, t > 0).

And, if r is asymptotically stable, then r is an LCD.

So, what is the master equation for r(t)?
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Some calculations

For n ∈ C,

rn(t) = Pr(nt = n |nt ∈ C)

=
Pr(nt = n)

Pr(nt ∈ C)
=

pn(t)
∑

m∈C pm(t)
=

pn(t)

1 − p0(t)
.

Therefore,

r ′
n(t) =

p ′
n(t)

1 − p0(t)
+ pn(t)

p ′
0(t)

(1 − p0(t))2

=
p ′

n(t)

1 − p0(t)
+ rn(t)

p ′
0(t)

1 − p0(t)
(now use FEs for pn(t))

=
∑

m∈C rm(t)qmn + rn(t)
∑

m∈C rm(t)qm0.
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Modelling quasi stationarity

We arrive at

r ′
n(t) =

∑

m∈C rm(t)qmn + rn(t)
∑

m∈C rm(t)qm0.

Since
∑

n∈S qmn = 0, this can be written

r ′(t) = r(t)Q
C
− ν(t)r(t),

where ν(t) = r(t)Q
C
1, and Q

C
is the restriction of Q to C.
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Modelling quasi stationarity

We arrive at

r ′
n(t) =

∑

m∈C rm(t)qmn + rn(t)
∑

m∈C rm(t)qm0.

Since
∑

n∈S qmn = 0, this can be written

r ′(t) = r(t)Q
C
− ν(t)r(t),

where ν(t) = r(t)Q
C
1, and Q

C
is the restriction of Q to C.

Formally we have r(t) → r, where r satisfies

rQ
C

= νr,

so that r = (rn, n ∈ C) is a left eigenvector of Q
C

correspond-
ing to a (strictly negative) real eigenvalue ν. Postmultiplying by
1 gives ν = rQ

C
1, or, written out, ν = −∑n∈C rnqn0.
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Modelling quasi stationarity

If the state space is finite, this can be justified using classical
Perron-Frobenius theory.

Theorem The restriction Q
C

of Q to C has eigenvalues with
strictly negative real parts and the one with maximal real part
(called ν above) is real and has multiplicity 1, and, the
corresponding left eigenvector x = (xn, n ∈ C) has strictly
positive entries.

The quasi-stationary distribution r = (rn, n ∈ C) exists
uniquely and is given by rn = xn/

∑

m∈C xm. Moreover, r is the
limiting-conditional distribution. In particular, if Pr(n0 ∈ C) = 1,

Pr(nt = n |nt ∈ C) → rn as t → ∞,

the limit being the same for all initial distributions.
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QSD of the SL model
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QSD of the SL model

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16

18

20

Simulation of SL Model (with QSD shown) (N =20, λ =0.1625, µ =0.0325)

t

n
t

MASCOS LAAS Toulouse, June 2010 - Page 35



Proportion of patches occupied
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The SL model (N = 20)
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The SL model (N = 50)
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The SL model (N = 100)
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The SL model (N = 200)
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The SL model (N = 500)
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The SL model (N = 1 000)
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The SL model (N = 10 000)
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Density dependence

The idea is the same as for deterministic models: the rate of
change of nt depends on nt only through the “density” nt/N :

n → n + l at rate Nfl

( n

N

)

(l 6= 0)

for suitable functions fl(x).

The analogous (approximating!) deterministic model for the
“density” xt := nt/N is

dx

dt
= F (x) :=

∑

l 6=0 l fl(x).
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The SL model

For the SL model we have S = {0, 1, . . . , N} and transitions:

n → n + 1 at rate
λ

N
n (N − n) = Nλ

n

N

(

1 − n

N

)

n → n − 1 at rate µn = Nµ
n

N

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx, x ∈ E := [0, 1],
and so F (x) = λx (q − x), x ∈ E, where q = 1 − µ/λ.
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The SL model

For the SL model we have S = {0, 1, . . . , N} and transitions:

n → n + 1 at rate
λ

N
n (N − n) = Nλ

n

N

(

1 − n

N

)

n → n − 1 at rate µn = Nµ
n

N

Therefore, f+1(x) = λx (1 − x) and f−1(x) = µx, x ∈ E := [0, 1],
and so F (x) = λx (q − x), x ∈ E, where q = 1 − µ/λ.

We arrive at the classical Verhulst (1838) model
x ′

t = λxt (q − xt), which for us describes the proportion of
occupied patches. It has the unique solution

xt =
q x0

x0 + (q − x0) e−(λ−µ)t
(t ≥ 0).
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The SL model (λ < µ)
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The SL model (λ > µ)
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The SL model (N = 1000)
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Density dependence of MCs

Let (nt, t ≥ 0) be a continuous-time Markov chain taking
values in S ⊆ Zk with transition rates Q = (qnm, n, m ∈ S).

