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Executive Summary - Simulation of the SL Model (N = 50)
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Executive Summary - Simulation of the SL Model (N large)
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Executive Summary - Solution to deterministic model
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Executive Summary - Solution to deterministic model
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Executive Summary - Normal approximation
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Part I Recap: Sheep in Tasmania
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Davidson, J. (1938) On the growth of the sheep population in Tasmania. Trans. Roy. Soc.

Sth. Austral. 62, 342–346.
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Part I Recap: The Verhulst-Pearl Model (Logistic Model)

We started with a simple deterministic model for nt , the number in our population at
time t:

dn

dt
= rn

(
1− n

K

)
,

with r being the growth rate with unlimited resources and K being the “natural”
population size (the carrying capacity).

Integration gives

nt =
K

1 +
(

K−n0
n0

)
e−rt

, t ≥ 0.

(As covered in MATH1052 !)
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Davidson, J. (1938) On the growth of the sheep population in Tasmania. Trans. Roy. Soc.
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Part I Recap: A stochastic model

We suggested
dnt
dt

= rnt
(

1− nt
K

)
+ σ × noise.

This was formalized (with much hand waiving) as a stochastic differential equation
(SDE)

dnt = rnt
(

1− nt
K

)
dt + σdBt

where (Bt , t ≥ 0) is standard Brownian motion, and σ is the volatility .

We solved the SDE numerically using the Euler-Maruyama method .

In Matlab . . .

n = n + r*n*(1-n/K)*h + sigma*sqrt(h)*randn;
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Part I Recap: Solution to SDE (Run 1)
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(Solution to the deterministic model is in green)
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Part I Recap: Solution to SDE (Run 2)

1820 1840 1860 1880 1900 1920 1940
0

500

1000

1500

2000

t

n
t

Solution to SDE (one sample path)

dnt = rnt

(
1 − nt

K

)
dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)

Phil. Pollett (UQ School of Maths and Physics) Population Models: Part II 14 / 55



Part I Recap: Solution to SDE (Run 3)
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Part I Recap: Solution to SDE (Run 4)
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Part I Recap: Solution to SDE (Run 5)
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Part I Recap: Solution to SDE
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My last slide from Part I

A problem with this approach (deterministic dynamics plus noise) is that variation is not,
but perhaps should be, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model nt .

This will be dealt with in Part II.
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A different approach - a continuous time stochastic model

Let’s start from scratch specifying a stochastic model with variation being an inherent
ingredient: a Markovian model .

We will suppose that nt evolves (in continuous time) as a birth-death process with
transitions

n→ n + 1 at rate
λ

N
n (N − n) (birth)

n→ n − 1 at rate µn (death)

where µ (> 0) is the per-capita death rate and λ (> 0) is the birth rate (per-capita when
the population is small). N is the population ceiling ; nt now takes values in the set
S = {0, 1, . . . ,N}.

In the context of general population modelling it is called the Stochastic Logistic Model
(for reasons that will become apparent soon), and can be traced back to William Feller:

Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrscheinlichkeitsteoretischer behandlung. Acta

Biotheoretica 5, 11–40.
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The Stochastic Logistic Model

In the epidemiological context it is known as the SIS (Susceptible-Infectious-Susceptible)
Model , and was introduced by Weiss and Dishon to study infections, in a closed
population of N individuals, that do not confer any long lasting immunity.

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic models of an epidemic. Mathematical

Biosciences 11, 261–265.

Here nt is the number of infectives (infected individuals) at time t. The remaining
N − nt individuals are susceptibles (those susceptible to the infection).

The transitions have the interpretation

n→ n + 1 at rate
λ

N
n (N − n) (infection)

n→ n − 1 at rate µn (recovery)

with µ being the per-capita recovery rate and λ being the per-proximate encounter
transmission rate.
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Simulation of the SL Model - extinction
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Simulation of the SL Model - persistence
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Simulation of the SL Model - N growing
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Simulation of the SL Model - N growing
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Simulation of the SL Model - N growing
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Simulation of the SL Model - N growing
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Questions

For any given Markovian population model:

1 When is there an approximating deterministic model?

2 Can we identify that model?

3 Under what conditions do we get convergence of the stochastic sample paths to the
deterministic trajectory as N becomes large?

4 When N is not too large, can we describe the fluctuations of the stochastic sample
paths about the deterministic trajectory?

The key to answering Question 1 is density dependence, a property that is shared by the
deterministic and stochastic logistic models.
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Density dependence

The Verhulst-Pearl Model
dn

dt
= rn

(
1− n

K

)
can be written

1

N

dn

dt
= r

n

N

(
1− N

K

n

N

)
.

