Which Markov chains have a given invariant measure?

Phil Pollett

Discipline of Mathematics and MASCOS
University of Queensland

AUSTRALIAN RESEARCH COUNCIL
Centre of Excellence for Mathematics and Statistics of Complex Systems

Fun at the Water Park

Transition functions

State-space. $S=\{0,1, \ldots\}$

Transition functions

State-space. $S=\{0,1, \ldots\}$
Transition functions. A set of real-valued functions $P(\cdot)=\left(p_{i j}(\cdot), i, j \in S\right)$ defined on $(0, \infty)$ is called a transition function (or simply process) if

- $p_{i j}(t) \geq 0, \sum_{j} p_{i j}(t) \leq 1$, and
- $p_{i j}(s+t)=\sum_{k} p_{i k}(s) p_{k j}(t)$. [Chapman-Kolmogorov]

Transition functions

State-space. $S=\{0,1, \ldots\}$
Transition functions. A set of real-valued functions $P(\cdot)=\left(p_{i j}(\cdot), i, j \in S\right)$ defined on $(0, \infty)$ is called a transition function (or simply process) if

- $p_{i j}(t) \geq 0, \sum_{j} p_{i j}(t) \leq 1$, and
- $p_{i j}(s+t)=\sum_{k} p_{i k}(s) p_{k j}(t)$. [Chapman-Kolmogorov]

It is called standard if

- $\lim _{t \downarrow 0} p_{i j}(t)=\delta_{i j}$

Transition functions

State-space. $S=\{0,1, \ldots\}$
Transition functions. A set of real-valued functions $P(\cdot)=\left(p_{i j}(\cdot), i, j \in S\right)$ defined on $(0, \infty)$ is called a transition function (or simply process) if

- $p_{i j}(t) \geq 0, \sum_{j} p_{i j}(t) \leq 1$, and
- $p_{i j}(s+t)=\sum_{k} p_{i k}(s) p_{k j}(t)$. [Chapman-Kolmogorov]

It is called standard if

- $\lim _{t \downarrow 0} p_{i j}(t)=\delta_{i j}$
and honest if
- $\sum_{j} p_{i j}(t)=1$, for some (and then for all) $t>0$.

The q-matrix

For a standard process P, the right-hand derivative $p_{i j}^{\prime}(0+)=q_{i j}$ exists and defines a q-matrix $Q=\left(q_{i j}, i, j \in S\right)$.
Its entries satisfy

- $0 \leq q_{i j}<\infty, j \neq i$, and
- $\sum_{j \neq i} q_{i j} \leq-q_{i i} \leq \infty$.

The q-matrix

For a standard process P, the right-hand derivative $p_{i j}^{\prime}(0+)=q_{i j}$ exists and defines a q-matrix $Q=\left(q_{i j}, i, j \in S\right)$.
Its entries satisfy

- $0 \leq q_{i j}<\infty, j \neq i$, and
- $\sum_{j \neq i} q_{i j} \leq-q_{i i} \leq \infty$.

We set $q_{i}=-q_{i i}, i \in S$.

The q-matrix

For a standard process P, the right-hand derivative $p_{i j}^{\prime}(0+)=q_{i j}$ exists and defines a q-matrix $Q=\left(q_{i j}, i, j \in S\right)$.
Its entries satisfy

- $0 \leq q_{i j}<\infty, j \neq i$, and
- $\sum_{j \neq i} q_{i j} \leq-q_{i i} \leq \infty$.

We set $q_{i}=-q_{i i}, i \in S$.
Suppose that Q is given.

The q-matrix

For a standard process P, the right-hand derivative $p_{i j}^{\prime}(0+)=q_{i j}$ exists and defines a q-matrix $Q=\left(q_{i j}, i, j \in S\right)$.
Its entries satisfy

- $0 \leq q_{i j}<\infty, j \neq i$, and
- $\sum_{j \neq i} q_{i j} \leq-q_{i i} \leq \infty$.

We set $q_{i}=-q_{i i}, i \in S$.
Suppose that Q is given. Assume that Q is stable, that is $q_{i}<\infty$ for all i in S.

