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Davidson, J. (1938) On the growth of the sheep population in Tasmania. Trans. Roy. Soc.

Sth. Austral. 62, 342–346.
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A deterministic model

dn

dt
= nf (n).

The net growth rate per individual is a function of the population size n.

We want f (n) to be positive for small n and negative for large n.

Simply set
f (n) = r − sn to give

dn

dt
= n(r − sn).

This is the Verhulst model (or logistic model):

Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement. Corr. Math.

et Phys. X, 113–121.
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The Verhulst model

Pierre Francois Verhulst (1804–1849, Brussels, Belgium)
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The Verhulst model
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“We will give the name logistic to the curve” - Verhulst 1845

Verhulst, P.F. (1845) Recherches mathématiques sur la loi d’accroissement de la population.

Nouveaux mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles
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The Verhulst model

An alternative formulation has r being the growth rate with unlimited resources and K
being the “natural” population size (the carrying capacity). We put f (n) = r(1− n/K)
giving

dn

dt
= rn(1− n/K),

which is the original model with s = r/K .

Integration gives

nt =
K

1 +
(

K−n0
n0

)
e−rt

(t ≥ 0).

This formulation is due to Raymond Pearl:

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since

1790 and its mathematical representation. Proc. Nat. Academy Sci. 6, 275–288.

Pearl, R. (1925) The biology of population growth, Alfred A. Knopf, New York.

Pearl, R. (1927) The growth of populations. Quart. Rev. Biol. 2, 532–548.
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Population growth in USA

Pearl, R. and Reed, L. (1920) On the rate of growth of population of the United States since

1790 and its mathematical representation. Proc. Nat. Academy Sci. 6, 275–288.
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Verhulst-Pearl model

Raymond Pearl (1879–1940, Farmington, N.H., USA)
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Pearl was a “social drinker”

Pearl was widely known for his lust for life and his love of food, drink, music and parties.
He was a key member of the Saturday Night Club. Prohibition made no dent in Pearl’s
drinking habits (which were legendary).

In 1926, his book, Alcohol and Longevity, demonstrated that drinking alcohol in
moderation is associated with greater longevity than either abstaining or drinking heavily.

Pearl, R. (1926) Alcohol and Longevity , Alfred A. Knopf, New York.
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Verhulst-Pearl model
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Sheep in Tasmania
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(With the deterministic trajectory subtracted)
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - I should add some noise”

Zen Maxim (for survival in a modern university): Before you criticize someone, you should

walk a mile in their shoes. That way, when you criticize them, you’ll be a mile away and

you’ll have their shoes.
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Coin tossing (fair coin)
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Coin tossing (fair coin)

Let pt be the proportion of “Heads” after t tosses. Then,

pt =
1

2
+ something random.

In fact, the Central Limit Theorem, as applied to coin tossing (de Moivre ('1733)),
shows that, as t →∞,

2
√
t

(
pt −

1

2

)
D→ Z ∼ N(0, 1).

(STAT1201: the normal approximation to the binomial distribution.)

So, it would not be completely unreasonable for us to write

pt =
1

2
+

1

2
√
t
Z .
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A stochastic model

We really need to account for the variation observed.

A common approach to stochastic modelling in Applied Mathematics can be summarised
as follows:

“I suspect that the world is not deterministic - I should add some noise”

Zen Maxim (for survival in a modern university): Before you criticize someone, you should

walk a mile in their shoes. That way, when you criticize them, you’ll be a mile away and

you’ll have their shoes.

In our case,

nt =
K

1 +
(

K−n0
n0

)
e−rt

+ something random

or (much better)
dn

dt
= rn

(
1− n

K

)
+ σ × noise.
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Noise?

The usual model for “noise” is white noise (or pure Gaussian noise).

Imagine a random process (ξt , t ≥ 0) with ξt ∼ N(0, 1) for all t and ξt1 , . . . , ξtn
independent for all finite sequences of times t1, . . . , tn.

Phil. Pollett (UQ School of Maths and Physics) Populations Models: Part I 24 / 48



White noise
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Brownian motion

The white noise process (ξt , t ≥ 0) is loosely defined as the derivative of standard
Brownian motion (Bt , t ≥ 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +∆ or −∆ with equal probability
p = 1/2 after successive time steps of size h.
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Symmetric random walk: ∆ = 1
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Symmetric random walk: ∆ = 1
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Brownian motion

The white noise process (ξt , t ≥ 0) is loosely defined as the derivative of standard
Brownian motion (Bt , t ≥ 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +∆ or −∆ with equal probability
p = 1/2 after successive time steps of size h.

If ∆ ∼
√
h, as h→ 0, then the limit process is standard Brownian motion.
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Symmetric random walk: ∆ =
√
h
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Brownian motion

The white noise process (ξt , t ≥ 0) is loosely defined as the derivative of standard
Brownian motion (Bt , t ≥ 0).

Brownian motion (or Wiener process) can be constructed by way of a random walk. A
particle starts at 0 and takes small steps of size +∆ or −∆ with equal probability
p = 1/2 after successive time steps of size h.

If ∆ ∼
√
h, as h→ 0, then the limit process is standard Brownian motion.

This construction permits us to write dBt = ξt
√
dt, with the interpretation that a change

in Bt in time dt is a Gaussian random variable with E(dBt) = 0, Var(dBt) = dt and
Cov(dBt , dBs) = 0 (s 6= t).

