Limit theorems for discrete-time metapopulation models

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

$$
\begin{gathered}
0^{\circ} \oplus \\
0 \\
0
\end{gathered}
$$

Metapopulations

$$
\begin{gathered}
0^{\circ} \\
0 \\
(\&)
\end{gathered}
$$

Metapopulations

Metapopulations

$$
\therefore 0_{0}
$$

Mainland-island configuration

Mainland-island configuration

$$
\begin{gathered}
0^{\circ} \oplus \\
0 \\
0
\end{gathered}
$$

Patch-occupancy models

We record the number n_{t} of occupied patches at each time t.

A typical approach is to suppose that $\left(n_{t}, t \geq 0\right)$ is Markovian.

Patch-occupancy models

We record the number n_{t} of occupied patches at each time t.

A typical approach is to suppose that $\left(n_{t}, t \geq 0\right)$ is Markovian.

Suppose that there are N patches.
Each occupied patch becomes empty at rate e (the local extinction rate), colonization of empty patches occurs at rate c / N for each suitable pair (c is the colonization rate) and immigration from the mainland occurs that rate v (the immigration rate).

A continuous-time stochastic model

The state space of the Markov chain $\left(n_{t}, t \geq 0\right)$ is $S=\{0,1, \ldots, N\}$ and the transitions are:

$$
\begin{array}{lll}
n \rightarrow n+1 & \text { at rate } & \left(\nu+\frac{c}{N} n\right)(N-n) \\
n \rightarrow n-1 & \text { at rate en }
\end{array}
$$

A continuous-time stochastic model

The state space of the Markov chain $\left(n_{t}, t \geq 0\right)$ is $S=\{0,1, \ldots, N\}$ and the transitions are:

$$
\begin{array}{lll}
n \rightarrow n+1 & \text { at rate } & \left(\nu+\frac{c}{N} n\right)(N-n) \\
n \rightarrow n-1 & \text { at rate } & \text { en }
\end{array}
$$

This an example of Feller's stochastic logistic (SL) model, studied in detail by J.V. Ross.

Ross, J.V. (2006) Stochastic models for mainland-island metapopulations in static and dynamic landscapes. Bulletin of Mathematical Biology 68, 417-449.

Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.

Accounting for life cycle

Many species have life cycles (often annual) that consist of distinct phases, and the propensity for colonization and local extinction is different in each phase.

Accounting for life cycle

Many species have life cycles (often annual) that consist of distinct phases, and the propensity for colonization and local extinction is different in each phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the California linderiella (Linderiella occidentalis), both listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly (Euphydryas editha bayensis), now extinct

Colonization and extinction phases

For the butterfly, colonization is restricted to the adult phase and there is a greater propensity for local extinction in the non-adult phases.

Colonization and extinction phases

For the butterfly, colonization is restricted to the adult phase and there is a greater propensity for local extinction in the non-adult phases.

We will assume that that colonization (C) and extinction (E) occur in separate distinct phases.

Colonization and extinction phases

For the butterfly, colonization is restricted to the adult phase and there is a greater propensity for local extinction in the non-adult phases.

We will assume that that colonization (C) and extinction (E) occur in separate distinct phases.

There are several ways to model this:

- A quasi-birth-death process with two phases
- A non-homogeneous continuous-time Markov chain (cycle between two sets of transition rates)
- A discrete-time Markov chain

Colonization and extinction phases

For the butterfly, colonization is restricted to the adult phase and there is a greater propensity for local extinction in the non-adult phases.

We will assume that that colonization (C) and extinction (E) occur in separate distinct phases.

There are several ways to model this:

- A quasi-birth-death process with two phases
- A non-homogeneous continuous-time Markov chain (cycle between two sets of transition rates)
- A discrete-time Markov chain

A discrete-time Markovian model

Recall that there are N patches and that n_{t} is the number of occupied patches at time t. We suppose that $\left(n_{t}, t=0,1, \ldots\right)$ is a discrete-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with a 1-step transition matrix $P=\left(p_{i j}\right)$ constructed as follows.