We identify a quantity N , usually related to the size of the
system being modelled (for example, volume, area, number of
patches, population ceiling).

Definition (Kurtz∗) The model is density dependent if there is
a subset E of Rk and a continuous function f : Zk × E → R,
such that

qn,n+l = Nfl

(

n
N

)

, l 6= 0 (l ∈ Zk).

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.
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Density dependence of MCs

We now formally define the density process (X(N)

t ) by

X(N)

t = nt/N (t ≥ 0).

This is a Markov chain that takes values in the lattice
SN := S/N and has transition rates qx,x+l/N , x ∈ SN , l ∈ Zk.

We hope that (X(N)

t ) becomes more deterministic as N gets
large. Moreover, we anticipate that the limiting deterministic
trajectory satisfies x ′

t = F (xt), where

F (x) =
∑

l 6=0 lfl (x) (x ∈ E).
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Density dependence of MCs

We now formally define the density process (X(N)

t ) by

X(N)

t = nt/N (t ≥ 0).

This is a Markov chain that takes values in the lattice
SN := S/N and has transition rates qx,x+l/N , x ∈ SN , l ∈ Zk.

We hope that (X(N)

t ) becomes more deterministic as N gets
large. Moreover, we anticipate that the limiting deterministic
trajectory satisfies x ′

t = F (xt), where

F (x) =
∑

l 6=0 lfl (x) (x ∈ E).

To simplify the statement of results, I’m going to assume that
the state space is finite.
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A law of large numbers

The following functional law of large numbers establishes
convergence of the family (X(N)

t ) to the unique trajectory of
the appropriate approximating deterministic model.

Theorem (Kurtz∗) Suppose F is Lipschitz on E (that is,
|F (x) − F (y)| < ME |x − y|). If limN→∞ X(N)

0 = x0, then the
density process (X(N)

t ) converges uniformly in probability on
[0, t] to (xt), the unique (deterministic) trajectory satisfying

d
dsxs = F (xs) (xs ∈ E, s ∈ [0, t]).

∗Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump

Markov processes, J. of Appl. Probab. 7, 49–58.
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A law of large numbers

Convergence uniformly in probability on [0, t] means that for
every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X(N)

t − xt

∣

∣ > ǫ
)

= 0.
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A law of large numbers

Convergence uniformly in probability on [0, t] means that for
every ǫ > 0,

limN→∞ Pr
(

sups≤t

∣

∣X(N)

t − xt

∣

∣ > ǫ
)

= 0.

The conditions of the theorem hold for the SL model: since
F (x) = λx(q − x), we have, for all x, y ∈ E = [0, 1], that

|F (x) − F (y)| = λ|x − y||q − (x + y)| ≤ (2 − q)λ|x − y|.

So, provided X(N)

0 → x0 as N → ∞, the proportion (X(N)

t ) of
occupied patches converges (uniformly in probability on finite
time intervals) to deterministic trajectories in E:

xt =
q x0

x0 + (q − x0) e−(λ−µ)t
(x0 ∈ E, t ≥ 0).
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The SL model (N = 50)
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Variation in SL model
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Variation in SL model
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Variation in SL model
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Variation in SL model
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Modelling variation

We will consider the family of processes {(Z(N)

t )}, indexed by
N , and defined by

Z(N)

t =
√

N
(

X(N)

t − xt

)

(t ≥ 0),

where recall that (X(N)

t ) is the density process, defined by
X(N)

t = nt/N , and (xt) is the limiting deterministic trajectory,
which satisfies x ′

t = F (xt), where

F (x) =
∑

l 6=0 lfl (x) (x ∈ E).

I will call {(Z(N)

t )} the scaled density process.
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N , and defined by

Z(N)
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√
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(
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t − xt

)

(t ≥ 0),

where recall that (X(N)

t ) is the density process, defined by
X(N)

t = nt/N , and (xt) is the limiting deterministic trajectory,
which satisfies x ′

t = F (xt), where

F (x) =
∑

l 6=0 lfl (x) (x ∈ E).

I will call {(Z(N)

t )} the scaled density process.

In view of the Central Limit Theorem we might expect {(Z(N)

t )}
to become more “Gaussian” as N gets large; in particular, for

each fixed t, Z(N)

t
D→ Normal (µt, Vt) as N → ∞.
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The SL model (N = 20)
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The SL model (N = 50)
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The SL model (N = 100)
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The SL model (N = 200)
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The SL model (N = 500)
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The SL model (N = 1 000)
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The SL model (N = 10 000)
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Kurtz’s theorem

In a later paper Kurtz∗ proved a functional central limit law
which establishes that, for large N , the fluctuations about the
deterministic trajectory do indeed follow a Gaussian diffusion,
provided that some mild extra conditions are satisfied.

