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Transition functions

State-space. S = {0, 1, . . . }

Transition functions. A set of real-valued functions
P (·) = (pij(·), i, j ∈ S) defined on (0,∞) is called a
transition function (or simply process) if

• pij(t) ≥ 0,
∑

j pij(t) ≤ 1, and

• pij(s+ t) =
∑

k pik(s)pkj(t). [Chapman-Kolmogorov]

It is called standard if
• limt↓0 pij(t) = δij

and honest if
•
∑

j pij(t) = 1, for some (and then for all) t > 0.
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The q-matrix

For a standard process P , the right-hand derivative
p ′

ij(0+) = qij exists and defines a q-matrix Q = (qij , i, j ∈ S).
Its entries satisfy

• 0 ≤ qij <∞, j 6= i, and
•
∑

j 6=i qij ≤ −qii ≤ ∞.

We set qi = −qii, i ∈ S.

Suppose that Q is given. Assume that Q is stable, that is
qi <∞ for all i in S. A standard process P will then be called
a Q-process if its q-matrix is Q.
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The Kolmogorov DEs

For simplicity, we assume Q is conservative, that is
∑

j 6=i qij = qi, i ∈ S.

Under this condition, every Q-process P satisfies the
backward equations,

BEij p ′
ij(t) =

∑

k qikpkj(t), t > 0,

but might not satisfy the forward equations,

FEij p ′
ij(t) =

∑

k pik(t)qkj , t > 0.
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Stationary distributions

A collection of positive numbers π = (πj , j ∈ S) is a
stationary distribution if

∑

j πj = 1 and

∑

i πipij(t) = πj , j ∈ S. (1)

Recipe. Find a collection of strictly positive numbers
m = (mj , j ∈ S) such that

∑

imiqij = 0.

Such an m is called an invariant measure for Q. If
∑

imi <∞, we set πj = mj/
∑

imi and hope π satisfies (1).
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Birth-death processes

Transition rates.

qi,i+1 = λi (↑ - birth rates)
qi,i−1 = µi (↓ - death rates) (µ0 = 0)

Solve
∑

i≥0miqij = 0, j ≥ 0, that is, −m0λ0 +m1µ1 = 0, and,

mj−1λj−1 −mj(λj + µj) +mj+1µj+1 = 0, j ≥ 1.

Solution. m0 = 1 and

mj =
∏j

i=1
λi−1

µi
, j ≥ 1.
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Miller’s example

Transition rates. Fix r > 0 and set

λi = r2i, i ≥ 0,

µi = r2i−1, i ≥ 1.

Solution. m0 = 1 and

mj =
∏j

i=1
λi−1

µi
, j ≥ 1.

So, mj = ρj , where ρ = 1/r, and hence if r > 1,

πj = (1 − ρ)ρj , j ≥ 0.
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Simulation
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Birth−death process simulation (minimal): λ
i
=22i, µ

i
=22i−1, x(0)=1

t

x(
t)
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What is going wrong?

Transition rates.

λj = r2j , j ≥ 0,

µj = r2j−1, j ≥ 1.

The relative proportion of births to deaths is rand so, if r > 1,
the “process” is clearly transient.

In fact, the “process” is explosive. (Q is not regular.)R.G.
Miller∗ showed that Q needs to be regular for the recipe to
work.

∗Miller, R.G. Jr. (1963) Stationary equations in continuous time Markov chains. Trans.
Amer. Math. Soc. 109, 35–44.
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Motivating question

If Q is regular, then there exists uniquely a Q-process, namely
the minimal process: the minimal solution F (·) = (fij(·),
i, j ∈ S) to BEij .

If Q is not regular, then there are infinitely many Q-processes,
infinitely many of which are honest.

Question.Suppose that there exists a collection of strictly
positive numbers π = (πj , j ∈ S) such that

∑

i πi = 1 and
∑

i πiqij = 0.

Does π admit an interpretation as a stationary distribution for
any of these processes?
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Simulation
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An invariance result

Let m = (mi, i ∈ S) be a collection of strictly positive
numbers.

We call m a subinvariant measure for Q if
∑

imiqij ≤ 0, and an invariant measure for Q if
∑

imiqij = 0.
It is called an invariant measure for P if

∑

imipij(t) = mj .