A discrete-time Markovian model

Recall that there are N patches and that n_{t} is the number of occupied patches at time t. We suppose that $\left(n_{t}, t=0,1, \ldots\right)$ is a discrete-time Markov chain taking values in $S=\{0,1, \ldots, N\}$ with a 1 -step transition matrix $P=\left(p_{i j}\right)$ constructed as follows.

The extinction and colonization phases are governed by their own transition matrices, $E=\left(e_{i j}\right)$ and $C=\left(c_{i j}\right)$.

We let $P=E C$ if the census is taken after the colonization phase or $P=C E$ if the census is taken after the extinction phase.

$E C$ versus $C E$

$$
\begin{aligned}
& P=E C\left\{\begin{array}{cccc}
t-1 & t & t+1 & t+2 \\
\hline \vdots & \vdots & \vdots & \vdots
\end{array}\right. \\
& P=C E\{
\end{aligned}
$$

Assumptions

The number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law $(0<e<1)$:

$$
e_{i, i-k}=\binom{i}{k} e^{k}(1-e)^{i-k} \quad(k=0,1, \ldots, i) .
$$

($e_{i j}=0$ if $j>i$.) The number of colonizations when there are i patches occupied follows a $\operatorname{Bin}\left(N-i, c_{i}\right)$ law:

$$
\begin{aligned}
& c_{i, i+k}=\binom{N-i}{k} c_{i}^{k}\left(1-c_{i}\right)^{N-i-k}(k=0,1, \ldots, N-i) . \\
& \left(c_{i j}=0 \text { if } j<i .\right)
\end{aligned}
$$

Chain-binomial structure

Thus, we have the following chain-binomial structure:

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Bin}\left(N-\tilde{n}_{t}, c_{\tilde{n}_{t}}\right) \quad \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{EC}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t}=n_{t}+\operatorname{Bin}\left(N-n_{t}, c_{n_{t}}\right) . \tag{CE}
\end{align*}
$$

Chain-binomial structure

Thus, we have the following chain-binomial structure:

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Bin}\left(N-\tilde{n}_{t}, c_{\tilde{n}_{t}}\right) \quad \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{EC}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t}=n_{t}+\operatorname{Bin}\left(N-n_{t}, c_{n_{t}}\right) . \tag{CE}
\end{align*}
$$

For the CE model (only) it is easy to show that n_{t+1} has the same distribution as the sum of two independent binomial random variables:

$$
n_{t+1} \stackrel{D}{=} \operatorname{Bin}\left(n_{t}, 1-e\right)+\operatorname{Bin}\left(N-n_{t},(1-e) c_{n_{t}}\right) .
$$

Chain-binomial structure

Thus, we have the following chain-binomial structure:

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Bin}\left(N-\tilde{n}_{t}, c_{\tilde{n}_{t}}\right) \quad \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{EC}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t}=n_{t}+\operatorname{Bin}\left(N-n_{t}, c_{n_{t}}\right) . \tag{CE}
\end{align*}
$$

For the CE model (only) it is easy to show that n_{t+1} has the same distribution as the sum of two independent binomial random variables:

$$
n_{t+1} \stackrel{D}{=} \operatorname{Bin}\left(n_{t}, 1-e\right)+\operatorname{Bin}\left(N-n_{t},(1-e) c_{n_{t}}\right) .
$$

So, $(1-e) c_{i}$ is the effective colonisation probability when there are i occupied patches.

Examples of c_{i}

- $c_{i}=(i / N) c$, where $c \in(0,1]$ is the maximum colonization potential.
(This entails $c_{0 j}=\delta_{0 j}$, so that 0 is an absorbing state and $\{1, \ldots, N\}$ is a communicating class.)

Examples of c_{i}

- $c_{i}=(i / N) c$, where $c \in(0,1]$ is the maximum colonization potential.
(This entails $c_{0 j}=\delta_{0 j}$, so that 0 is an absorbing state and $\{1, \ldots, N\}$ is a communicating class.)
- $c_{i}=c$, where $c \in(0,1]$ is a fixed colonization potential - mainland colonization dominant.
(Now $\{0,1, \ldots, N\}$ is irreducible.)