The q-matrix

For a standard process P, the right-hand derivative $p_{i j}^{\prime}(0+)=q_{i j}$ exists and defines a q-matrix $Q=\left(q_{i j}, i, j \in S\right)$.
Its entries satisfy

- $0 \leq q_{i j}<\infty, j \neq i$, and
- $\sum_{j \neq i} q_{i j} \leq-q_{i i} \leq \infty$.

We set $q_{i}=-q_{i i}, i \in S$.
Suppose that Q is given. Assume that Q is stable, that is $q_{i}<\infty$ for all i in S. A standard process P will then be called a Q-process if its q-matrix is Q.

The Kolmogorov DEs

For simplicity, we assume Q is conservative, that is

$$
\sum_{j \neq i} q_{i j}=q_{i}, \quad i \in S .
$$

The Kolmogorov DEs

For simplicity, we assume Q is conservative, that is

$$
\sum_{j \neq i} q_{i j}=q_{i}, \quad i \in S
$$

Under this condition, every Q-process P satisfies the backward equations,

$$
\mathrm{BE}_{i j} \quad p_{i j}^{\prime}(t)=\sum_{k} q_{i k} p_{k j}(t), \quad t>0,
$$

The Kolmogorov DEs

For simplicity, we assume Q is conservative, that is

$$
\sum_{j \neq i} q_{i j}=q_{i}, \quad i \in S
$$

Under this condition, every Q-process P satisfies the backward equations,

$$
\mathrm{BE}_{i j} \quad p_{i j}^{\prime}(t)=\sum_{k} q_{i k} p_{k j}(t), \quad t>0,
$$

but might not satisfy the forward equations,

$$
\mathrm{FE}_{i j} \quad p_{i j}^{\prime}(t)=\sum_{k} p_{i k}(t) q_{k j}, \quad t>0
$$

Stationary distributions

A collection of positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ is a stationary distribution if $\sum_{j} \pi_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \pi_{i} p_{i j}(t)=\pi_{j}, \quad j \in S \tag{1}
\end{equation*}
$$

Stationary distributions

A collection of positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ is a stationary distribution if $\sum_{j} \pi_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \pi_{i} p_{i j}(t)=\pi_{j}, \quad j \in S \tag{1}
\end{equation*}
$$

Recipe for finding a stationary distribution!

Stationary distributions

A collection of positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ is a stationary distribution if $\sum_{j} \pi_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \pi_{i} p_{i j}(t)=\pi_{j}, \quad j \in S . \tag{1}
\end{equation*}
$$

Recipe. Find a collection of strictly positive numbers $m=\left(m_{j}, j \in S\right)$ such that

$$
\sum_{i} m_{i} q_{i j}=0
$$

Stationary distributions

A collection of positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ is a stationary distribution if $\sum_{j} \pi_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \pi_{i} p_{i j}(t)=\pi_{j}, \quad j \in S \tag{1}
\end{equation*}
$$

Recipe. Find a collection of strictly positive numbers $m=\left(m_{j}, j \in S\right)$ such that

$$
\sum_{i} m_{i} q_{i j}=0
$$

Such an m is called an invariant measure for Q.

Stationary distributions

A collection of positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ is a stationary distribution if $\sum_{j} \pi_{j}=1$ and

$$
\begin{equation*}
\sum_{i} \pi_{i} p_{i j}(t)=\pi_{j}, \quad j \in S . \tag{1}
\end{equation*}
$$

Recipe. Find a collection of strictly positive numbers $m=\left(m_{j}, j \in S\right)$ such that

$$
\sum_{i} m_{i} q_{i j}=0
$$

Such an m is called an invariant measure for Q. If $\sum_{i} m_{i}<\infty$, we set $\pi_{j}=m_{j} / \sum_{i} m_{i}$ and hope π satisfies (1).