Theorem. Let P be an arbitrary Q-process. If m is invariant
for P , then m is subinvariant for Q, and invariant for Q
if and only if P satisfies the forward equations FEij over S.

Corollary. If m is invariant for the minimal process F , then m
is invariant for Q.
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Corollary. If m is invariant for the minimal process F , then m
is invariant for Q.
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A construction problem

Suppose that Q is a stable and conservative q-matrix, and
that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is
invariant?

Problem 2. Does there exist an honest Q-process for
which m is invariant?

Problem 3. When such a Q-process exists, is it unique?

Problem 4. In the case of non-uniqueness, can one identify
all Q-processes (or perhaps all honest Q-processes) for
which m is invariant?
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The resolvent

Let P be a transition function.

If we write

ψij(λ) =
∫∞
0 e−λtpij(t)dt, λ > 0,

for the Laplace transform of pij(·), then Ψ(·) = (ψij(·), i, j ∈ S)

enjoys the following properties:
• ψij(λ) ≥ 0,

∑

j λψij(λ) ≤ 1, and

• ψij(λ) − ψij(µ) + (λ− µ)
∑

k ψik(λ)ψkj(µ) = 0.

Ψ is called the resolvent of P .Indeed, if Ψ is a given resolvent,
in that it satisfies these properties, then there exists a
standard (!) process P with Ψ as its resolvent∗.

∗Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z.
Wahrscheinlichkeitstheorie 9, 16–19.

MASCOS Workshop on Markov chains, April 2005 - Page 16



The resolvent

Let P be a transition function. If we write

ψij(λ) =
∫∞
0 e−λtpij(t)dt, λ > 0,

for the Laplace transform of pij(·), then Ψ(·) = (ψij(·), i, j ∈ S)

enjoys the following properties:
• ψij(λ) ≥ 0,

∑

j λψij(λ) ≤ 1, and

• ψij(λ) − ψij(µ) + (λ− µ)
∑

k ψik(λ)ψkj(µ) = 0.

Ψ is called the resolvent of P .Indeed, if Ψ is a given resolvent,
in that it satisfies these properties, then there exists a
standard (!) process P with Ψ as its resolvent∗.

∗Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z.
Wahrscheinlichkeitstheorie 9, 16–19.

MASCOS Workshop on Markov chains, April 2005 - Page 16



The resolvent

Let P be a transition function. If we write

ψij(λ) =
∫∞
0 e−λtpij(t)dt, λ > 0,

for the Laplace transform of pij(·), then Ψ(·) = (ψij(·), i, j ∈ S)

enjoys the following properties:
• ψij(λ) ≥ 0,

∑

j λψij(λ) ≤ 1, and

• ψij(λ) − ψij(µ) + (λ− µ)
∑

k ψik(λ)ψkj(µ) = 0.

Ψ is called the resolvent of P .

Indeed, if Ψ is a given resolvent,
in that it satisfies these properties, then there exists a
standard (!) process P with Ψ as its resolvent∗.

∗Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z.
Wahrscheinlichkeitstheorie 9, 16–19.

MASCOS Workshop on Markov chains, April 2005 - Page 16



The resolvent

Let P be a transition function. If we write

ψij(λ) =
∫∞
0 e−λtpij(t)dt, λ > 0,

for the Laplace transform of pij(·), then Ψ(·) = (ψij(·), i, j ∈ S)

enjoys the following properties:
• ψij(λ) ≥ 0,

∑

j λψij(λ) ≤ 1, and

• ψij(λ) − ψij(µ) + (λ− µ)
∑

k ψik(λ)ψkj(µ) = 0.

Ψ is called the resolvent of P . Indeed, if Ψ is a given
resolvent, in that it satisfies these properties, then there exists
a standard (!) process P with Ψ as its resolvent∗.

∗Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z.
Wahrscheinlichkeitstheorie 9, 16–19.

MASCOS Workshop on Markov chains, April 2005 - Page 16



Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q, and
a resolvent Ψ satisfying the backward equations,

λψij(λ) = δij +
∑

k qikψkj(λ), λ > 0,

then Ψ determines a standard Q-process:

as λ→ ∞,

• λψij(λ) → δij , and
• λ(λψij(λ) − δij) → qij .