[Recall that ξt ∼ N(0, 1) for all t and ξt1 , . . . , ξtn independent for all finite sequences of
times t1, . . . , tn.]
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Brownian motion

This construction permits us to write dBt = ξt
√
dt, with the interpretation that a change

in Bt in time dt is a Gaussian random variable with E(dBt) = 0, Var(dBt) = dt and
Cov(dBt , dBs) = 0 (s 6= t).

The correct (modern) interpretation is by way of the Itô integral:

Bt =
∫ t

0
dBs =

∫ t

0
ξs ds.

General Brownian motion (Wt , t ≥ 0), with drift µ and variance σ2, can be constructed

in the same way but with ∆ ∼ σ
√
h and p = 1

2

(
1 + (µ/σ)

√
h
)

, and we may write

dWt = µ dt + σ dBt ,

with the interpretation that a change in Wt in time dt is a Gaussian random variable with
E(dWt) = µdt, Var(dWt) = σ2dt and Cov(dWt , dWs) = 0.
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Brownian motion

dWt = µ dt + σ dBt ,

This stochastic differential equation (SDE) can be integrated to give Wt = µt + σBt .

It does not require an enormous leap of faith for us now to write down, and properly
interpret, the SDE

dnt = rnt (1− nt/K) dt + σdBt

as a model for growth.
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Adding noise

The idea (indeed the very idea of an SDE) can be traced back to Paul Langevin’s 1908
paper “On the theory of Brownian Motion”:

Langevin, P. (1908) Sur la théorie du mouvement brownien. Comptes Rendus 146, 530–533.

He derived a “dynamic theory” of Brownian Motion three years after Einstein’s ground
breaking paper on Brownian Motion:

Einstein, A. (1905) On the movement of small particles suspended in stationary liquids required

by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560. [English translation by Anna

Beck in The Collected Papers of Albert Einstein, Princeton University Press, Princeton, USA,

1989, Vol. 2, pp. 123–134.]
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Langevin

Langevin introduced a “stochastic force” (his phrase “complementary
force”–complimenting the viscous drag µ) pushing the Brownian particle around in
velocity space (Einstein worked in configuration space).

In modern terminology, Langevin described the Brownian particle’s velocity as an
Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity,
while Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt .

This is Newton’s law (−µv = Force = mv̇) plus noise. The solution to this SDE is the
OU process.
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Ornstein-Uhlenbeck (OU) process and its position as the time integral of its velocity,
while Einstein described its position as a Wiener process.

The Langevin equation (for a particle of unit mass) is

dvt = −µvt dt + σdBt .

This is Newton’s law (−µv = Force = mv̇) plus noise. The solution to this SDE is the
OU process.
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Langevin

Paul Langevin (1872 – 1946, Paris, France)
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Langevin

Einstein said of Langevin

“... It seems to me certain that he would have developed the special theory of relativity if
that had not been done elsewhere, for he had clearly recognized the essential points.”
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Langevin was a dark horse

In 1910 he had an affair with Marie Curie.

The person on the right is Langevin’s PhD supervisor Pierre Curie.
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Solution to Langevin’s equation

To solve dvt = −µvt dt + σdBt , consider the process yt = vte
µt .

Differentiation (Itô
calculus!) gives dyt = eµtdvt + µeµtvtdt.

But, from Langevin’s equation we have that

eµtdvt = −µeµtvt dt + σeµtdBt ,

and hence that dyt = σeµtdBt . Integration gives

yt = y0 +
∫ t

0
σeµsdBs ,

and so (the Ornstein-Uhlenbeck process)

vt = v0e
−µt +

∫ t

0
σe−µ(t−s)dBs .

We can deduce much from this. For example, vt is a Gaussian process with

E(vt) = v0e
−µt and Var(vt) = σ2

2µ
(1− e−2µt), and

Cov(vt , vt+s) = Var(vt)e
−µ|s|.
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Where were we?

We had just added noise to our logistic model:

dnt = rnt
(

1− nt
K

)
dt + σ dBt .

A simple numerical method for solving SDEs like this is the Euler-Maruyama method .

In Matlab . . .

n = n + r*n*(1-n/K)*h + sigma*sqrt(h)*randn;
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Sheep in Tasmania
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nt = 1670/(1 + e240.81−0.13125 t )
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Solution to SDE (Run 1)
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Solution to SDE (one sample path)

dnt = rnt

(
1 − nt

K

)
dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 2)

1820 1840 1860 1880 1900 1920 1940
0

500

1000

1500

2000

t

n
t

Solution to SDE (one sample path)

dnt = rnt

(
1 − nt

K

)
dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 3)
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Solution to SDE (Run 4)
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Solution to SDE (one sample path)

dnt = rnt
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dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Solution to SDE (Run 5)
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(Solution to the deterministic model is in green)
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Solution to SDE
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Mean path of SDE solution with ± 2 standard deviations (1000 runs)

dnt = rnt

(
1 − nt

K

)
dt + σdBt

K = 1670, r = 0.13125, σ = 90

n0 = 73, t0 = 1818

(Solution to the deterministic model is in green)
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Logistic model with noise

A significant problem with this approach (deterministic dynamics plus noise) is that
variation is not, but should be, an integral component of the dynamics.

Arguably a better approach is to use a continuous-time Markov chain to model nt .

This will be dealt with in Part II or, if you prefer, STAT3004 “Probability Models &
Stochastic Processes”.
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