Examples of c_{i}

- $c_{i}=(i / N) c$, where $c \in(0,1]$ is the maximum colonization potential.
(This entails $c_{0 j}=\delta_{0 j}$, so that 0 is an absorbing state and $\{1, \ldots, N\}$ is a communicating class.)
- $c_{i}=c$, where $c \in(0,1]$ is a fixed colonization potential - mainland colonization dominant.
(Now $\{0,1, \ldots, N\}$ is irreducible.)
Other possibilities include $c_{i}=c_{0}\left(1-\left(1-c_{1} / c_{0}\right)^{i}\right)$, $c_{i}=1-\exp (-i \beta / N)$ and $c_{i}=c_{0}+(i / N) c$, where $c_{0}+c \in(0,1]$ (mainland and island colonization).

The proportion of occupied patches

Henceforth we shall be concerned with $X_{t}^{(N)}=n_{t} / N$, the proportion of occupied patches at time t.

Simulation: EC Model with $c_{i}=c$

The proportion of occupied patches

Henceforth we shall be concerned with $X_{t}^{(N)}=n_{t} / N$, the proportion of occupied patches at time t.

The proportion of occupied patches

Henceforth we shall be concerned with $X_{t}^{(N)}=n_{t} / N$, the proportion of occupied patches at time t.

In the mainland-island case $c_{i}=c$, the distribution of n_{t} can be evaluated explicitly, and we have established large- N deterministic and Gaussian approximations for $\left(X_{t}^{(N)}\right)$.

Buckley, F.M. and Pollett, P.K. (2009) Analytical methods for a stochastic mainlandisland metapopulation model. Ecological Modelling. In press (accepted 24/02/10).

Mainland-Island $c_{i}=c$ (Summary)

Let

$$
\begin{array}{llrl}
p=1-e(1-c) & q=c & & (\text { EC model) } \\
p=1-e & q=(1-e) c . & & (\text { CE model) }
\end{array}
$$

and define sequences $\left(p_{t}\right)$ and $\left(q_{t}\right)$ by

$$
q_{t}=q^{*}\left(1-a^{t}\right) \quad \text { and } \quad p_{t}=q_{t}+a^{t} \quad(t \geq 0),
$$

where $a=p-q=(1-e)(1-c)$ (the same for both EC and CE) and $q^{*}=q /(1-a)$.

Mainland-Island $c_{i}=c$ (Summary)

Let

$$
\begin{array}{lll}
p=1-e(1-c) & q=c & \text { (EC model) } \\
p=1-e & q=(1-e) c . & (\text { CE model) }
\end{array}
$$

and define sequences $\left(p_{t}\right)$ and $\left(q_{t}\right)$ by

$$
q_{t}=q^{*}\left(1-a^{t}\right) \quad \text { and } \quad p_{t}=q_{t}+a^{t} \quad(t \geq 0),
$$

where $a=p-q=(1-e)(1-c)$ (the same for both EC and CE) and $q^{*}=q /(1-a)$. Then,

$$
n_{t} \stackrel{D}{=} \operatorname{Bin}\left(n_{0}, p_{t}\right)+\operatorname{Bin}\left(N-n_{0}, q_{t}\right)
$$

(independent binomial random variables).

Mainland-Island $c_{i}=c$ (Summary)

Let

$$
\begin{array}{ll}
p=1-e(1-c) & q=c \\
p=1-e & q=(1-e) c .
\end{array}
$$

(EC model)
(CE model)
and define sequences $\left(p_{t}\right)$ and $\left(q_{t}\right)$ by

$$
q_{t}=q^{*}\left(1-a^{t}\right) \quad \text { and } \quad p_{t}=q_{t}+a^{t} \quad(t \geq 0)
$$

where $a=p-q=(1-e)(1-c)$ (the same for both EC and CE) and $q^{*}=q /(1-a)$. Then,

$$
n_{t} \stackrel{D}{=} \operatorname{Bin}\left(n_{0}, p_{t}\right)+\operatorname{Bin}\left(N-n_{0}, q_{t}\right) \quad\left(\xrightarrow{D} \operatorname{Bin}\left(N, q^{*}\right)\right)
$$

(independent binomial random variables).

