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MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 10



Mainland-island configuration
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Mainland-island configuration

Colonization

from the mainland
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Patch-occupancy models

We record the number nt of occupied patches at each
time t.

A typical approach is to suppose that (nt, t ≥ 0) is
Markovian.
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Patch-occupancy models

We record the number nt of occupied patches at each
time t.

A typical approach is to suppose that (nt, t ≥ 0) is
Markovian.

Suppose that there are N patches.

Each occupied patch becomes empty at rate e (the
local extinction rate), colonization of empty patches
occurs at rate c/N for each suitable pair (c is the
colonization rate) and immigration from the mainland
occurs that rate v (the immigration rate).
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A continuous-time stochastic model

The state space of the Markov chain (nt, t ≥ 0) is
S = {0, 1, . . . , N} and the transitions are:

n → n + 1 at rate
(

ν +
c

N
n
)

(N − n)

n → n − 1 at rate en
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A continuous-time stochastic model

The state space of the Markov chain (nt, t ≥ 0) is
S = {0, 1, . . . , N} and the transitions are:

n → n + 1 at rate
(

ν +
c

N
n
)

(N − n)

n → n − 1 at rate en

This an example of Feller’s stochastic logistic (SL)
model , studied in detail by J.V. Ross.

Ross, J.V. (2006) Stochastic models for mainland-island
metapopulations in static and dynamic landscapes. Bulletin of
Mathematical Biology 68, 417–449.

Feller, W. (1939) Die grundlagen der volterraschen theorie des
kampfes ums dasein in wahrscheinlichkeitsteoretischer behand-
lung. Acta Biotheoretica 5, 11–40.
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Accounting for life cycle

Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each
phase.
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Accounting for life cycle

Many species have life cycles (often annual) that
consist of distinct phases, and the propensity for
colonization and local extinction is different in each
phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and

the California linderiella (Linderiella occidentalis), both

listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot

butterfly (Euphydryas editha bayensis), now extinct
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Colonization and extinction phases

For the butterfly, colonization is restricted to the adult
phase and there is a greater propensity for local
extinction in the non-adult phases.

MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 17



Colonization and extinction phases

For the butterfly, colonization is restricted to the adult
phase and there is a greater propensity for local
extinction in the non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.
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Colonization and extinction phases

For the butterfly, colonization is restricted to the adult
phase and there is a greater propensity for local
extinction in the non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.

There are several ways to model this:

A quasi-birth-death process with two phases

A non-homogeneous continuous-time Markov
chain (cycle between two sets of transition rates)

A discrete-time Markov chain
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Colonization and extinction phases

For the butterfly, colonization is restricted to the adult
phase and there is a greater propensity for local
extinction in the non-adult phases.

We will assume that that colonization (C) and
extinction (E) occur in separate distinct phases.

There are several ways to model this:

A quasi-birth-death process with two phases

A non-homogeneous continuous-time Markov
chain (cycle between two sets of transition rates)

A discrete-time Markov chain ✔
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A discrete-time Markovian model

Recall that there are N patches and that nt is the
number of occupied patches at time t. We suppose
that (nt, t = 0, 1, . . . ) is a discrete-time Markov chain
taking values in S = {0, 1, . . . , N} with a 1-step
transition matrix P = (pij) constructed as follows.
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A discrete-time Markovian model

Recall that there are N patches and that nt is the
number of occupied patches at time t. We suppose
that (nt, t = 0, 1, . . . ) is a discrete-time Markov chain
taking values in S = {0, 1, . . . , N} with a 1-step
transition matrix P = (pij) constructed as follows.

The extinction and colonization phases are governed
by their own transition matrices, E = (eij) and C = (cij).

We let P = EC if the census is taken after the
colonization phase or P = CE if the census is taken
after the extinction phase.
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EC versusCE

P = EC

{

P = CE

{

t − 1 t t + 1 t + 2

t − 1 t t + 1 t + 2
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Assumptions

The number of extinctions when there are i patches
occupied follows a Bin(i, e) law (0 < e < 1):

ei,i−k =

(

i

k

)

ek(1 − e)i−k (k = 0, 1, . . . , i).

