Population Models: Part II

Markov Chains and Diffusion Approximations

Phil. Pollett

UQ School of Mathematics and Physics

Mathematics Enrichment Seminars

24 August 2016

Executive Summary - Simulation of the SL Model (N = 50)

ACEM

Executive Summary - Simulation of the SL Model (N large)

Executive Summary - Solution to deterministic model

Executive Summary - Solution to deterministic model

ACEM

Executive Summary - Normal approximation

Phil. Pollett (UQ School of Maths and Physics)

6 / 55

Part I Recap: Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania. *Trans. Roy. Soc. Sth. Austral.* 62, 342–346.

Part I Recap: The Verhulst-Pearl Model (Logistic Model)

We started with a simple deterministic model for n_t , the number in our population at time t:

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right),\,$$

with r being the growth rate with unlimited resources and K being the "natural" population size (the *carrying capacity*).

Part I Recap: The Verhulst-Pearl Model (Logistic Model)

We started with a simple deterministic model for n_t , the number in our population at time t:

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right),\,$$

with r being the growth rate with unlimited resources and K being the "natural" population size (the *carrying capacity*).

Integration gives

$$n_t = \frac{K}{1 + \left(\frac{K - n_0}{n_0}\right)e^{-rt}}, \qquad t \ge 0.$$

(As covered in MATH1052!)

Part I Recap: Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania. *Trans. Roy. Soc. Sth. Austral.* 62, 342–346.

Part I Recap: Sheep in Tasmania

Davidson, J. (1938) On the growth of the sheep population in Tasmania. *Trans. Roy. Soc. Sth. Austral.* 62, 342–346.

We suggested

$$rac{dn_t}{dt} = \textit{rn}_t \left(1 - rac{n_t}{K}\right) + \sigma imes$$
 noise.

We suggested

$$\frac{dn_t}{dt} = rn_t \left(1 - \frac{n_t}{K}\right) + \sigma \times \text{noise.}$$

This was formalized (with much hand waiving) as a *stochastic differential equation* (*SDE*)

$$dn_t = rn_t \left(1 - \frac{n_t}{K}\right) dt + \sigma dB_t$$

where $(B_t, t \ge 0)$ is standard Brownian motion, and σ is the volatility.

We suggested

$$\frac{dn_t}{dt} = rn_t \left(1 - \frac{n_t}{K}\right) + \sigma \times \text{noise.}$$

This was formalized (with much hand waiving) as a *stochastic differential equation* (*SDE*)

$$dn_t = rn_t \left(1 - \frac{n_t}{K}\right) dt + \sigma dB_t$$

where $(B_t, t \ge 0)$ is standard Brownian motion, and σ is the volatility.

We solved the SDE numerically using the Euler-Maruyama method.

We suggested

$$\frac{dn_t}{dt} = rn_t \left(1 - \frac{n_t}{K}\right) + \sigma \times \text{noise.}$$

This was formalized (with much hand waiving) as a *stochastic differential equation* (*SDE*)

$$dn_t = rn_t \left(1 - \frac{n_t}{K}\right) dt + \sigma dB_t$$

where $(B_t, t \ge 0)$ is standard Brownian motion, and σ is the volatility.

We solved the SDE numerically using the Euler-Maruyama method.

In Matlab ...

n = n + r*n*(1-n/K)*h + sigma*sqrt(h)*randn;

Part I Recap: Sheep in Tasmania

12 / 55

Part I Recap: Solution to SDE (Run 1)

Part I Recap: Solution to SDE (Run 2)

Part I Recap: Solution to SDE (Run 3)

15 / 55

Part I Recap: Solution to SDE (Run 4)

16 / 55

Part I Recap: Solution to SDE (Run 5)

17 / 55

Part I Recap: Solution to SDE

CFM (

My last slide from Part I

A problem with this approach (deterministic dynamics plus noise) is that variation is *not*, but perhaps *should be*, an integral component of the dynamics.

My last slide from Part I

A problem with this approach (deterministic dynamics plus noise) is that variation is *not*, but perhaps *should be*, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model n_t .

My last slide from Part I

A problem with this approach (deterministic dynamics plus noise) is that variation is *not*, but perhaps *should be*, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model n_t .

This will be dealt with in Part II.

A different approach - a continuous time stochastic model

Let's start from scratch specifying a stochastic model with variation being an inherent ingredient: a *Markovian model*.

A different approach - a continuous time stochastic model

Let's start from scratch specifying a stochastic model with variation being an inherent ingredient: a *Markovian model*.

We will suppose that n_t evolves (in continuous time) as a birth-death process with transitions

$$n \rightarrow n+1$$
 at rate $\frac{\lambda}{N}n(N-n)$ (birth)
 $n \rightarrow n-1$ at rate μn (death)

where μ (> 0) is the per-capita death rate and λ (> 0) is the birth rate (per-capita when the population is small). *N* is the *population ceiling*; n_t now takes values in the set $S = \{0, 1, ..., N\}$.