∗Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximat-

ing ordinary differential processes. J. Appl. Probab. 8, 344–356.
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A central limit law

Theorem (Kurtz) Suppose that F is Lipschitz and has
uniformly continuous first derivative on E, and that the k × k
matrix G(x) defined by Gij(x) =

∑

l 6=0 liljfl(x), for each x ∈ E,
is uniformly continuous on E.

Let (xt) be the unique deterministic trajectory starting at x0

and suppose that limN→∞

√
N
(

X(N)

0 − x0

)

= z.

Then, {(Z(N)

t )} converges weakly in D[0, t] (the space of
right-continuous, left-hand limits functions on [0, t]) to a
Gaussian diffusion (Zt) with initial value Z0 = z and with mean
and covariance given by µs := E(Zs) = Msz, where
Ms = exp(

∫ s
0 Bu du) and Bs = ∇F (xs), and

Vs := Cov(Zs) = Ms

(∫ s
0 M−1

u G(xu)(M−1
u )T du

)

MT
s .
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The SL model

For the SL model we have F (x) = λx(q − x), and the solution
to dx/dt = F (x) is

x(t) = qx0

x0+(q−x0)e−(λ−µ)t .

We also have F ′(x) = λ(q − 2x) and

G(x) =
∑

l l
2fl(x) = λx(2 − q − x) = F (x) + 2µx,

giving

Mt = exp
(

∫ t
0 F ′(xs) ds

)

= q2e−(λ−µ)t

(x0+(q−x0)e−(λ−µ)t)2
.

We can evaluate

Vt := Var(Zt) = M2
t

(

∫ t
0 G(xs)/M

2
s ds

)

numerically, or ...
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Or ....

Vt = x0

(

(1 + q)x3
0 + x2

0(6 + 5q)(q − x0)e
−αt

+ 2x0(3 + 2q)(q − x0)
2αte−2αt

−
(

(q − x0)[3(1 + q)x2
0 + (3 + q)qx0 − (3 + 2q)q2]

+ (1 + q)q3
)

e−2αt

− (2 + q)(q − x0)
3e−3αt

)/(

x0 + (q − x0)e
−αt
)4

,

where α = λ − µ.
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The SL model
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The SL model
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Scaled density process
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Equilibrium phase
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Equilibrium phase
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Equilibrium

If we are only interested in the equilibrium phase of the
process, then it is simpler to consider the family of processes
{(Z(N)

t )} defined by Z(N)

t =
√

N
(

X(N)

t − xeq

)

, where xeq is an
equilibrium point of the deterministic model. We can now be
far more precise about the approximating diffusion.

Corollary If xeq satisfies F (xeq) = 0, then, under the
conditions of the theorem, {(Z(N)

t )} converges weakly in D[0, t]

to an Ornstein-Uhlenbeck (OU) process (Zt) with initial value
Z0 = z, local drift matrix B := ∇F (xeq) and local covariance
matrix G(xeq). In particular, Zs is normally distributed with
mean and covariance given by µs := E(Zs) = eBsz and

Vs := Cov(Zs) =
∫ s
0 eBuG(xeq)e

BT u du .
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The OU approximation

Note that

Vs =
∫ s
0 eBuG(xeq)e

BT u du = Vst − eBsVste
BT s,

where Vst, the stationary covariance matrix, satisfies

BVst + VstB
T + G(xeq) = 0.
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The OU approximation

Note that

Vs =
∫ s
0 eBuG(xeq)e

BT u du = Vst − eBsVste
BT s,

where Vst, the stationary covariance matrix, satisfies

BVst + VstB
T + G(xeq) = 0.

We conclude that, for N large, X(N)

t has an approximate
Gaussian distribution with Cov(X(N)

t ) ≃ Vt/N (which for large t

is approximately Vst/N ).
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The OU approximation

Note that

Vs =
∫ s
0 eBuG(xeq)e

BT u du = Vst − eBsVste
BT s,

where Vst, the stationary covariance matrix, satisfies

BVst + VstB
T + G(xeq) = 0.

We conclude that, for N large, X(N)

t has an approximate
Gaussian distribution with Cov(X(N)

t ) ≃ Vt/N (which for large t

is approximately Vst/N ).

For the SL model,

Var(X(N)

t ) ≃ 1
N

(µ
λ

)

(1 − e−2(λ−µ)t)
(

≃ µ
Nλ for large t

)

.
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The SL model
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An epidemic model
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An epidemic model

The state at time t is (st, it), where st is the number of
susceptibles and it is the number of infectives.

The state space is S = {(s, i) : s, i = 0, 1, 2, . . . }.