The state nt changes at a rate that depends on nt only through nt/N.

So, letting xt = nt/N be the “population density” at time t, we see that

dx

dt
= rx

(
1− x

E

)
, where E = K/N.

BTW: How could ODEs possibly be useful for modelling integer-valued quantities such a
population size? Scaling like this helps explain why .
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Density dependence in Markovian models

A stochastic process (nt , t ≥ 0) in continuous time taking values in S ⊆ Zk , called a
Markov chain, is characterized by its transition rates Q = (qnm, n,m ∈ S); qnm, for
m 6= n, represents the rate at which the process moves form state n to state m.

To establish density dependence we first identify a quantity N, usually related to the size
of the system being modelled. Then, . . .

Definition (Kurtz∗) The model is density dependent if there is a subset E of Rk and a
continuous function f : Zk × E → R, such that

qn,n+` = Nf`
( n

N

)
, ` 6= 0, ` ∈ Zk .

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov pro-

cesses. J. of Appl. Probab. 7, 49–58.

So, the idea is the same: the rate of change of nt depends on nt only through the
“density” nt/N.
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The mean path of a density dependent Markovian model

Consider the forward equations for the state probabilities pn(t) := Pr(nt = n) (in
statistical mechanics, the master equation):

p ′n(t) = −qnpn(t) +
∑
m 6=n

pm(t)qmn, n ∈ S ,

where qn =
∑

m 6=n qnm is the total rate out of state n.

Then, formally, the expected
value (or mean) of nt , E(nt) =

∑
n npn(t), satisfies

d

dt
E(nt) = −

∑
n

qnnpn(t) +
∑
m

pm(t)
∑
n 6=m

nqmn.

So, if qn,n+` = Nf`(n/N) (density dependence), then

d

dt
E(nt) = −

∑
n

∑
6̀=0

Nf`(n/N)npn(t) +
∑
m

pm(t)
∑
6̀=0

(m + `)Nf`(m/N)

=
∑
m

pm(t)N
∑
` 6=0

`f`(m/N) = N E

∑
` 6=0

`f`(nt/N)

 .
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The mean path of a density dependent Markovian model

So, for an arbitrary density dependent Markovian model, we may write

d

dt
E(nt) = N E

(
F
(nt
N

))
,

where F : E → R is given by

F (x) =
∑
` 6=0

`f` (x) , x ∈ Rk .

Or, setting Xt = nt/N (the “density process”),

d

dt
E(Xt) = E (F (Xt)) .

Warning: I’m not saying that the mean population density satisfies the ODE

d

dt
E(Xt) = F (E(Xt)) .

But, it’s an obvious candidate for our (limiting, we hope) deterministic model for the
population density.

Phil. Pollett (UQ School of Maths and Physics) Population Models: Part II 33 / 55



The mean path of a density dependent Markovian model

So, for an arbitrary density dependent Markovian model, we may write

d

dt
E(nt) = N E

(
F
(nt
N

))
,

where F : E → R is given by

F (x) =
∑
` 6=0

`f` (x) , x ∈ Rk .

Or, setting Xt = nt/N (the “density process”),

d

dt
E(Xt) = E (F (Xt)) .

Warning: I’m not saying that the mean population density satisfies the ODE

d

dt
E(Xt) = F (E(Xt)) .

But, it’s an obvious candidate for our (limiting, we hope) deterministic model for the
population density.

Phil. Pollett (UQ School of Maths and Physics) Population Models: Part II 33 / 55



The mean path of a density dependent Markovian model

So, for an arbitrary density dependent Markovian model, we may write

d

dt
E(nt) = N E

(
F
(nt
N

))
,

where F : E → R is given by

F (x) =
∑
` 6=0

`f` (x) , x ∈ Rk .

Or, setting Xt = nt/N (the “density process”),

d

dt
E(Xt) = E (F (Xt)) .

Warning: I’m not saying that the mean population density satisfies the ODE

d

dt
E(Xt) = F (E(Xt)) .

But, it’s an obvious candidate for our (limiting, we hope) deterministic model for the
population density.

Phil. Pollett (UQ School of Maths and Physics) Population Models: Part II 33 / 55



The mean path of a density dependent Markovian model

So, for an arbitrary density dependent Markovian model, we may write

d

dt
E(nt) = N E

(
F
(nt
N

))
,

where F : E → R is given by

F (x) =
∑
` 6=0

`f` (x) , x ∈ Rk .

Or, setting Xt = nt/N (the “density process”),

d

dt
E(Xt) = E (F (Xt)) .

Warning: I’m not saying that the mean population density satisfies the ODE

d

dt
E(Xt) = F (E(Xt)) .