A different approach - a continuous time stochastic model

Let's start from scratch specifying a stochastic model with variation being an inherent ingredient: a *Markovian model*.

We will suppose that n_t evolves (in continuous time) as a birth-death process with transitions

$$n \rightarrow n+1$$
 at rate $\frac{\lambda}{N}n(N-n)$ (birth)
 $n \rightarrow n-1$ at rate μn (death)

where μ (> 0) is the per-capita death rate and λ (> 0) is the birth rate (per-capita when the population is small). *N* is the *population ceiling*; n_t now takes values in the set $S = \{0, 1, ..., N\}$.

In the context of general population modelling it is called the *Stochastic Logistic Model* (for reasons that will become apparent soon), and can be traced back to William Feller:

Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.

The Stochastic Logistic Model

In the epidemiological context it is known as the *SIS (Susceptible-Infectious-Susceptible)* Model, and was introduced by Weiss and Dishon to study infections, in a closed population of N individuals, that do not confer any long lasting immunity.

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic models of an epidemic. *Mathematical Biosciences* 11, 261–265.

Here n_t is the number of *infectives* (infected individuals) at time t. The remaining $N - n_t$ individuals are *susceptibles* (those susceptible to the infection).

The Stochastic Logistic Model

In the epidemiological context it is known as the *SIS (Susceptible-Infectious-Susceptible)* Model, and was introduced by Weiss and Dishon to study infections, in a closed population of N individuals, that do not confer any long lasting immunity.

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic models of an epidemic. *Mathematical Biosciences* 11, 261–265.

Here n_t is the number of *infectives* (infected individuals) at time t. The remaining $N - n_t$ individuals are *susceptibles* (those susceptible to the infection).

The transitions have the interpretation

$$n \to n+1$$
 at rate $\frac{\lambda}{N}n(N-n)$ (infection)
 $n \to n-1$ at rate μn (recovery)

with μ being the per-capita recovery rate and λ being the per-proximate encounter transmission rate.

Simulation of the SL Model - extinction

22 / 55

ACEM

Simulation of the SL Model - persistence

ACEM∫

ACEM

ACEM
For any given Markovian population model:

When is there an approximating deterministic model?

For any given Markovian population model:

- When is there an approximating deterministic model?
- O Can we identify that model?

For any given Markovian population model:

- When is there an approximating deterministic model?
- On we identify that model?
- Under what conditions do we get convergence of the stochastic sample paths to the deterministic trajectory as N becomes large?

For any given Markovian population model:

- When is there an approximating deterministic model?
- On we identify that model?
- Under what conditions do we get convergence of the stochastic sample paths to the deterministic trajectory as N becomes large?
- When N is not too large, can we describe the fluctuations of the stochastic sample paths about the deterministic trajectory?

For any given Markovian population model:

- When is there an approximating deterministic model?
- On we identify that model?
- Under what conditions do we get convergence of the stochastic sample paths to the deterministic trajectory as N becomes large?
- When N is not too large, can we describe the fluctuations of the stochastic sample paths about the deterministic trajectory?

The key to answering Question 1 is *density dependence*, a property that is shared by the deterministic and stochastic logistic models.

The Verhulst-Pearl Model

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right)$$

can be written

$$\frac{1}{N}\frac{dn}{dt} = r\frac{n}{N}\left(1 - \frac{N}{K}\frac{n}{N}\right).$$

The state n_t changes at a rate that depends on n_t only through n_t/N .

The Verhulst-Pearl Model

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right)$$

can be written

$$\frac{1}{N}\frac{dn}{dt} = r\frac{n}{N}\left(1 - \frac{N}{K}\frac{n}{N}\right).$$

The state n_t changes at a rate that depends on n_t only through n_t/N .

So, letting $x_t = n_t/N$ be the "population density" at time t, we see that

$$rac{dx}{dt} = rx\left(1-rac{x}{E}
ight), \quad ext{where} \quad E = K/N.$$

The Verhulst-Pearl Model

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right)$$

can be written

$$\frac{1}{N}\frac{dn}{dt} = r\frac{n}{N}\left(1 - \frac{N}{K}\frac{n}{N}\right).$$

The state n_t changes at a rate that depends on n_t only through n_t/N .

So, letting $x_t = n_t/N$ be the "population density" at time *t*, we see that

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{E}\right), \text{ where } E = K/N.$$

BTW: How could ODEs possibly be useful for modelling integer-valued quantities such a population size?