Mainland-Island $c_{i}=c$ (Summary)

Let $X_{t}^{(N)}=n_{t} / N$ be the proportion occupied at time t. If $X_{0}^{(N)} \xrightarrow{P} x_{0}$, as $N \rightarrow \infty$, then $X_{t}^{(N)} \xrightarrow{P} x_{t}$, where

$$
x_{t}=x_{0} p_{t}+\left(1-x_{0}\right) q_{t} .
$$

Simulation: EC Model with $c_{i}=c$

Simulation: EC Model (Deterministic path)

Mainland-Island $c_{i}=c$ (Summary)

Let $X_{t}^{(N)}=n_{t} / N$ be the proportion occupied at time t.
If $X_{0}^{(N)} \xrightarrow{P} x_{0}$, as $N \rightarrow \infty$, then $X_{t}^{(N)} \xrightarrow{P} x_{t}$, where

$$
x_{t}=x_{0} p_{t}+\left(1-x_{0}\right) q_{t} .
$$

Mainland-Island $c_{i}=c$ (Summary)

Let $X_{t}^{(N)}=n_{t} / N$ be the proportion occupied at time t.
If $X_{0}^{(N)} \xrightarrow{P} x_{0}$, as $N \rightarrow \infty$, then $X_{t}^{(N)} \xrightarrow{P} x_{t}$, where

$$
x_{t}=x_{0} p_{t}+\left(1-x_{0}\right) q_{t} .
$$

Now put $Z_{t}^{(N)}:=\sqrt{N}\left(X_{t}^{(N)}-x_{t}\right)$.

Mainland-Island $c_{i}=c$ (Summary)

Let $X_{t}^{(N)}=n_{t} / N$ be the proportion occupied at time t.
If $X_{0}^{(N)} \xrightarrow{P} x_{0}$, as $N \rightarrow \infty$, then $X_{t}^{(N)} \xrightarrow{P} x_{t}$, where

$$
x_{t}=x_{0} p_{t}+\left(1-x_{0}\right) q_{t} .
$$

Now put $Z_{t}^{(N)}:=\sqrt{N}\left(X_{t}^{(N)}-x_{t}\right)$. Then, if $Z_{0}^{(N)} \xrightarrow{D} z_{0}$, $Z_{t}^{(N)} \xrightarrow{D} \mathbf{N}\left(a^{t} z_{0}, V_{t}\right)$, where

$$
V_{t}=x_{0} p_{t}\left(1-p_{t}\right)+\left(1-x_{0}\right) q_{t}\left(1-q_{t}\right) .
$$

Simulation: EC Model (Gaussian approx.)

Gaussian approximations

Can we establish deterministic and Gaussian approximations for the basic N-patch models (where the distribution of n_{t} is not known explicitly)?

Simulation: EC Model with $c_{i}=(i / N) c$

Sim. \& qsd: EC Model with $c_{i}=(i / N) c$

Gaussian approximations

Can we establish deterministic and Gaussian approximations for the basic N-patch models (where the distribution of n_{t} is not known explicitly)?

Gaussian approximations

Can we establish deterministic and Gaussian approximations for the basic N-patch models (where the distribution of n_{t} is not known explicitly)?

Is there a general theory of convergence for discrete-time Markov chains that share the salient features of the patch-occupancy models presented here?

General structure: density dependence

We have a sequence of Markov chains $\left(n_{t}^{(N)}\right)$ indexed by N, together with functions $\left(f_{t}\right)$ such that

$$
\mathbf{E}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N f_{t}\left(n_{t}^{(N)} / N\right) .
$$

General structure: density dependence

We have a sequence of Markov chains $\left(n_{t}^{(N)}\right)$ indexed by N, together with functions $\left(f_{t}\right)$ such that

$$
\mathbf{E}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N f_{t}\left(n_{t}^{(N)} / N\right) .
$$

We then define $\left(X_{t}^{(N)}\right)$ by $X_{t}^{(N)}=n_{t}^{(N)} / N$.

General structure: density dependence

We have a sequence of Markov chains $\left(n_{t}^{(N)}\right)$ indexed by N, together with functions $\left(f_{t}\right)$ such that

$\mathrm{E}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=f_{t}\left(X_{t}^{(N)}\right)$.