(eij = 0 if j > i.) The number of colonizations when
there are i patches occupied follows a Bin(N − i, ci)

law:

ci,i+k =

(

N − i

k

)

ck
i (1 − ci)

N−i−k (k = 0, 1, . . . , N − i).

(cij = 0 if j < i.)
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Chain-binomial structure

Thus, we have the following chain-binomial structure:

nt+1 = ñt + Bin(N − ñt, cñt
) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, cnt
). (CE)
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Chain-binomial structure

Thus, we have the following chain-binomial structure:

nt+1 = ñt + Bin(N − ñt, cñt
) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, cnt
). (CE)

For the CE model (only) it is easy to show that nt+1

has the same distribution as the sum of two
independent binomial random variables:

nt+1
D
= Bin(nt, 1 − e) + Bin(N − nt, (1 − e)cnt

).
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Chain-binomial structure

Thus, we have the following chain-binomial structure:

nt+1 = ñt + Bin(N − ñt, cñt
) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, cnt
). (CE)

For the CE model (only) it is easy to show that nt+1

has the same distribution as the sum of two
independent binomial random variables:

nt+1
D
= Bin(nt, 1 − e) + Bin(N − nt, (1 − e)cnt

).

So, (1 − e)ci is the effective colonisation probability
when there are i occupied patches.
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Examples ofci

ci = (i/N)c, where c ∈ (0, 1] is the maximum
colonization potential.

(This entails c0j = δ0j, so that 0 is an absorbing
state and {1, . . . , N} is a communicating class.)
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Examples ofci

ci = (i/N)c, where c ∈ (0, 1] is the maximum
colonization potential.

(This entails c0j = δ0j, so that 0 is an absorbing
state and {1, . . . , N} is a communicating class.)

ci = c, where c ∈ (0, 1] is a fixed colonization
potential — mainland colonization dominant.

(Now {0, 1, . . . , N} is irreducible.)
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Examples ofci

ci = (i/N)c, where c ∈ (0, 1] is the maximum
colonization potential.

(This entails c0j = δ0j, so that 0 is an absorbing
state and {1, . . . , N} is a communicating class.)

ci = c, where c ∈ (0, 1] is a fixed colonization
potential — mainland colonization dominant.

(Now {0, 1, . . . , N} is irreducible.)

Other possibilities include ci = c0(1 − (1 − c1/c0)
i),

ci = 1 − exp(−iβ/N) and ci = c0 + (i/N)c, where
c0 + c ∈ (0, 1] (mainland and island colonization).
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The proportion of occupied patches

Henceforth we shall be concerned with X (N)

t = nt/N ,
the proportion of occupied patches at time t.

MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 24



Simulation: EC Model with ci = c
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The proportion of occupied patches

Henceforth we shall be concerned with X (N)

t = nt/N ,
the proportion of occupied patches at time t.
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The proportion of occupied patches

Henceforth we shall be concerned with X (N)

t = nt/N ,
the proportion of occupied patches at time t.

In the mainland-island case ci = c, the distribution of nt

can be evaluated explicitly, and we have established
large-N deterministic and Gaussian approximations
for (X (N)

t ).

Buckley, F.M. and Pollett, P.K. (2009) Analytical methods for a stochastic mainland-
island metapopulation model. Ecological Modelling. In press (accepted 24/02/10).
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Mainland-Island ci = c (Summary)

Let
p = 1 − e(1 − c) q = c (EC model)

p = 1 − e q = (1 − e)c. (CE model)

and define sequences (pt) and (qt) by

qt = q∗(1 − at) and pt = qt + at (t ≥ 0),

where a = p − q = (1 − e)(1 − c) (the same for both EC
and CE) and q∗ = q/(1 − a).
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Mainland-Island ci = c (Summary)