The Verhulst-Pearl Model

$$\frac{dn}{dt} = rn\left(1 - \frac{n}{K}\right)$$

can be written

$$\frac{1}{N}\frac{dn}{dt} = r\frac{n}{N}\left(1 - \frac{N}{K}\frac{n}{N}\right).$$

The state n_t changes at a rate that depends on n_t only through n_t/N .

So, letting $x_t = n_t/N$ be the "population density" at time *t*, we see that

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{E}\right), \text{ where } E = K/N.$$

BTW: How could ODEs possibly be useful for modelling integer-valued quantities such a population size? *Scaling like this helps explain why*.

A stochastic process $(n_t, t \ge 0)$ in continuous time taking values in $S \subseteq \mathbb{Z}^k$, called a *Markov chain*, is characterized by its transition rates $Q = (q_{nm}, n, m \in S)$; q_{nm} , for $m \ne n$, represents the rate at which the process moves form state n to state m.

A stochastic process $(n_t, t \ge 0)$ in continuous time taking values in $S \subseteq \mathbb{Z}^k$, called a *Markov chain*, is characterized by its transition rates $Q = (q_{nm}, n, m \in S)$; q_{nm} , for $m \ne n$, represents the rate at which the process moves form state n to state m.

To establish density dependence we first identify a quantity N, usually related to the size of the system being modelled. Then, ...

A stochastic process $(n_t, t \ge 0)$ in continuous time taking values in $S \subseteq \mathbb{Z}^k$, called a *Markov chain*, is characterized by its transition rates $Q = (q_{nm}, n, m \in S)$; q_{nm} , for $m \ne n$, represents the rate at which the process moves form state n to state m.

To establish density dependence we first identify a quantity N, usually related to the size of the system being modelled. Then, ...

Definition (Kurtz^{*}) The model is *density dependent* if there is a subset E of \mathbb{R}^k and a continuous function $f : \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(\frac{n}{N}\right), \quad \ell \neq 0, \ \ell \in \mathbb{Z}^{k}.$$

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. *J. of Appl. Probab.* 7, 49–58.

A stochastic process $(n_t, t \ge 0)$ in continuous time taking values in $S \subseteq \mathbb{Z}^k$, called a *Markov chain*, is characterized by its transition rates $Q = (q_{nm}, n, m \in S)$; q_{nm} , for $m \ne n$, represents the rate at which the process moves form state n to state m.

To establish density dependence we first identify a quantity N, usually related to the size of the system being modelled. Then, ...

Definition (Kurtz^{*}) The model is *density dependent* if there is a subset E of \mathbb{R}^k and a continuous function $f : \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(rac{n}{N}
ight), \quad \ell \neq 0, \ \ell \in \mathbb{Z}^k.$$

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. *J. of Appl. Probab.* 7, 49–58.

So, the idea is the same: the rate of change of n_t depends on n_t only through the "density" n_t/N .

A stochastic process $(n_t, t \ge 0)$ in continuous time taking values in $S \subseteq \mathbb{Z}^k$, called a *Markov chain*, is characterized by its transition rates $Q = (q_{nm}, n, m \in S)$; q_{nm} , for $m \ne n$, represents the rate at which the process moves form state n to state m.

To establish density dependence we first identify a quantity N, usually related to the size of the system being modelled. Then, ...

Definition (Kurtz^{*}) The model is *density dependent* if there is a subset E of \mathbb{R}^k and a continuous function $f: \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(rac{n}{N}
ight), \quad \ell \neq 0, \ \ell \in \mathbb{Z}^{k}.$$

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes. *J. of Appl. Probab.* 7, 49–58.

So, the idea is the same: the rate of change of n_t depends on n_t only through the "density" n_t/N .

Consider the forward equations for the state probabilities $p_n(t) := Pr(n_t = n)$ (in statistical mechanics, the master equation):

$$p_n'(t) = -q_n p_n(t) + \sum_{m \neq n} p_m(t) q_{mn}, \qquad n \in S,$$

where $q_n = \sum_{m \neq n} q_{nm}$ is the total rate *out of* state *n*.

1

Consider the forward equations for the state probabilities $p_n(t) := Pr(n_t = n)$ (in statistical mechanics, the master equation):

$$p_n'(t) = -q_n p_n(t) + \sum_{m \neq n} p_m(t)q_{mn}, \qquad n \in S,$$

where $q_n = \sum_{m \neq n} q_{nm}$ is the total rate *out of* state *n*. Then, formally, the *expected* value (or mean) of n_t , $\mathbb{E}(n_t) = \sum_n np_n(t)$, satisfies

$$rac{d}{dt} \mathbb{E}(n_t) = -\sum_n q_n n p_n(t) + \sum_m p_m(t) \sum_{n
eq m} n q_{mn}$$