General structure: density dependence

We have a sequence of Markov chains $\left(n_{t}^{(N)}\right)$ indexed by N, together with functions $\left(f_{t}\right)$ such that

$$
\mathrm{E}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N f_{t}\left(n_{t}^{(N)} / N\right) .
$$

We then define $\left(X_{t}^{(N)}\right)$ by $X_{t}^{(N)}=n_{t}^{(N)} / N$. We hope that if $X_{0}^{(N)} \xrightarrow{D} x_{0}$ as $N \rightarrow \infty$, then $\left(X_{t}^{(N)}\right) \xrightarrow{F D D}\left(x_{t}\right)$, where $\left(x_{t}\right)$ satisfies $x_{t+1}=f_{t}\left(x_{t}\right)$ (the limiting deterministic model).

General structure: density dependence

Next we suppose that there are functions $\left(s_{t}\right)$ such that

$$
\operatorname{Var}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N s\left(n_{t}^{(N)} / N\right) .
$$

General structure: density dependence

Next we suppose that there are functions $\left(s_{t}\right)$ such that

$$
N \operatorname{Var}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=s\left(X_{t}^{(N)}\right)
$$

General structure: density dependence

Next we suppose that there are functions $\left(s_{t}\right)$ such that

$$
\operatorname{Var}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N s_{t}\left(n_{t}^{(N)} / N\right)
$$

We then define $\left(Z_{t}^{(N)}\right)$ by $Z_{t}^{(N)}=\sqrt{N}\left(X_{t}^{(N)}-x_{t}\right)$.

General structure: density dependence

Next we suppose that there are functions $\left(s_{t}\right)$ such that

$$
\operatorname{Var}\left(Z_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=s_{t}\left(X_{t}^{(N)}\right)
$$

We then define $\left(Z_{t}^{(N)}\right)$ by $Z_{t}^{(N)}=\sqrt{N}\left(X_{t}^{(N)}-x_{t}\right)$.

General structure: density dependence

Next we suppose that there are functions $\left(s_{t}\right)$ such that

$$
\operatorname{Var}\left(n_{t+1}^{(N)} \mid n_{t}^{(N)}\right)=N s_{t}\left(n_{t}^{(N)} / N\right)
$$

We then define $\left(Z_{t}^{(N)}\right)$ by $Z_{t}^{(N)}=\sqrt{N}\left(X_{t}^{(N)}-x_{t}\right)$. We hope that if $\sqrt{N}\left(X_{0}^{(N)}-x_{0}\right) \xrightarrow{D} z_{0}$, then $\left(Z_{t}^{(N)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is a Gaussian Markov chain with $Z_{0}=z_{0}$.

General structure: density dependence

What will be the form of this chain?

General structure: density dependence

What will be the form of this chain?
Consider the time-homogeneous case, $f_{t}=f$ and $s_{t}=s$.

General structure: density dependence

What will be the form of this chain?
Consider the time-homogeneous case, $f_{t}=f$ and $s_{t}=s$.

Formally, by Taylor's theorem,

$$
f\left(X_{t}^{(N)}\right)-f\left(x_{t}\right)=\left(X_{t}^{(N)}-x_{t}\right) f^{\prime}\left(x_{t}\right)+\cdots
$$

and so, since $\mathrm{E}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=f\left(X_{t}^{(N)}\right)$ and $x_{t+1}=f\left(x_{t}\right)$,

$$
\mathrm{E}\left(Z_{t+1}^{(N)}\right)=\sqrt{N}\left(\mathrm{E}\left(X_{t+1}^{(N)}\right)-f\left(x_{t}\right)\right)=f^{\prime}\left(x_{t}\right) \mathrm{E}\left(Z_{t}^{(N)}\right)+\cdots,
$$

suggesting that $\mathrm{E}\left(Z_{t+1}\right)=a_{t} \mathrm{E}\left(Z_{t}\right)$, where $a_{t}=f^{\prime}\left(x_{t}\right)$.