Let
p = 1 − e(1 − c) q = c (EC model)

p = 1 − e q = (1 − e)c. (CE model)

and define sequences (pt) and (qt) by

qt = q∗(1 − at) and pt = qt + at (t ≥ 0),

where a = p − q = (1 − e)(1 − c) (the same for both EC
and CE) and q∗ = q/(1 − a). Then,

nt
D
= Bin(n0, pt) + Bin(N − n0, qt)

(independent binomial random variables).
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Mainland-Island ci = c (Summary)

Let
p = 1 − e(1 − c) q = c (EC model)

p = 1 − e q = (1 − e)c. (CE model)

and define sequences (pt) and (qt) by

qt = q∗(1 − at) and pt = qt + at (t ≥ 0),

where a = p − q = (1 − e)(1 − c) (the same for both EC
and CE) and q∗ = q/(1 − a). Then,

nt
D
= Bin(n0, pt) + Bin(N − n0, qt) (

D→ Bin(N, q∗) )

(independent binomial random variables).
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Mainland-Island ci = c (Summary)

Let X (N)

t = nt/N be the proportion occupied at time t.

If X (N)

0
P→ x0, as N → ∞, then X (N)

t

P→ xt, where

xt = x0pt + (1 − x0)qt.
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Simulation: EC Model with ci = c
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Simulation: EC Model (Deterministic path)
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Mainland-Island ci = c (Summary)

Let X (N)

t = nt/N be the proportion occupied at time t.

If X (N)

0
P→ x0, as N → ∞, then X (N)

t

P→ xt, where

xt = x0pt + (1 − x0)qt.
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Mainland-Island ci = c (Summary)

Let X (N)

t = nt/N be the proportion occupied at time t.

If X (N)

0
P→ x0, as N → ∞, then X (N)

t

P→ xt, where

xt = x0pt + (1 − x0)qt.

Now put Z(N)

t :=
√

N(X (N)

t − xt).

MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 32



Mainland-Island ci = c (Summary)

Let X (N)

t = nt/N be the proportion occupied at time t.

If X (N)

0
P→ x0, as N → ∞, then X (N)

t

P→ xt, where

xt = x0pt + (1 − x0)qt.

Now put Z(N)

t :=
√

N(X (N)

t − xt). Then, if Z(N)

0
D→ z0,

Z(N)

t

D→ N(atz0, Vt), where

Vt = x0pt(1 − pt) + (1 − x0)qt(1 − qt).
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Simulation: EC Model (Gaussian approx.)
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Gaussian approximations

Can we establish deterministic and Gaussian
approximations for the basic N-patch models (where
the distribution of nt is not known explicitly)?
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Simulation: EC Model with ci = (i/N )c
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MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 35



Sim. & qsd: EC Model with ci = (i/N )c
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Gaussian approximations

Can we establish deterministic and Gaussian
approximations for the basic N-patch models (where
the distribution of nt is not known explicitly)?
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Gaussian approximations

Can we establish deterministic and Gaussian
approximations for the basic N-patch models (where
the distribution of nt is not known explicitly)?

Is there a general theory of convergence for
discrete-time Markov chains that share the salient
features of the patch-occupancy models presented
here?
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General structure: density dependence

We have a sequence of Markov chains (n(N)

t ) indexed
by N , together with functions (ft) such that

E(n(N)

t+1|n
(N)

t ) = Nft(n
(N)

t /N).
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General structure: density dependence

We have a sequence of Markov chains (n(N)

t ) indexed
by N , together with functions (ft) such that

E(n(N)

t+1|n
(N)

t ) = Nft(n
(N)

t /N).

We then define (X (N)

t ) by X (N)

t = n(N)

t /N .
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General structure: density dependence

We have a sequence of Markov chains (n(N)

t ) indexed
by N , together with functions (ft) such that

E(X (N)

t+1|X
(N)

t ) = ft(X
(N)

t ).
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General structure: density dependence

We have a sequence of Markov chains (n(N)

t ) indexed
by N , together with functions (ft) such that

E(n(N)

t+1|n
(N)

t ) = Nft(n
(N)

t /N).