One can also use the resolvent to determine whether or not
the Q-process is honest.This happens if and only if

∑

j λψij(λ) = 1, i ∈ S, λ > 0.
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Identifying invariant measures

Theorem. Let P be an arbitrary process and let Ψ be its
resolvent.

Then, m is invariant for P if and only if it is invariant
for Ψ, that is,

∑

imipij(t) = mj

if and only if
∑

imiλψij(λ) = mj .
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Steps to identifying P

Steps to identifying a Q-process (an honest Q-process) for
which a given m is invariant:

• ψij(λ) ≥ 0,
∑

j λψij(λ) ≤ 1, and
ψij(λ) − ψij(µ) + (λ− µ)

∑

k ψik(λ)ψkj(µ) = 0.

• λψij(λ) = δij +
∑

k qikψkj(λ), λ > 0.
• (
∑

j λψij(λ) = 1, i ∈ S, λ > 0.)

•
∑

imiλψij(λ) = mj .
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Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and
suppose that m is a subinvariant measure for Q.

Let
Φ(·) = (φij(·), i, j ∈ S) be the resolvent of the minimal
Q-processand define z(·) = (zi(·), i ∈ S) and
d(·) = (di(·), i ∈ S) by

zi(λ) = 1 −
∑

j λφij(λ),
and

di(λ) = mi −
∑

j mjλφji(λ).

Then, if d = 0, m is invariant for the minimal Q-process.
Otherwise, if

∑

i di(λ) ≤
∑

imizi(λ) <∞, for all λ > 0, there
exists a Q-process P for which m is invariant.
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Existence of a Q-process

Theorem continued. The resolvent of one such process is
given by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ
∑

k mkzk(λ)
, (2)

and this is honest if and only if
∑

i di(λ) =
∑

imizi(λ), for all
λ > 0.A sufficient condition for there to exist an honest
Q-process for which m is invariant is that m satisfies
∑

j mj(1 − λφjj(λ)) <∞, for all λ > 0.

Corollary. If m is a subinvariant probability distribution for Q,
then there exists an honest Q-process with stationary
distribution m. The resolvent of one such process is given
by (2).
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The single-exit case

Suppose that Q is a single-exit q-matrix

, that is, the space of
bounded, non-negative vectors ξ = (ξi, i ∈ S) which satisfy

∑

j qijξj = αξi, α > 0,

has dimension 1.(The minimal process has only one available
“escape route” to infinity.)Then, the condition

∑

i di(λ) ≤
∑

imizi(λ) <∞

is necessary for the existence of a Q-process for which the
specified measure is invariant;the Q-process is then
determined uniquely by

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

λ k mkzk(λ) .
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Non-uniqueness
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Non-uniqueness

Consider a pure-birth process with strictly positive birth rates
(qi, i ≥ 0), but imagine that we have two distinct sets of birth
rates, (q

(0)
i , i ≥ 0) and (q

(1)
i , i ≥ 0), which satisfy

∑∞
i=0 1/q

(r)
i <∞, r = 0, 1.

Let S = {0, 1} × {0, 1, . . . } and define
Q = (qxy, x, y ∈ S) by

q(r,i)(s,j) =











q
(r)
i , ifj = i+ 1 and s = r,

−q
(r)
i , ifj = i and s = r,

0, otherwise,

for r = 0, 1 and i ≥ 0.The measure m = (mx, x ∈ S), given by
m(r,i) = 1/q

(r)
i , r = 0, 1, i ≥ 0, is subinvariant for Q.

MASCOS Workshop on Markov chains, April 2005 - Page 24



Non-uniqueness

Consider a pure-birth process with strictly positive birth rates
(qi, i ≥ 0), but imagine that we have two distinct sets of birth
rates, (q

(0)
i , i ≥ 0) and (q

(1)
i , i ≥ 0), which satisfy

∑∞
i=0 1/q

(r)
i <∞, r = 0, 1. Let S = {0, 1} × {0, 1, . . . } and define

Q = (qxy, x, y ∈ S) by

q(r,i)(s,j) =











q
(r)
i , ifj = i+ 1 and s = r,

−q
(r)
i , ifj = i and s = r,

0, otherwise,

for r = 0, 1 and i ≥ 0.