Consider the forward equations for the state probabilities $p_n(t) := \Pr(n_t = n)$ (in statistical mechanics, the master equation):

$$p_n'(t) = -q_n p_n(t) + \sum_{m \neq n} p_m(t) q_{mn}, \qquad n \in S,$$

where $q_n = \sum_{m \neq n} q_{nm}$ is the total rate *out of* state *n*. Then, formally, the *expected* value (or mean) of n_t , $\mathbb{E}(n_t) = \sum_n np_n(t)$, satisfies

$$rac{d}{dt} \mathbb{E}(n_t) = -\sum_n q_n n p_n(t) + \sum_m p_m(t) \sum_{n
eq m} n q_{mn}.$$

So, if $q_{n,n+\ell} = Nf_{\ell}(n/N)$ (density dependence), then

$$egin{aligned} rac{d}{dt} & \mathbb{E}(n_t) = -\sum_n \sum_{\ell
eq 0} Nf_\ell(n/N) n p_n(t) + \sum_m p_m(t) \sum_{\ell
eq 0} (m+\ell) N f_\ell(m/N) \ &= \sum_m p_m(t) N \sum_{\ell
eq 0} \ell f_\ell(m/N) = N \, \mathbb{E}\left(\sum_{\ell
eq 0} \ell f_\ell(n_t/N)
ight). \end{aligned}$$

So, for an arbitrary density dependent Markovian model, we may write

$$\frac{d}{dt}\,\mathbb{E}(n_t)=N\,\mathbb{E}\left(F\left(\frac{n_t}{N}\right)\right),$$

where $F : E \to \mathbb{R}$ is given by

$$F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), \qquad x \in \mathbb{R}^k.$$

So, for an arbitrary density dependent Markovian model, we may write

$$\frac{d}{dt}\mathbb{E}(n_t)=N\mathbb{E}\left(F\left(\frac{n_t}{N}\right)\right),$$

where $F: E \to \mathbb{R}$ is given by

$$F(x) = \sum_{\ell
eq 0} \ell f_\ell \left(x
ight), \qquad x \in \mathbb{R}^k.$$

Or, setting $X_t = n_t/N$ (the "density process"),

$$\frac{d}{dt}\,\mathbb{E}(X_t)=\mathbb{E}\left(F(X_t)\right).$$

So, for an arbitrary density dependent Markovian model, we may write

$$\frac{d}{dt}\mathbb{E}(n_t)=N\mathbb{E}\left(F\left(\frac{n_t}{N}\right)\right),$$

where $F: E \to \mathbb{R}$ is given by

$$F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), \qquad x \in \mathbb{R}^k.$$

Or, setting $X_t = n_t/N$ (the "density process"),

$$\frac{d}{dt}\,\mathbb{E}(X_t)=\mathbb{E}\left(F(X_t)\right).$$

Warning: I'm not saying that the mean population density satisfies the ODE

$$\frac{d}{dt}\,\mathbb{E}(X_t)=F\left(\mathbb{E}(X_t)\right).$$

So, for an arbitrary density dependent Markovian model, we may write

$$\frac{d}{dt}\mathbb{E}(n_t)=N\mathbb{E}\left(F\left(\frac{n_t}{N}\right)\right),$$

where $F: E \to \mathbb{R}$ is given by

$$F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), \qquad x \in \mathbb{R}^k.$$

Or, setting $X_t = n_t/N$ (the "density process"),

$$\frac{d}{dt}\,\mathbb{E}(X_t)=\mathbb{E}\left(F(X_t)\right).$$

Warning: I'm not saying that the mean population density satisfies the ODE

$$\frac{d}{dt}\,\mathbb{E}(X_t)=F\left(\mathbb{E}(X_t)\right).$$

But, it's an obvious candidate for our (limiting, we hope) deterministic model for the population density.

The Stochastic Logistic Model is density dependent

For the Stochastic Logistic Model we have $\textit{S} = \{0, 1, \dots, \textit{N}\}$ with

$$q_{n,n+1} = \frac{\lambda}{N}n(N-n) = N\lambda \frac{n}{N}\left(1-\frac{n}{N}\right)$$
 and $q_{n,n-1} = \mu n = N\mu \frac{n}{N}$.

The Stochastic Logistic Model is density dependent

For the Stochastic Logistic Model we have $S = \{0, 1, \dots, N\}$ with

$$q_{n,n+1} = rac{\lambda}{N} n \left(N-n
ight) = N \lambda rac{n}{N} \left(1-rac{n}{N}
ight) \quad ext{and} \quad q_{n,n-1} = \mu n = N \mu rac{n}{N}.$$

Therefore, $f_{+1}(x) = \lambda x \left(1-x
ight)$ and $f_{-1}(x) = \mu x$, $x \in E := [0,1]$, and so

$$F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x) = f_{+1}(x) - f_{-1}(x) = \lambda x \left(1 - \rho - x\right), \qquad x \in E,$$

where $\rho = \mu / \lambda$.