We then define (X (N)

t ) by X (N)

t = n(N)

t /N . We hope that

if X (N)

0
D→ x0 as N → ∞, then (X (N)

t )
FDD→ (xt), where (xt)

satisfies xt+1 = ft(xt) (the limiting deterministic model).
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General structure: density dependence

Next we suppose that there are functions (st) such that

Var(n(N)

t+1|n
(N)

t ) = Ns(n(N)

t /N).
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General structure: density dependence

Next we suppose that there are functions (st) such that

N Var(X (N)

t+1|X
(N)

t ) = s(X (N)

t ).
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General structure: density dependence

Next we suppose that there are functions (st) such that

Var(n(N)

t+1|n
(N)

t ) = Nst(n
(N)

t /N).

We then define (Z(N)

t ) by Z(N)

t =
√

N(X (N)

t − xt).
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General structure: density dependence

Next we suppose that there are functions (st) such that

Var(Z(N)

t+1|X
(N)

t ) = st(X
(N)

t ).

We then define (Z(N)

t ) by Z(N)

t =
√

N(X (N)

t − xt).
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General structure: density dependence

Next we suppose that there are functions (st) such that

Var(n(N)

t+1|n
(N)

t ) = Nst(n
(N)

t /N).

We then define (Z(N)

t ) by Z(N)

t =
√

N(X (N)

t − xt). We

hope that if
√

N(X (N)

0 − x0)
D→ z0, then (Z(N)

t )
FDD→ (Zt),

where (Zt) is a Gaussian Markov chain with Z0 = z0.
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General structure: density dependence

What will be the form of this chain?
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General structure: density dependence

What will be the form of this chain?

Consider the time-homogeneous case, ft = f and
st = s.
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General structure: density dependence

What will be the form of this chain?

Consider the time-homogeneous case, ft = f and
st = s.

Formally, by Taylor’s theorem,

f(X (N)

t ) − f(xt) = (X (N)

t − xt)f
′(xt) + · · ·

and so, since E(X (N)

t+1|X
(N)

t ) = f(X (N)

t ) and xt+1 = f(xt),

E(Z(N)

t+1) =
√

N (E(X (N)

t+1) − f(xt)) = f ′(xt) E(Z(N)

t ) + · · · ,

suggesting that E(Zt+1) = at E(Zt), where at = f ′(xt).
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General structure: density dependence

We have

Var(X (N)

t+1) = Var(E(X (N)

t+1|X
(N)

t )) + E(Var(X (N)

t+1|X
(N)

t )).

So, since N Var(X (N)

t+1|X
(N)

t ) = s(X (N)

t ),

Var(Z(N)

t+1) = N Var(X (N)

t+1) = N Var(f(X (N)

t )) + E(s(X (N)

t ))

∼ a2
t N Var(X (N)

t ) + E(s(X (N)

t )) (where at = f ′(xt))

= a2
t Var(Z(N)

t ) + E(s(X (N)

t )),

suggesting that Var(Zt+1) = a2
t Var(Zt) + s(xt).
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General structure: density dependence

We have

Var(X (N)

t+1) = Var(E(X (N)

t+1|X
(N)

t )) + E(Var(X (N)

t+1|X
(N)

t )).

So, since N Var(X (N)

t+1|X
(N)

t ) = s(X (N)

t ),

Var(Z(N)

t+1) = N Var(X (N)

t+1) = N Var(f(X (N)

t )) + E(s(X (N)

t ))

∼ a2
t N Var(X (N)

t ) + E(s(X (N)

t )) (where at = f ′(xt))

= a2
t Var(Z(N)

t ) + E(s(X (N)

t )),

suggesting that Var(Zt+1) = a2
t Var(Zt) + s(xt).