The measure m = (mx, x ∈ S), given by
m(r,i) = 1/q

(r)
i , r = 0, 1, i ≥ 0, is subinvariant for Q.

MASCOS Workshop on Markov chains, April 2005 - Page 24



Non-uniqueness

Consider a pure-birth process with strictly positive birth rates
(qi, i ≥ 0), but imagine that we have two distinct sets of birth
rates, (q

(0)
i , i ≥ 0) and (q

(1)
i , i ≥ 0), which satisfy

∑∞
i=0 1/q

(r)
i <∞, r = 0, 1. Let S = {0, 1} × {0, 1, . . . } and define

Q = (qxy, x, y ∈ S) by

q(r,i)(s,j) =











q
(r)
i , ifj = i+ 1 and s = r,

−q
(r)
i , ifj = i and s = r,

0, otherwise,

for r = 0, 1 and i ≥ 0. The measure m = (mx, x ∈ S), given by
m(r,i) = 1/q

(r)
i , r = 0, 1, i ≥ 0, is subinvariant for Q.

MASCOS Workshop on Markov chains, April 2005 - Page 24



Non-uniqueness
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Non-uniqueness

The resolvents of two distinct Q-processes for which m is
invariant are given by

ψ(r,i)(s,j)(λ) = δrsφ
(r)
ij (λ) +

z
(r)
i (λ)φ

(s)
0j (λ)

2−{z
(0)
0 (λ)+z

(1)
0 (λ)}

and

ψ(r,i)(s,j)(λ) =
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Non-uniqueness

Interpretation.

The first process chooses between (0, 0) and (1, 0) with equal
probability as the starting point following an explosion, no
matter which was the most recently traversed path.

The second process traverses alternate paths following
successive explosions.
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The reversible case

Suppose that Q is symmetrically reversible with respect to m

,
that is, miqij = mjqji, i, j ∈ S.Then, di(λ) = mizi(λ), and so we
arrive at the following corollary∗.

Corollary. If Q is reversible with respect to m, then there
exists uniquely a Q-function P for which m is invariant
if and only if

∑

j mjzj(λ) <∞, for all λ > 0.It is honest and its
resolvent is given by

ψij(λ) = φij(λ) +
zi(λ)mjzj(λ)

λ k∈S mkzk(λ) .

Moreover, P is reversible with respect to m in that
mipij(t) = mjpji(t) (or, equivalently, miψij(λ) = mjψji(λ)).
∗Hou Chen-Ting and Chen Mufa (1980) Markov processes and field theory. Kexue.
Tongbao 25, 807–811.
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Birth-death processes

Suppose that the birth rates (λi, i ≥ 0) and death rates
(µi, i ≥ 1) are strictly positive.

Q is then regular if and only if

∑∞
i=0

1
λimi

∑i
j=0mj = ∞. (3)

Proposition. Let m = (mi, i ∈ S) be the essentially unique
invariant measure for Q.

• m is invariant for the minimal Q-process if and only if (3)
holds.

• When (3) fails, there exists uniquely a Q-process P for
which m is invariant if and only if m is finite, in which
case P is the unique, honest Q-process which satisfies
FEij ; P is positive recurrent and its stationary distribution
is obtained by normalizing m.
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µ-Invariance

Suppose that S = {0} ∪ C, where 0 is an absorbing state
and C is irreducible (for F ).

Let µ ≥ 0.A collection
m = (mi, i ∈ C) of strictly positive numbers is called a
µ-subinvariant measure for Q if

∑

i∈C miqij ≤ −µmj , j ∈ C,

and a µ-invariant measure for Q if
∑

i∈C miqij = −µmj , j ∈ C.

It is called a µ-invariant measure for P , where P is any
transition function, if

∑

i∈C mipij(t) = e−µtmj , j ∈ C.
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Quasi-stationary distributions

Proposition. A probability distribution π = (πi, i ∈ C) is a
µ-invariant measure for some µ > 0, that is,

∑

i∈C

πipij(t) = e−µtπj , j ∈ C,

if and only if it is a quasi-stationary distribution

: for j ∈ C,

pj(t) =
∑

i∈C

mipij(t) ⇒
pj(t)

∑

k∈C pk(t)
= mj .
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µ-invariance for F

Theorem. If m is µ-invariant for P , then m is µ-subinvariant
for Q

, and µ-invariant for Q if and only if P satisfies the
forward equations over C.For example, if m is µ-invariant for
the minimal process, then it is µ-invariant for Q.

