Identifying Markov chains with a given invariant measure
by
Phil Pollett
Department of Mathematics
The University of Queensland
Queensland 4072
AUSTRALIA
Let $Q=\left(q_{i j}, i, j \in S\right)$ be a stable and conservative q-matrix of transition rates over a countable set S. Suppose that we are given a subinvariant for Q, that is, a collection of positive numbers $m=\left(m_{i}, i \in S\right)$ such that $\sum_{i \in S} m_{i} q_{i j} \leq 0, j \in S$. Our problem is to identify a Q-process for which m is invariant, that is, a standard transition function $P(\cdot)=\left(p_{i j}(\cdot), i, j \in S\right)$ that satisfies $p_{i j}^{\prime}(0+)=q_{i j}, i, j \in S$, and

$$
\sum_{i \in S} m_{i} p_{i j}(t)=m_{j}, \quad j \in S, t>0
$$

We begin by showing that if m is invariant for P, then it is subinvariant for Q, and then invariant for Q if and only if P satisfies the backward differential equations. A simple corollary is that if m is invariant for minimal Q-process, then it is invariant for Q.
The major result gives conditions for the existence of a Q-process P for which the given measure m (subinvariant for Q) is invariant for P; one such Q-process is specified through its resolvent. The invariance condition is shown to be necessary in the case where Q is single-exit (there is a single escape route to infinity). We also give necessary and sufficient conditions for this process to be honest, that is $\sum_{j \in S} p_{i j}(t)=1$ for all $i \in S$ and $t>0$, as well as a simple sufficient condition for the existence of an honest Q-process for which the given measure m is invariant for P. The case where Q is symmetrically reversible with respect to m is considered in some detail, leading to a complete solution of the existence and uniqueness problem for birth-death processes.