The Stochastic Logistic Model is density dependent

For the Stochastic Logistic Model we have $S = \{0, 1, \dots, N\}$ with

$$q_{n,n+1} = rac{\lambda}{N} n \left(N-n
ight) = N \lambda rac{n}{N} \left(1-rac{n}{N}
ight) \quad ext{and} \quad q_{n,n-1} = \mu n = N \mu rac{n}{N}.$$

Therefore, $f_{+1}(x) = \lambda x (1-x)$ and $f_{-1}(x) = \mu x$, $x \in E := [0,1]$, and so

$$\mathcal{F}(x)=\sum_{\ell
eq 0}\ell f_\ell\left(x
ight)=f_{+1}(x)-f_{-1}(x)=\lambda x\left(1-
ho-x
ight),\qquad x\in E,$$

where $\rho = \mu/\lambda$. Now compare F(x) with the right-hand side of the Verhulst-Pearl Model for the density process:

$$\frac{dx}{dt} = rx\left(1 - \frac{x}{E}\right), \quad \text{where} \quad E = K/N.$$
(1)

If $K \sim \beta N$ for N large, so that $K/N \rightarrow \beta$, then we may identify β with $1 - \rho$ and r with $\lambda\beta$, and discover that (1) can be rewritten as dx/dt = F(x).

What about convergence?

Recall that $(n_t, t \ge 0)$ is a continuous-time Markov chain taking values in $S \subseteq \mathbb{Z}^k$ with transition rates $Q = (q_{nm}, n, m \in S)$, and we have identified a quantity N, usually related to the size of the system being modelled.

The model is assumed to be *density dependent*: there is a subset E of \mathbb{R}^k and a continuous function $f: \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(rac{n}{N}
ight), \quad \ell
eq 0, \ \ell \in \mathbb{Z}^k.$$

We set $F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), x \in E$.

What about convergence?

Recall that $(n_t, t \ge 0)$ is a continuous-time Markov chain taking values in $S \subseteq \mathbb{Z}^k$ with transition rates $Q = (q_{nm}, n, m \in S)$, and we have identified a quantity N, usually related to the size of the system being modelled.

The model is assumed to be *density dependent*: there is a subset E of \mathbb{R}^k and a continuous function $f: \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(rac{n}{N}
ight), \quad \ell
eq 0, \ \ell \in \mathbb{Z}^k.$$

We set $F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), x \in E$.

Now formally define the *density process* $(X_t^{(N)})$ by $X_t^{(N)} = n_t/N$, $t \ge 0$. We hope that $(X_t^{(N)})$ becomes more deterministic as N gets large.

What about convergence?

Recall that $(n_t, t \ge 0)$ is a continuous-time Markov chain taking values in $S \subseteq \mathbb{Z}^k$ with transition rates $Q = (q_{nm}, n, m \in S)$, and we have identified a quantity N, usually related to the size of the system being modelled.

The model is assumed to be *density dependent*: there is a subset E of \mathbb{R}^k and a continuous function $f: \mathbb{Z}^k \times E \to \mathbb{R}$, such that

$$q_{n,n+\ell} = Nf_{\ell}\left(rac{n}{N}
ight), \quad \ell
eq 0, \ \ell \in \mathbb{Z}^k.$$

We set $F(x) = \sum_{\ell \neq 0} \ell f_{\ell}(x), x \in E$.

Now formally define the *density process* $(X_t^{(N)})$ by $X_t^{(N)} = n_t/N$, $t \ge 0$. We hope that $(X_t^{(N)})$ becomes more deterministic as N gets large.

To simplify the statement of results, I'm going to assume that the state space S is finite.

The following *functional law of large numbers* establishes convergence of the family $(X_t^{(N)})$ to the unique trajectory of an appropriate approximating deterministic model.

Theorem (Kurtz^{*}) Suppose *F* is Lipschitz continuous¹. If $\lim_{N\to\infty} X_0^{(N)} = x_0$, then the density process $(X_s^{(N)})$ converges in probability uniformly on [0, t] to (x_s) , the unique (deterministic) trajectory satisfying

$$\frac{d}{ds}x_s = F(x_s), \qquad x_s \in E, \ s \in [0, t].$$

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, *J. of Appl. Probab.* 7, 49–58.

ACEM∫

¹For some M > 0, $|F(x) - F(y)| \le M|x - y|$ for all $x \in E$.

The following *functional law of large numbers* establishes convergence of the family $(X_t^{(N)})$ to the unique trajectory of an appropriate approximating deterministic model.

Theorem (Kurtz^{*}) Suppose *F* is Lipschitz continuous¹. If $\lim_{N\to\infty} X_0^{(N)} = x_0$, then the density process $(X_s^{(N)})$ converges in probability uniformly on [0, t] to (x_s) , the unique (deterministic) trajectory satisfying

$$\frac{d}{ds}x_s = F(x_s), \qquad x_s \in E, \ s \in [0, t].$$

Kurtz, T. (1970) Solutions of ordinary differential equations as limits of pure jump Markov processes, *J. of Appl. Probab.* 7, 49–58.