And, since (Zt) will be Markovian, . . .
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General structure: density dependence

And, since (Zt) will be Markovian, we might hope that

Zt+1 = atZt + Et (Z0 = z0),

where at = f ′(xt) and Et (t = 0, 1, . . . ) are independent
Gaussian random variables with Et ∼ N(0, s(xt)).
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General structure: density dependence

And, since (Zt) will be Markovian, we might hope that

Zt+1 = atZt + Et (Z0 = z0),

where at = f ′(xt) and Et (t = 0, 1, . . . ) are independent
Gaussian random variables with Et ∼ N(0, s(xt)).

If xeq is a fixed point of f , and
√

N(X (N)

0 − xeq) → z0,

then we might hope that (Z(N)

t )
FDD→ (Zt), where (Zt) is

the AR-1 process defined by Zt+1 = aZt + Et, Z0 = z0,
where a = f ′(xeq) and Et (t = 0, 1, . . . ) are iid Gaussian
N(0, s(xeq)) random variables.
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Convergence of Markov chains

We can adapt results of Alan Karr∗ for our purpose.

∗Karr, A.F. (1975) Weak convergence of a sequence of Markov chains.
Probability Theory and Related Fields 33, 41–48.

He considered a sequence of time-homogeneous
Markov chains (X

(n)
t ) on a general state space

(Ω,F) = (E, E)N with transition kernels (Kn(x,A),
x ∈ E,A ∈ E) and initial distributions (πn(A), A ∈ E).

He proved that if (i) πn ⇒ π and (ii) xn → x in E implies
Kn(xn, ·) ⇒ K(x, ·), then the corresponding probability
measures (Pπn

n ) on (Ω,F) also converge: P
πn

n ⇒ P
π.
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N-patch models: convergence

Theorem For the N-patch models with ci = (i/N)c, if

X (N)

0
D→ x0 as N → ∞, then

(X (N)

t1
, X (N)

t2
, . . . , X (N)

tn
)

D→ (xt1 , xt2 , . . . , xtn
),

for any finite sequence of times t1, t2, . . . , tn, where
(xt) is defined by the recursion xt+1 = f(xt) with

f(x) = (1 − e)(1 + c − c(1 − e)x)x (EC model)

f(x) = (1 − e)(1 + c − cx)x (CE model)
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N-patch models: convergence

Theorem If, additionally,
√

N(X (N)

0 − x0)
D→ z0, then

(Z(N)

t )
FDD→ (Zt), where (Zt) is the Gaussian Markov

chain defined by

Zt+1 = f ′(xt)Zt + Et (Z0 = z0),

where Et (t = 0, 1, . . . ) are independent Gaussian
random variables with Et ∼ N(0, s(xt)) and

s(x) = (1 − e)[c(1 − (1 − e)x)(1 − c(1 − e)x)

+ e(1 + c − 2c(1 − e)x)2]x (EC model)

s(x) = (1 − e)[e + c(1 − x)(1 − c(1 − e)x)]x (CE model)
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Simulation: EC Model
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Simulation: EC Model (Deterministic path)
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Simulation: EC Model (Gaussian approx.)
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N-patch models: convergence

In both cases (EC and CE) the deterministic model
has two equilibria, x = 0 and x = x∗, given by

x∗ =
1

1 − e

(

1 − e

c(1 − e)

)

(EC model)

x∗ = 1 − e

c(1 − e)
(CE model)
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N-patch models: convergence

In both cases (EC and CE) the deterministic model
has two equilibria, x = 0 and x = x∗, given by

x∗ =
1

1 − e

(

1 − e

c(1 − e)

)

(EC model)

x∗ = 1 − e

c(1 − e)
(CE model)

Indeed, we may write f(x) = x (1 + r (1 − x/x∗)),
r = c(1 − e) − e for both models (the form of the
discrete-time logistic model), and we obtain the
condition c > e/(1 − e) for x∗ to be positive and then
stable.
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N-patch models: convergence