General structure: density dependence

We have
$\operatorname{Var}\left(X_{t+1}^{(N)}\right)=\operatorname{Var}\left(\mathrm{E}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)\right)$.
So, since $N \operatorname{Var}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=s\left(X_{t}^{(N)}\right)$,

$$
\begin{aligned}
\operatorname{Var}\left(Z_{t+1}^{(N)}\right) & =N \operatorname{Var}\left(X_{t+1}^{(N)}\right)=N \operatorname{Var}\left(f\left(X_{t}^{(N)}\right)\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right) \\
& \sim a_{t}^{2} N \operatorname{Var}\left(X_{t}^{(N)}\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right)\left(\text { where } a_{t}=f^{\prime}\left(x_{t}\right)\right) \\
& =a_{t}^{2} \operatorname{Var}\left(Z_{t}^{(N)}\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right),
\end{aligned}
$$

suggesting that $\operatorname{Var}\left(Z_{t+1}\right)=a_{t}^{2} \operatorname{Var}\left(Z_{t}\right)+s\left(x_{t}\right)$.

General structure: density dependence

We have

$$
\operatorname{Var}\left(X_{t+1}^{(N)}\right)=\operatorname{Var}\left(\mathrm{E}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)\right)+\mathrm{E}\left(\operatorname{Var}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)\right) .
$$

So, since $N \operatorname{Var}\left(X_{t+1}^{(N)} \mid X_{t}^{(N)}\right)=s\left(X_{t}^{(N)}\right)$,

$$
\begin{aligned}
\operatorname{Var}\left(Z_{t+1}^{(N)}\right) & =N \operatorname{Var}\left(X_{t+1}^{(N)}\right)=N \operatorname{Var}\left(f\left(X_{t}^{(N)}\right)\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right) \\
& \sim a_{t}^{2} N \operatorname{Var}\left(X_{t}^{(N)}\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right)\left(\text { where } a_{t}=f^{\prime}\left(x_{t}\right)\right) \\
& =a_{t}^{2} \operatorname{Var}\left(Z_{t}^{(N)}\right)+\mathrm{E}\left(s\left(X_{t}^{(N)}\right)\right),
\end{aligned}
$$

suggesting that $\operatorname{Var}\left(Z_{t+1}\right)=a_{t}^{2} \operatorname{Var}\left(Z_{t}\right)+s\left(x_{t}\right)$.
And, since $\left(Z_{t}\right)$ will be Markovian, ...

General structure: density dependence

And, since $\left(Z_{t}\right)$ will be Markovian, we might hope that

$$
Z_{t+1}=a_{t} Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right),
$$

where $a_{t}=f^{\prime}\left(x_{t}\right)$ and $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, s\left(x_{t}\right)\right)$.

General structure: density dependence

And, since $\left(Z_{t}\right)$ will be Markovian, we might hope that

$$
Z_{t+1}=a_{t} Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right),
$$

where $a_{t}=f^{\prime}\left(x_{t}\right)$ and $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, s\left(x_{t}\right)\right)$.

If $x_{\text {eq }}$ is a fixed point of f, and $\sqrt{N}\left(X_{0}^{(N)}-x_{\text {eq }}\right) \rightarrow z_{0}$, then we might hope that $\left(Z_{t}^{(N)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the AR- 1 process defined by $Z_{t+1}=a Z_{t}+E_{t}, Z_{0}=z_{0}$, where $a=f^{\prime}\left(x_{\text {eq }}\right)$ and $E_{t}(t=0,1, \ldots)$ are iid Gaussian $\mathrm{N}\left(0, s\left(x_{\text {eq }}\right)\right)$ random variables.

Convergence of Markov chains

We can adapt results of Alan Karr* for our purpose.
*Karr, A.F. (1975) Weak convergence of a sequence of Markov chains. Probability Theory and Related Fields 33, 41-48.

He considered a sequence of time-homogeneous Markov chains ($X_{t}^{(n)}$) on a general state space $(\Omega, \mathcal{F})=(E, \mathcal{E})^{\mathbb{N}}$ with transition kernels $\left(K_{n}(x, A)\right.$, $x \in E, A \in \mathcal{E})$ and initial distributions $\left(\pi_{n}(A), A \in \mathcal{E}\right)$. He proved that if (i) $\pi_{n} \Rightarrow \pi$ and (ii) $x_{n} \rightarrow x$ in E implies $K_{n}\left(x_{n}, \cdot\right) \Rightarrow K(x, \cdot)$, then the corresponding probability measures $\left(\mathbb{P}_{n}^{\pi_{n}}\right)$ on (Ω, \mathcal{F}) also converge: $\mathbb{P}_{n}^{\pi_{n}} \Rightarrow \mathbb{P}^{\pi}$.