(If S is an infinite set, we have the additional conditions $\sup_{x \in E} \sum_{\ell \neq 0} |\ell| f_{\ell}(x) < \infty$ and $\lim_{d \to \infty} \sum_{|\ell| > d} |\ell| f_{\ell}(x) = 0, x \in E.$)

Convergence in probability uniformly on [0, t] means that, for every $\epsilon > 0$,

$$\lim_{N\to\infty} \Pr\left(\sup_{s\in[0,t]} \left|X_s^{(N)} - x_s\right| > \epsilon\right) = 0.$$

Convergence in probability uniformly on [0, t] means that, for every $\epsilon > 0$,

$$\lim_{N\to\infty} \Pr\left(\sup_{s\in[0,t]} \left|X_s^{(N)} - x_s\right| > \epsilon\right) = 0.$$

For the Stochastic Logistic Model, it is is easy to check that $F(x) = \lambda x(1 - \rho - x)$ is Lipschitz continuous on E = [0, 1]. So, provided $X_0^{(N)} \to x_0$ as $N \to \infty$, the population density $(X_t^{(N)})$ converges (uniformly in probability on finite time intervals) to the solution (x_t) of the deterministic model

$$\frac{dx}{dt} = \lambda x (1 - \rho - x) \qquad (x_t \in E).$$

Simulation of the SL Model with x_t (N = 50)

ACEM

Simulation of the SL Model with x_t - N large

ACEM

Simulation of the SL Model with x_t

40 / 55

ACEM

Fluctuations about the deterministic trajectory

In a later paper Kurtz^{*} proved a *functional central limit law* which establishes that, for large N, the fluctuations about the deterministic trajectory follow a *Gaussian diffusion*, provided that some mild extra conditions are satisfied.

He considered the family of processes $\{(Z_t^{(N)})\}$, indexed by N, and defined by

$$Z^{(N)}_s=\sqrt{N}\left(X^{(N)}_s-x_s
ight),\qquad s\in [0,t].$$

Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, 344–356.

Fluctuations about the deterministic trajectory

In a later paper Kurtz^{*} proved a *functional central limit law* which establishes that, for large N, the fluctuations about the deterministic trajectory follow a *Gaussian diffusion*, provided that some mild extra conditions are satisfied.

He considered the family of processes $\{(Z_t^{(N)})\}$, indexed by N, and defined by

 $Z_s^{(N)} = \sqrt{N} \left(X_s^{(N)} - x_s \right), \qquad s \in [0, t].$

Kurtz, T. (1971) Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. J. Appl. Probab. 8, 344–356.

Keep in mind the *Central Limit Theorem*. As applied to coin tossing (de Moivre (\simeq 1733)), if p_N is the proportion of "Heads" after N tosses of a fair coin,

$$\sqrt{N}\left(p_N-rac{1}{2}
ight) \stackrel{D}{
ightarrow} Z \sim N(0,rac{1}{4}), \qquad ext{as } N
ightarrow \infty.$$

(STAT1201: the normal approximation to the binomial distribution.)
Scaled fluctuations in the SL Model (N = 50)

Phil. Pollett (UQ School of Maths and Physics)

42 / 55

Scaled fluctuations in the SL Model (N = 100)

43 / 55

Scaled fluctuations in the SL Model (N = 200)

Scaled fluctuations in the SL Model (N = 500)

45 / 55

Scaled fluctuations in the SL Model (N = 1000)

Scaled fluctuations in the SL Model (N = 10000)

47 / 55

A central limit law

Theorem Suppose that *F* is Lipschitz continuous and has uniformly continuous first derivatives on *E*, and that the $k \times k$ matrix G(x), defined for $x \in E$ by $G_{ij}(x) = \sum_{\ell \neq 0} \ell_i \ell_j f_\ell(x)$, is uniformly continuous on *E*.

Let (x_t) be the unique deterministic trajectory starting at x_0 and suppose that $\lim_{N\to\infty} \sqrt{N} \left(X_0^{(N)} - x_0 \right) = z.$

Then, $\{(Z_t^{(N)})\}$ converges weakly in D[0, t] (the space of right-continuous, left-hand limits functions on [0, t]) to a Gaussian diffusion (Z_t) with initial value $Z_0 = z$ and with mean given by $\mu_s := \mathbb{E}(Z_s) = M_s z$, where $M_s = \exp(\int_0^s B_u du)$ and $B_s = \nabla F(x_s)$, and covariance given by

$$\Sigma_s := \operatorname{Cov}(Z_s) = M_s \left(\int_0^s M_u^{-1} G(x_u) (M_u^{-1})^T \, du \right) M_s^T \, .$$

The functional central limit theorem tells us that, for large N, the scaled density process $Z_t^{(N)}$ can be approximated *over finite time intervals* by the Gaussian diffusion (Z_t) .