Corollary If c > e/(1 − e), so that x∗ given above is

stable, and
√

N(X (N)

0 − x∗)
D→ z0, then (Z(N)

t )
FDD→ (Zt),

where (Zt) is the AR-1 process defined by

Zt+1 = (1 + e − c(1 − e))Zt + Et (Z0 = z0),

where Et (t = 0, 1, . . . ) are independent Gaussian
N(0, σ2) random variables with

σ2 = (1 − e)[c(1 − (1 − e)x∗)(1 − c(1 − e)x∗)

+ e(1 + c − 2c(1 − e)x∗)2]x∗ (EC model)

σ2 = (1 − e)[e + c(1 − x∗)(1 − c(1 − e)x∗)]x∗ (CE model)
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Simulation: EC Model
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Simulation: EC Model (AR-1 approx.)
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AR-1 Simulation: EC Model
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Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopula-
tion models. Probability Surveys 7, 53–83.
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Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopula-
tion models. Probability Surveys 7, 53–83.

• A general theory of convergence for sequences of
time-inhomogeneous density-dependent Markov
chains.
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Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopula-
tion models. Probability Surveys 7, 53–83.

• A general theory of convergence for sequences of
time-inhomogeneous density-dependent Markov
chains.

• Analysis of the scheme

nt+1 = ñt + Bin(N − ñt, c(ñt/N)) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Bin(N − nt, c(nt/N)), (CE)

where c is continuous, increasing and concave, with
c(0) ≥ 0 and c(x) ≤ 1.

MASCOS Institut de Mathématiques de Toulouse, June 2010 - Page 61



Recent developments

• Stability analysis of the limiting deterministic model:

(i) Stationarity : c(0) > 0.

(ii) Evanescence: c(0) = 0 and c ′(0) ≤ e/(1 − e).

(iii) Quasi stationarity : c(0) = 0 and c ′(0) > e/(1 − e).
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Recent developments

• Stability analysis of the limiting deterministic model:

(i) Stationarity : c(0) > 0.

(ii) Evanescence: c(0) = 0 and c ′(0) ≤ e/(1 − e).

(iii) Quasi stationarity : c(0) = 0 and c ′(0) > e/(1 − e).

• Infinite-patch models. If c(0) = 0 and c(x) has a
continuous second derivative near 0, then
Bin(N − n, c(n/N))

D→ Poi(mn) as N → ∞, where
m = c ′(0).
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Recent developments

• Stability analysis of the limiting deterministic model:

(i) Stationarity : c(0) > 0.

(ii) Evanescence: c(0) = 0 and c ′(0) ≤ e/(1 − e).

(iii) Quasi stationarity : c(0) = 0 and c ′(0) > e/(1 − e).

• Infinite-patch models. If c(0) = 0 and c(x) has a
continuous second derivative near 0, then
Bin(N − n, c(n/N))

D→ Poi(mn) as N → ∞, where
m = c ′(0). This leads to the scheme

nt+1 = ñt + Poi(mñt) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(mnt), (CE)
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Recent developments

. . . which turns out to be a (Galton-Watson) branching
process.
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Recent developments

. . . which turns out to be a (Galton-Watson) branching
process.

• Analysis of the more general scheme

nt+1 = ñt + Poi(m(ñt)) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m(nt)), (CE)

assuming m(n) = n0µ(n/n0).
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Recent developments

. . . which turns out to be a (Galton-Watson) branching
process.

• Analysis of the more general scheme

nt+1 = ñt + Poi(m(ñt)) ñt = nt − Bin(nt, e) (EC)

nt+1 = ñt − Bin(ñt, e) ñt = nt + Poi(m(nt)), (CE)

assuming m(n) = n0µ(n/n0). In the limit as n0 → ∞
X (N)

t := nt/n0 has a deterministic approximation that
can exhibit the full range of dynamic behaviour
(including chaos).
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Ricker dynamics: µ(x) = x exp(r(1-x))
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