But, it’s an obvious candidate for our (limiting, we hope) deterministic model for the
population density.

Phil. Pollett (UQ School of Maths and Physics) Population Models: Part II 33 / 55



The Stochastic Logistic Model is density dependent

For the Stochastic Logistic Model we have S = {0, 1, . . . ,N} with

qn,n+1 =
λ

N
n (N − n) = Nλ

n

N

(
1− n

N

)
and qn,n−1 = µn = Nµ

n

N
.

Therefore, f+1(x) = λx (1− x) and f−1(x) = µx , x ∈ E := [0, 1], and so

F (x) =
∑
` 6=0

`f` (x) = f+1(x)− f−1(x) = λx (1− ρ− x) , x ∈ E ,

where ρ = µ/λ. Now compare F (x) with the right-hand side of the Verhulst-Pearl Model
for the density process:

dx

dt
= rx

(
1− x

E

)
, where E = K/N. (1)

If K ∼ βN for N large, so that K/N → β, then we may identify β with 1− ρ and r with
λβ, and discover that (1) can be rewritten as dx/dt = F (x).
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What about convergence?

Recall that (nt , t ≥ 0) is a continuous-time Markov chain taking values in S ⊆ Zk with
transition rates Q = (qnm, n,m ∈ S), and we have identified a quantity N, usually related
to the size of the system being modelled.

The model is assumed to be density dependent: there is a subset E of Rk and a
continuous function f : Zk × E → R, such that

qn,n+` = Nf`
( n

N

)
, ` 6= 0, ` ∈ Zk .

We set F (x) =
∑
6̀=0 `f` (x), x ∈ E .

Now formally define the density process (X (N)
t ) by X (N)

t = nt/N, t ≥ 0. We hope that
(X (N)

t ) becomes more deterministic as N gets large.

To simplify the statement of results, I’m going to assume that the state space S is finite.
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A law of large numbers

The following functional law of large numbers establishes convergence of the family
(X (N)

t ) to the unique trajectory of an appropriate approximating deterministic model.

Theorem (Kurtz∗) Suppose F is Lipschitz continuous1. If limN→∞ X (N)

0 = x0, then the
density process (X (N)

s ) converges in probability uniformly on [0, t] to (xs), the unique
(deterministic) trajectory satisfying

d

ds
xs = F (xs), xs ∈ E , s ∈ [0, t].

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov pro-

cesses, J. of Appl. Probab. 7, 49–58.

(If S is an infinite set, we have the additional conditions supx∈E
∑
` 6=0 |`|f`(x) <∞ and

limd→∞
∑
|`|>d |`|f`(x) = 0, x ∈ E .)

1For some M > 0, |F (x)− F (y)| ≤ M|x − y | for all x ∈ E .
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A law of large numbers

Convergence in probability uniformly on [0, t] means that, for every ε > 0,

lim
N→∞

Pr

(
sup

s∈[0,t]

∣∣X (N)
s − xs

∣∣ > ε

)
= 0.

For the Stochastic Logistic Model, it is is easy to check that F (x) = λx(1− ρ− x) is
Lipschitz continuous on E = [0, 1]. So, provided X (N)

0 → x0 as N →∞, the population
density (X (N)

t ) converges (uniformly in probability on finite time intervals) to the solution
(xt) of the deterministic model

dx

dt
= λx(1− ρ− x) (xt ∈ E).
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Simulation of the SL Model with xt (N = 50)
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Simulation of the SL Model with xt - N large
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Fluctuations about the deterministic trajectory

In a later paper Kurtz∗ proved a functional central limit law which establishes that, for
large N, the fluctuations about the deterministic trajectory follow a Gaussian diffusion,
provided that some mild extra conditions are satisfied.

He considered the family of processes {(Z (N)
t )}, indexed by N, and defined by

Z (N)
s =

√
N
(
X (N)

s − xs
)
, s ∈ [0, t].

Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary

differential processes. J. Appl. Probab. 8, 344–356.

Keep in mind the Central Limit Theorem. As applied to coin tossing (de Moivre
('1733)), if pN is the proportion of “Heads” after N tosses of a fair coin,

√
N
(
pN − 1

2

) D→ Z ∼ N(0, 1
4
), as N →∞.

(STAT1201: the normal approximation to the binomial distribution.)
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Scaled fluctuations in the SL Model (N = 50)
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Scaled fluctuations in the SL Model (N = 100)
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Scaled fluctuations in the SL Model (N = 200)
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Scaled fluctuations in the SL Model (N = 500)
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Scaled fluctuations in the SL Model (N = 1 000)
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Scaled fluctuations in the SL Model (N = 10 000)
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A central limit law

Theorem Suppose that F is Lipschitz continuous and has uniformly continuous first
derivatives on E , and that the k × k matrix G(x), defined for x ∈ E by
Gij(x) =

∑
` 6=0 `i`j f`(x), is uniformly continuous on E .