In particular, for all t > 0, $X_t^{(N)}$ has an approximate normal distribution with $\operatorname{Cov}(X_t^{(N)}) \simeq \Sigma_t / N$.

We usually take $X_0^{(N)} = x_0$, for all N, thus giving $\mathbb{E}(X_t^{(N)}) \simeq x_t$.

For the SL Model we have $F(x) = \lambda x(1 - \rho - x)$, and the solution to dx/dt = F(x) is

$$x_t = \frac{(1-\rho)x_0}{x_0 + (1-\rho - x_0)e^{-\lambda(1-\rho)t}}$$

Then, $\mathbb{E}(X_t^{(N)}) \simeq x_t$.

For the SL Model we have $F(x) = \lambda x(1 - \rho - x)$, and the solution to dx/dt = F(x) is

$$x_t = \frac{(1-\rho)x_0}{x_0 + (1-\rho-x_0)e^{-\lambda(1-\rho)t}}.$$

Then, $\mathbb{E}(X_t^{(N)}) \simeq x_t$. We also have $F'(x) = \lambda(1 - \rho - 2x)$ and

$$G(x) = \sum_{\ell} \ell^2 f_{\ell}(x) = \lambda x (1 + \rho - x) = F(x) + 2\mu x,$$

giving

$$M_t = \exp\left(\int_0^t F'(x_s) \, ds\right) = \frac{(1-\rho)^2 e^{-\lambda(1-\rho)t}}{(x_0+(1-\rho-x_0)e^{-\lambda(1-\rho)t})^2}.$$

For the SL Model we have $F(x) = \lambda x(1 - \rho - x)$, and the solution to dx/dt = F(x) is

$$x_t = \frac{(1-\rho)x_0}{x_0+(1-\rho-x_0)e^{-\lambda(1-\rho)t}}.$$

Then, $\mathbb{E}(X_t^{(N)}) \simeq x_t$. We also have $F'(x) = \lambda(1 - \rho - 2x)$ and

$$G(x) = \sum_{\ell} \ell^2 f_{\ell}(x) = \lambda x (1 + \rho - x) = F(x) + 2\mu x,$$

giving

$$M_t = \exp\left(\int_0^t F'(x_s) \, ds\right) = \frac{(1-\rho)^2 e^{-\lambda(1-\rho)t}}{(x_0+(1-\rho-x_0)e^{-\lambda(1-\rho)t})^2}.$$

We can evaluate $v_t := \operatorname{Var}(Z_t) = M_t^2 \left(\int_0^t G(x_s) / M_s^2 \, ds \right)$ numerically.

For the SL Model we have $F(x) = \lambda x(1 - \rho - x)$, and the solution to dx/dt = F(x) is

$$x_t = \frac{(1-\rho)x_0}{x_0 + (1-\rho-x_0)e^{-\lambda(1-\rho)t}}.$$

Then, $\mathbb{E}(X_t^{(N)}) \simeq x_t$. We also have $F'(x) = \lambda(1 - \rho - 2x)$ and

$$G(x) = \sum_{\ell} \ell^2 f_{\ell}(x) = \lambda x (1 + \rho - x) = F(x) + 2\mu x,$$

giving

$$M_t = \exp\left(\int_0^t F'(x_s) \, ds\right) = \frac{(1-\rho)^2 e^{-\lambda(1-\rho)t}}{(x_0+(1-\rho-x_0)e^{-\lambda(1-\rho)t})^2}.$$

We can evaluate $v_t := \operatorname{Var}(Z_t) = M_t^2\left(\int_0^t G(x_s)/M_s^2\,ds\right)$ numerically, or

$$\begin{aligned} v_t &= x_0 \Big(\rho x_0^3 + x_0^2 (1+5\rho) (1-\rho-x_0) e^{-\lambda(1-\rho)t} + 2x_0 (1+2\rho) (1-\rho-x_0)^2 (\lambda(1-\rho)t) e^{-2\lambda(1-\rho)t} \\ &- ((1-\rho-x_0) [3\rho x_0^2 + (2+\rho) (1-\rho) x_0 - ((1+2\rho)) (1-\rho)^2] + \rho (1-\rho)^3) e^{-2\lambda(1-\rho)t} \\ &- (1+\rho) (1-\rho-x_0)^3 e^{-3\lambda(1-\rho)t} \Big) \Big/ \Big(x_0 + (1-\rho-x_0) e^{-\lambda(1-\rho)t} \Big)^4. \end{aligned}$$
Then, $\operatorname{Var}(X_t^{(N)}) \simeq v_t / N.$

ACEM∫

Simulation of the SL Model with $x_t \pm 2\sqrt{v_t/N}$

Simulation of the SL Model with Normal approximation

Phil. Pollett (UQ School of Maths and Physics)

52 / 55

CEM

If the initial point x_0 of the deterministic trajectory is chosen to be an equilibrium point of the deterministic model, we can be far more precise about the approximating diffusion.