The transitions are:

(s, i) → (s + 1, i) at rate α ( → immigration)

(s, i) → (s, i − 1) at rate γi ( ↓ death or removal)

(s, i) → (s − 1, i + 1) at rate β
N si ( տ infection)

(N is system size)
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An epidemic model

The state at time t is (st, it), where st is the number of
susceptibles and it is the number of infectives.

The state space is S = {(s, i) : s, i = 0, 1, 2, . . . }.

The transitions are:

(s, i) → (s + 1, i) at rate α ( → immigration)

(s, i) → (s, i − 1) at rate γi ( ↓ death or removal)

(s, i) → (s − 1, i + 1) at rate β
N si ( տ infection)

(N is system size)

Is the model density dependent?
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An epidemic model

Is the Markov chain density dependent?

(s, i) → (s + 1, i) at rate N
( α

N

)

(s, i) → (s, i − 1) at rate Nγ

(

i

N

)

(s, i) → (s − 1, i + 1) at rate Nβ
( s

N

)

(

i

N

)
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An epidemic model

Is the Markov chain density dependent?
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( α
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An epidemic model

Is the Markov chain density dependent?

(s, i) → (s + 1, i) at rate N
( α

N

)

(s, i) → (s, i − 1) at rate Nγ

(

i

N

)

(s, i) → (s − 1, i + 1) at rate Nβ
( s

N

)

(

i

N

)

The α/N term is a problem. Since α is a constant, the
immigration term will vanish when N becomes large.
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An epidemic model

Is the Markov chain density dependent?

(s, i) → (s + 1, i) at rate N
( α

N

)

(s, i) → (s, i − 1) at rate Nγ

(

i

N

)

(s, i) → (s − 1, i + 1) at rate Nβ
( s

N

)

(

i

N

)

The α/N term is a problem. Since α is a constant, the
immigration term will vanish when N becomes large.

For density dependence we must have α = O(N) (say
α ∼ aN ). Is this reasonable?
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An epidemic model

(s, i) → (s, i) + (+1, 0) at rate N
( α

N

)

(s, i) → (s, i) + (0,−1) at rate Nγ

(

i

N

)

(s, i) → (s, i) + (−1,+1) at rate Nβ
( s

N

)

(

i

N

)

MASCOS LAAS Toulouse, June 2010 - Page 86



An epidemic model

(s, i) → (s, i) + (+1, 0) at rate N
( α

N

)

(s, i) → (s, i) + (0,−1) at rate Nγ

(

i

N

)

(s, i) → (s, i) + (−1,+1) at rate Nβ
( s

N

)

(

i

N

)

f(+1,0)(x) = a f(0,−1)(x) = γx2 f(−1,+1)(x) = βx1x2

F (x) =
∑

l 6=0 lfl (x) =

(

a − βx1x2

−γx2 + βx1x2

)

x =

(

x1

x2

)

(The deterministic model is x ′
t = F (x))
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An epidemic model
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An epidemic model
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An epidemic model

F (xeq) = 0 gives xeq = (γ/β, a/γ). Also,

∇F (x) =

(

−βx2 −βx1

βx2 βx1 − γ

)

B := ∇F (xeq) =

(

−aβ/γ −γ

aβ/γ 0

)

.

The eigenvalues of B are both negative if 4γ2 ≤ aβ, and
complex if 4γ2 > aβ.

Gij(x) =
∑

l 6=0 liljfl(x).

So,

G(x) =

(

a + βx1x2 −βx1x2

−βx1x2 γx2 + βx1x2

)

.
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An epidemic model

B =

(

−aβ/γ −γ

aβ/γ 0

)

G(xeq) =

(

2a −a

−a 2a

)

Vt := Cov(Zt) = Vst − eBtVste
BT t

Vst =

(

γ
β

(

1 + γ2

aβ

)

− γ
β

− γ
β

γ
β + a

γ

)
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The OU approximation
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Van Kampen’s method

Van Kampen∗ considered the “Kramers-Moyal expansion” of
the master equation (aka the forward equation) for the jump
process (nt). He transformed nt by introducing a new variable
Zt so that nt = Nxt +

√
NZt.

He then derived the corresponding master equation for (Zt),
noting that if (xt) obeys x ′

t = F (xt), then terms of order N1/2

cancel, and only a single term in the expansion survives in the
limit as N → ∞: arriving at the Fokker-Planck equation

∂
∂tPz(t) = −α(xt)z

∂
∂zPz(t) + 1

2β(xt)
∂2

∂2z
Pz(t),

where α(·) and β(·) are determined for the particular model.
So, the variable Zt is indeed Gaussian.
∗Van Kampen, N.G. (1961) A Power series expansion of the master equation. Cana-

dian J. Phys. 39, 551–567.
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