Birth-death processes

Transition rates.

$$
\begin{array}{ll}
q_{i, i+1}=\lambda_{i} & (\uparrow-\text { birth rates }) \\
q_{i, i-1}=\mu_{i} & (\downarrow-\text { death rates }) \quad\left(\mu_{0}=0\right)
\end{array}
$$

Birth-death processes

Transition rates.

$$
\begin{array}{ll}
q_{i, i+1}=\lambda_{i} & (\uparrow-\text { birth rates }) \\
q_{i, i-1}=\mu_{i} & (\downarrow-\text { death rates })\left(\mu_{0}=0\right)
\end{array}
$$

Solve $\sum_{i \geq 0} m_{i} q_{i j}=0, j \geq 0$

Birth-death processes

Transition rates.

$$
\left.\begin{array}{rl}
q_{i, i+1} & =\lambda_{i} \\
q_{i, i-1} & =\mu_{i}
\end{array} \quad(\downarrow-\text { death rates }) \quad \text { rates }\right) \quad\left(\mu_{0}=0\right)
$$

Solve $\sum_{i \geq 0} m_{i} q_{i j}=0, j \geq 0$, that is, $-m_{0} \lambda_{0}+m_{1} \mu_{1}=0$, and,

$$
m_{j-1} \lambda_{j-1}-m_{j}\left(\lambda_{j}+\mu_{j}\right)+m_{j+1} \mu_{j+1}=0, \quad j \geq 1
$$

Birth-death processes

Transition rates.

$$
\begin{array}{ll}
q_{i, i+1}=\lambda_{i} & (\uparrow-\text { birth rates }) \\
q_{i, i-1}=\mu_{i} & (\downarrow-\text { death rates }) \quad\left(\mu_{0}=0\right)
\end{array}
$$

Solve $\sum_{i \geq 0} m_{i} q_{i j}=0, j \geq 0$, that is, $-m_{0} \lambda_{0}+m_{1} \mu_{1}=0$, and,

$$
m_{j-1} \lambda_{j-1}-m_{j}\left(\lambda_{j}+\mu_{j}\right)+m_{j+1} \mu_{j+1}=0, \quad j \geq 1
$$

Solution. $m_{0}=1$ and

$$
m_{j}=\prod_{i=1}^{j} \frac{\lambda_{i-1}}{\mu_{i}}, \quad j \geq 1
$$

Miller's example

Transition rates. Fix $r>0$ and set

$$
\begin{gathered}
\lambda_{i}=r^{2 i}, \quad i \geq 0 \\
\mu_{i}=r^{2 i-1}, \quad i \geq 1
\end{gathered}
$$

Miller's example

Transition rates. Fix $r>0$ and set

$$
\begin{gathered}
\lambda_{i}=r^{2 i}, \quad i \geq 0 \\
\mu_{i}=r^{2 i-1}, \quad i \geq 1
\end{gathered}
$$

Solution. $m_{0}=1$ and

$$
m_{j}=\prod_{i=1}^{j} \frac{\lambda_{i-1}}{\mu_{i}}, \quad j \geq 1 .
$$

Miller's example

Transition rates. Fix $r>0$ and set

$$
\begin{gathered}
\lambda_{i}=r^{2 i}, \quad i \geq 0 \\
\mu_{i}=r^{2 i-1}, \quad i \geq 1
\end{gathered}
$$

Solution. $m_{0}=1$ and

$$
m_{j}=\prod_{i=1}^{j} \frac{\lambda_{i-1}}{\mu_{i}}, \quad j \geq 1
$$

So, $m_{j}=\rho^{j}$, where $\rho=1 / r$

Miller's example

Transition rates. Fix $r>0$ and set

$$
\begin{gathered}
\lambda_{i}=r^{2 i}, \quad i \geq 0 \\
\mu_{i}=r^{2 i-1}, \quad i \geq 1
\end{gathered}
$$

Solution. $m_{0}=1$ and

$$
m_{j}=\prod_{i=1}^{j} \frac{\lambda_{i-1}}{\mu_{i}}, \quad j \geq 1 .
$$

So, $m_{j}=\rho^{j}$, where $\rho=1 / r$, and hence if $r>1$,

$$
\pi_{j}=(1-\rho) \rho^{j}, \quad j \geq 0
$$

Simulation

What is going wrong?

Transition rates.

$$
\begin{gathered}
\lambda_{j}=r^{2 j}, \quad j \geq 0 \\
\mu_{j}=r^{2 j-1}, \quad j \geq 1
\end{gathered}
$$

What is going wrong?