If the initial point x_0 of the deterministic trajectory is chosen to be an equilibrium point of the deterministic model, we can be far more precise about the approximating diffusion.

Corollary If x_{eq} satisfies $F(x_{eq}) = 0$, then, under the conditions of the theorem, the family $\{(Z_t^{(N)})\}$, defined by

$$Z^{(N)}_s=\sqrt{N}(X^{(N)}_s-x_{
m eq}), \qquad 0\leq s\leq t, \qquad s\in [0,t].$$

converges weakly in D[0, t] to an *Ornstein*-Uhlenbeck (OU) process (Z_t) with initial value $Z_0 = z$, local drift matrix $B = \nabla F(x_{eq})$ and local covariance matrix $G(x_{eq})$.

If the initial point x_0 of the deterministic trajectory is chosen to be an equilibrium point of the deterministic model, we can be far more precise about the approximating diffusion.

Corollary If x_{eq} satisfies $F(x_{eq}) = 0$, then, under the conditions of the theorem, the family $\{(Z_t^{(N)})\}$, defined by

$$Z^{(N)}_s=\sqrt{N}(X^{(N)}_s-x_{
m eq}), \qquad 0\leq s\leq t, \qquad s\in [0,t].$$

converges weakly in D[0, t] to an Ornstein-Uhlenbeck (OU) process (Z_t) with initial value $Z_0 = z$, local drift matrix $B = \nabla F(x_{eq})$ and local covariance matrix $G(x_{eq})$.

In particular, Z_s is normally distributed with mean and covariance given by $\mu_s:=\mathbb{E}(Z_s)=e^{Bs}z$ and

$$\Sigma_s := \operatorname{Cov}(Z_s) = \int_0^s e^{Bu} G(x_{eq}) e^{B^T u} \, du \, .$$

$$\Sigma_s = \int_0^s e^{Bu} G(x_{eq}) e^{B^T u} du = V_\infty - e^{Bs} V_\infty e^{B^T s},$$

where V_∞ , the stationary covariance matrix, satisfies

$$BV_{\infty} + V_{\infty}B^{T} + G(x_{eq}) = 0.$$

$$\Sigma_s = \int_0^s e^{Bu} G(x_{eq}) e^{B^T u} du = V_\infty - e^{Bs} V_\infty e^{B^T s},$$

where V_∞ , the stationary covariance matrix, satisfies

$$BV_{\infty} + V_{\infty}B^{T} + G(x_{eq}) = 0.$$

We conclude that, for N large, $X_t^{(N)}$ has an approximate normal distribution with $\operatorname{Cov}(X_t^{(N)}) \simeq \Sigma_t / N$.

$$\Sigma_s = \int_0^s e^{Bu} G(x_{eq}) e^{B^T u} du = V_\infty - e^{Bs} V_\infty e^{B^T s},$$

where V_∞ , the stationary covariance matrix, satisfies

$$BV_{\infty} + V_{\infty}B^{T} + G(x_{eq}) = 0.$$

We conclude that, for N large, $X_t^{(N)}$ has an approximate normal distribution with $\operatorname{Cov}(X_t^{(N)}) \simeq \Sigma_t / N$.

For the SL Model, $v_t := \operatorname{Var}(X_t^{(N)}) \simeq \rho(1 - e^{-2\lambda(1-\rho)t})/N.$

$$\Sigma_s = \int_0^s e^{Bu} G(x_{eq}) e^{B^T u} du = V_\infty - e^{Bs} V_\infty e^{B^T s},$$

where V_∞ , the stationary covariance matrix, satisfies

$$BV_{\infty} + V_{\infty}B^{T} + G(x_{eq}) = 0.$$

We conclude that, for N large, $X_t^{(N)}$ has an approximate normal distribution with $\operatorname{Cov}(X_t^{(N)}) \simeq \Sigma_t / N$.

For the SL Model, $v_t := \operatorname{Var}(X_t^{(N)}) \simeq \rho(1 - e^{-2\lambda(1-\rho)t})/N.$

Finally, this brings us "full circle" to the approximating SDE

$$dn_t = -\alpha(n_t - K) dt + \sqrt{2N\alpha\rho} dB_t,$$

where $\alpha = \lambda (1 - \rho)$.

Simulation of the SL Model with $x_{eq} \pm 2\sqrt{v_t/N}$ (OU Approximation)

CEM