N-patch models: convergence

Theorem For the N-patch models with $c_{i}=(i / N) c$, if $X_{0}^{(N)} \xrightarrow{D} x_{0}$ as $N \rightarrow \infty$, then

$$
\left(X_{t_{1}}^{(N)}, X_{t_{2}}^{(N)}, \ldots, X_{t_{n}}^{(N)}\right) \xrightarrow{D}\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n}}\right),
$$

for any finite sequence of times $t_{1}, t_{2}, \ldots, t_{n}$, where $\left(x_{t}\right)$ is defined by the recursion $x_{t+1}=f\left(x_{t}\right)$ with

$$
\begin{array}{ll}
f(x)=(1-e)(1+c-c(1-e) x) x & \\
\text { (EC model) } \\
f(x)=(1-e)(1+c-c x) x & \\
\text { (CE model) }
\end{array}
$$

N-patch models: convergence

Theorem If, additionally, $\sqrt{N}\left(X_{0}^{(N)}-x_{0}\right) \xrightarrow{D} z_{0}$, then $\left(Z_{t}^{(N)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the Gaussian Markov chain defined by

$$
Z_{t+1}=f^{\prime}\left(x_{t}\right) Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right),
$$

where $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, s\left(x_{t}\right)\right)$ and

$$
\begin{aligned}
s(x)=(1-e)[c(1-(1-e) x)(1-c(1-e) x) & \\
\left.\quad+e(1+c-2 c(1-e) x)^{2}\right] x & \text { (EC model) } \\
s(x)=(1-e)[e+c(1-x)(1-c(1-e) x)] x & \text { (CE model) }
\end{aligned}
$$

Simulation: EC Model

Simulation: EC Model (Deterministic path)

Simulation: EC Model (Gaussian approx.)

N -patch models: convergence

In both cases (EC and CE) the deterministic model has two equilibria, $x=0$ and $x=x^{*}$, given by

$$
\begin{aligned}
x^{*} & =\frac{1}{1-e}\left(1-\frac{e}{c(1-e)}\right) \\
x^{*} & =1-\frac{e}{c(1-e)}
\end{aligned}
$$

(EC model)
(CE model)

N-patch models: convergence

In both cases (EC and CE) the deterministic model has two equilibria, $x=0$ and $x=x^{*}$, given by

$$
\begin{aligned}
x^{*} & =\frac{1}{1-e}\left(1-\frac{e}{c(1-e)}\right) \\
x^{*} & =1-\frac{e}{c(1-e)}
\end{aligned}
$$

(EC model)
(CE model)

Indeed, we may write $f(x)=x\left(1+r\left(1-x / x^{*}\right)\right)$, $r=c(1-e)-e$ for both models (the form of the discrete-time logistic model), and we obtain the condition $c>e /(1-e)$ for x^{*} to be positive and then stable.

N-patch models: convergence

Corollary If $c>e /(1-e)$, so that x^{*} given above is stable, and $\sqrt{N}\left(X_{0}^{(N)}-x^{*}\right) \xrightarrow{D} z_{0}$, then $\left(Z_{t}^{(N)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the AR-1 process defined by

$$
Z_{t+1}=(1+e-c(1-e)) Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right),
$$

where $E_{t}(t=0,1, \ldots)$ are independent Gaussian $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables with

$$
\begin{array}{rlr}
\sigma^{2}=(1-e)\left[c\left(1-(1-e) x^{*}\right)\left(1-c(1-e) x^{*}\right)\right. \\
& \left.+e\left(1+c-2 c(1-e) x^{*}\right)^{2}\right] x^{*} & \text { (EC model) } \\
\sigma^{2}=(1-e)\left[e+c\left(1-x^{*}\right)\left(1-c(1-e) x^{*}\right)\right] x^{*} & \text { (CE model) }
\end{array}
$$

Simulation: EC Model

Simulation: EC Model (AR-1 approx.)