Theorem. If m is µ-invariant for Q, then it is µ-invariant for F
if and only if the equations

∑

i∈C yiqij = −νyj , 0 ≤ yi ≤ mi,
i ∈ C, have no non-trivial solution for some (and then all)
ν < µ.

Theorem. If m is a finite µ-invariant measure for Q, then

µ
∑

i∈C mia
F
i ≤

∑

i∈C miqi0, (4)

where aF
i = limt→∞ fi0(t), and m is µ-invariant for F

if and only if equality holds in (4).
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Q-processes with a given m

Theorem. (Existence) Let µ > 0 and suppose that Q admits a
finite µ-subinvariant measure m on C.
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Q-processes with a given m

Theorem. (Existence) Let µ > 0 and suppose that Q admits a
finite µ-subinvariant measure m on C.

1. If the minimal Q-process F is honest, then m is a
µ-invariant measure on C for F if and only if

∑

i∈C

miqi0 = µ
∑

i∈C

mi,

in which case m is µ-invariant for Q.
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finite µ-subinvariant measure m on C.

1. If the minimal Q-process F is honest, then m is a
µ-invariant measure on C for F if and only if

∑

i∈C

miqi0 = µ
∑

i∈C

mi,

in which case m is µ-invariant for Q.

2. If F is dishonest, then there exists a Q-process P for
which m is µ-invariant on C if and only if

∑

i∈C

miqi0 ≤ µ
∑

i∈C

mi.
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Q-processes with a given m

Theorem continued.

The resolvent Ψ of one such Q-process for which m is
µ-invariant has the form

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

(λ+ µ)
∑

k∈C mkzk(λ)
, i, j ∈ S,

where dj(λ) = mj −
∑

i∈C mi(λ+ µ)φij(λ), j ∈ C,

d0(λ) = e/λ−
∑

i∈C

mi(λ+ µ)φi0(λ),

and e satisfies
∑

i∈C miqi0 ≤ e ≤ µ
∑

i∈C mi.
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Q-processes with a given m

Theorem. (Uniqueness) Let µ > 0 and suppose that Q admits
a finite µ-subinvariant measure m on C.
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Theorem. (Uniqueness) Let µ > 0 and suppose that Q admits
a finite µ-subinvariant measure m on C.

1. If m is µ-invariant for the minimal Q-process F , which is
true if and only if µ

∑

i∈C mia
F
i =

∑

i∈C miqi0, then it is the
unique Q-process for which m is µ-invariant on C. When
this condition holds, m is µ-invariant on C for Q.
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unique Q-process for which m is µ-invariant on C. When
this condition holds, m is µ-invariant on C for Q.

2. If m is not µ-invariant for the minimal Q-process, there
exists uniquely a Q-process for which m is µ-invariant
only if

∑

i∈C

miqi0 ≤ µ
∑

i∈C

mi.
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only if

∑

i∈C

miqi0 ≤ µ
∑

i∈C

mi. (5)

3. If Q is single-exit, there exists uniquely Q-process for
which m is µ-invariant if and only if (5) holds.
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Q-processes with a given m

Theorem continued. If If Q is single-exit, and
∑

i∈C miqi0 ≤ µ
∑

i∈C mi then all Q-processes for which m is
µ-invariant can be constructed using

ψij(λ) = φij(λ) +
zi(λ)dj(λ)

(λ+µ)

�

k∈C mkzk(λ) , i, j ∈ S,

where dj(λ) = mj −
∑

i∈C mi(λ+ µ)φij(λ), j ∈ C,

d0(λ) = e/λ−
∑

i∈C mi(λ+ µ)φi0(λ),

by varying e in the range
∑

i∈C miqi0 ≤ e ≤ µ
∑

i∈C mi.

Exactly
one of these is honest: obtained by
setting e = µ

∑

i∈C mi.And, exactly one satisfies the forward
equations FEi0 over i ∈ C: obtained by setting e =

∑

i∈C miqi0.
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