Let (xt) be the unique deterministic trajectory starting at x0 and suppose that
limN→∞

√
N
(
X (N)

0 − x0

)
= z .

Then, {(Z (N)
t )} converges weakly in D[0, t] (the space of right-continuous, left-hand

limits functions on [0, t]) to a Gaussian diffusion (Zt) with initial value Z0 = z and with
mean given by µs := E(Zs) = Msz , where Ms = exp(

∫ s

0
Bu du) and Bs = ∇F (xs), and

covariance given by

Σs := Cov(Zs) = Ms

(∫ s

0

M−1
u G(xu)(M−1

u )T du

)
MT

s .
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A central limit law

The functional central limit theorem tells us that, for large N, the scaled density process
Z (N)
t can be approximated over finite time intervals by the Gaussian diffusion (Zt).

In particular, for all t > 0, X (N)
t has an approximate normal distribution with

Cov(X (N)
t ) ' Σt/N.

We usually take X (N)

0 = x0, for all N, thus giving E(X (N)
t ) ' xt .
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A central limit law for the SL Model

For the SL Model we have F (x) = λx(1− ρ− x), and the solution to dx/dt = F (x) is

xt = (1−ρ)x0

x0+(1−ρ−x0)e−λ(1−ρ)t .

Then, E(X (N)
t ) ' xt .

We also have F ′(x) = λ(1− ρ− 2x) and

G(x) =
∑
` `

2f`(x) = λx(1 + ρ− x) = F (x) + 2µx ,

giving

Mt = exp
(∫ t

0
F ′(xs) ds

)
= (1−ρ)2e−λ(1−ρ)t

(x0+(1−ρ−x0)e−λ(1−ρ)t )2 .
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We can evaluate vt := Var(Zt) = M2
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0
G(xs)/M

2
s ds
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We can evaluate vt := Var(Zt) = M2
t

(∫ t

0
G(xs)/M

2
s ds

)
numerically, or

vt = x0

(
ρx3

0 +x2
0 (1+5ρ)(1−ρ−x0)e−λ(1−ρ)t+2x0(1+2ρ)(1−ρ−x0)2(λ(1−ρ)t)e−2λ(1−ρ)t

−
(
(1− ρ− x0)[3ρx2

0 + (2 + ρ)(1− ρ)x0 − ((1 + 2ρ))(1− ρ)2] + ρ(1− ρ)3)e−2λ(1−ρ)t

− (1 + ρ)(1− ρ− x0)3e−3λ(1−ρ)t
)/(

x0 + (1− ρ− x0)e−λ(1−ρ)t
)4

.

Then, Var(X (N)
t ) ' vt/N.
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Simulation of the SL Model with xt ± 2
√

vt/N
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Simulation of the SL Model with Normal approximation
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The OU approximation

If the initial point x0 of the deterministic trajectory is chosen to be an equilibrium point
of the deterministic model, we can be far more precise about the approximating diffusion.

Corollary If xeq satisfies F (xeq) = 0, then, under the conditions of the theorem, the
family {(Z (N)

t )}, defined by

Z (N)
s =

√
N(X (N)

s − xeq), 0 ≤ s ≤ t, s ∈ [0, t].

converges weakly in D[0, t] to an Ornstein−Uhlenbeck (OU) process (Zt) with initial
value Z0 = z , local drift matrix B = ∇F (xeq) and local covariance matrix G(xeq).

In particular, Zs is normally distributed with mean and covariance given by
µs := E(Zs) = eBsz and

Σs := Cov(Zs) =

∫ s

0

eBuG(xeq)eB
T u du .
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The OU approximation

Note that

Σs =

∫ s

0

eBuG(xeq)eB
T u du = V∞ − eBsV∞eB

T s ,

where V∞, the stationary covariance matrix, satisfies

BV∞ + V∞BT + G(xeq) = 0.

We conclude that, for N large, X (N)
t has an approximate normal distribution with

Cov(X (N)
t ) ' Σt/N.

For the SL Model, vt := Var(X (N)
t ) ' ρ(1− e−2λ(1−ρ)t)/N.

Finally, this brings us “full circle” to the approximating SDE

dnt = −α(nt − K) dt +
√

2Nαρ dBt ,

where α = λ(1− ρ).
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Simulation of the SL Model with xeq ± 2
√

vt/N (OU Approximation)
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