AR-1 Simulation: EC Model

Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

- A general theory of convergence for sequences of time-inhomogeneous density-dependent Markov chains.

Recent developments

Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

- A general theory of convergence for sequences of time-inhomogeneous density-dependent Markov chains.
- Analysis of the scheme

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Bin}\left(N-\tilde{n}_{t}, c\left(\tilde{n}_{t} / N\right)\right) \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{EC}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \tilde{n}_{t}=n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), \tag{CE}
\end{align*}
$$

where c is continuous, increasing and concave, with $c(0) \geq 0$ and $c(x) \leq 1$.

Recent developments

- Stability analysis of the limiting deterministic model:
(i) Stationarity: $c(0)>0$.
(ii) Evanescence: $c(0)=0$ and $c^{\prime}(0) \leq e /(1-e)$.
(iii) Quasi stationarity: $c(0)=0$ and $c^{\prime}(0)>e /(1-e)$.

Recent developments

- Stability analysis of the limiting deterministic model:
(i) Stationarity: $c(0)>0$.
(ii) Evanescence: $c(0)=0$ and $c^{\prime}(0) \leq e /(1-e)$.
(iii) Quasi stationarity: $c(0)=0$ and $c^{\prime}(0)>e /(1-e)$.
- Infinite-patch models. If $c(0)=0$ and $c(x)$ has a continuous second derivative near 0 , then
$\operatorname{Bin}(N-n, c(n / N)) \xrightarrow{D} \operatorname{Poi}(m n)$ as $N \rightarrow \infty$, where $m=c^{\prime}(0)$.

Recent developments

- Stability analysis of the limiting deterministic model:
(i) Stationarity: $c(0)>0$.
(ii) Evanescence: $c(0)=0$ and $c^{\prime}(0) \leq e /(1-e)$.
(iii) Quasi stationarity: $c(0)=0$ and $c^{\prime}(0)>e /(1-e)$.
- Infinite-patch models. If $c(0)=0$ and $c(x)$ has a continuous second derivative near 0 , then
$\operatorname{Bin}(N-n, c(n / N)) \xrightarrow{D} \operatorname{Poi}(m n)$ as $N \rightarrow \infty$, where $m=c^{\prime}(0)$. This leads to the scheme

$$
\begin{array}{ll}
n_{t+1}=\tilde{n}_{t}+\operatorname{Poi}\left(m \tilde{n}_{t}\right) & \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \\
n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) & \tilde{n}_{t}=n_{t}+\operatorname{Poi}\left(m n_{t}\right), \tag{CE}
\end{array}
$$

Recent developments

... which turns out to be a (Galton-Watson) branching process.

Recent developments

... which turns out to be a (Galton-Watson) branching process.

- Analysis of the more general scheme

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Poi}\left(m\left(\tilde{n}_{t}\right)\right) \quad \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{EC}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t}=n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), \tag{CE}
\end{align*}
$$

assuming $m(n)=n_{0} \mu\left(n / n_{0}\right)$.

Recent developments

... which turns out to be a (Galton-Watson) branching process.

- Analysis of the more general scheme

$$
\begin{align*}
& n_{t+1}=\tilde{n}_{t}+\operatorname{Poi}\left(m\left(\tilde{n}_{t}\right)\right) \quad \tilde{n}_{t}=n_{t}-\operatorname{Bin}\left(n_{t}, e\right) \tag{E}\\
& n_{t+1}=\tilde{n}_{t}-\operatorname{Bin}\left(\tilde{n}_{t}, e\right) \quad \tilde{n}_{t}=n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), \tag{CE}
\end{align*}
$$

assuming $m(n)=n_{0} \mu\left(n / n_{0}\right)$. In the limit as $n_{0} \rightarrow \infty$ $X_{t}^{(N)}:=n_{t} / n_{0}$ has a deterministic approximation that can exhibit the full range of dynamic behaviour (including chaos).

Ricker dynamics: $\mu(x)=x \exp (r(1-x))$