Transition rates.

$$
\begin{gathered}
\lambda_{j}=r^{2 j}, \quad j \geq 0, \\
\mu_{j}=r^{2 j-1}, \quad j \geq 1 .
\end{gathered}
$$

The relative proportion of births to deaths is r

What is going wrong?

Transition rates.

$$
\begin{gathered}
\lambda_{j}=r^{2 j}, \quad j \geq 0, \\
\mu_{j}=r^{2 j-1}, \quad j \geq 1 .
\end{gathered}
$$

The relative proportion of births to deaths is r and so, if $r>1$, the "process" is clearly transient.

What is going wrong?

Transition rates.

$$
\begin{gathered}
\lambda_{j}=r^{2 j}, \quad j \geq 0, \\
\mu_{j}=r^{2 j-1}, \\
j \geq 1 .
\end{gathered}
$$

The relative proportion of births to deaths is r and so, if $r>1$, the "process" is clearly transient.

In fact, the "process" is explosive. (Q is not regular.)

What is going wrong?

Transition rates.

$$
\begin{gathered}
\lambda_{j}=r^{2 j}, \quad j \geq 0, \\
\mu_{j}=r^{2 j-1}, \quad j \geq 1 .
\end{gathered}
$$

The relative proportion of births to deaths is r and so, if $r>1$, the "process" is clearly transient.

In fact, the "process" is explosive. (Q is not regular.) R.G. Miller* showed that Q needs to be regular for the recipe to work.
*Miller, R.G. Jr. (1963) Stationary equations in continuous time Markov chains. Trans. Amer. Math. Soc. 109, 35-44.

Motivating question

If Q is regular, then there exists uniquely a Q-process, namely the minimal process: the minimal solution $F(\cdot)=\left(f_{i j}(\cdot)\right.$, $i, j \in S)$ to $\mathrm{BE}_{i j}$.

Motivating question

If Q is regular, then there exists uniquely a Q-process, namely the minimal process: the minimal solution $F(\cdot)=\left(f_{i j}(\cdot)\right.$, $i, j \in S)$ to $\mathrm{BE}_{i j}$.

If Q is not regular, then there are infinitely many Q-processes, infinitely many of which are honest.

Motivating question

If Q is regular, then there exists uniquely a Q-process, namely the minimal process: the minimal solution $F(\cdot)=\left(f_{i j}(\cdot)\right.$, $i, j \in S)$ to $\mathrm{BE}_{i j}$.

If Q is not regular, then there are infinitely many Q-processes, infinitely many of which are honest.

Question.

Motivating question

If Q is regular, then there exists uniquely a Q-process, namely the minimal process: the minimal solution $F(\cdot)=\left(f_{i j}(\cdot)\right.$, $i, j \in S)$ to $\mathrm{BE}_{i j}$.

If Q is not regular, then there are infinitely many Q-processes, infinitely many of which are honest.

Question. Suppose that there exists a collection of strictly positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ such that

$$
\sum_{i} \pi_{i}=1 \quad \text { and } \quad \sum_{i} \pi_{i} q_{i j}=0
$$

Motivating question

If Q is regular, then there exists uniquely a Q-process, namely the minimal process: the minimal solution $F(\cdot)=\left(f_{i j}(\cdot)\right.$, $i, j \in S)$ to $\mathrm{BE}_{i j}$.

If Q is not regular, then there are infinitely many Q-processes, infinitely many of which are honest.

Question. Suppose that there exists a collection of strictly positive numbers $\pi=\left(\pi_{j}, j \in S\right)$ such that

$$
\sum_{i} \pi_{i}=1 \quad \text { and } \quad \sum_{i} \pi_{i} q_{i j}=0
$$

Does π admit an interpretation as a stationary distribution for any of these processes?

Simulation

Simulation

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers.

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$.

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$.
It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$. It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

Theorem. Let P be an arbitrary Q-process.

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$. It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

Theorem. Let P be an arbitrary Q-process. If m is invariant for P, then m is subinvariant for Q :

$$
\sum_{i} m_{i} p_{i j}(t)=m_{j} \quad \Rightarrow \quad \sum_{i} m_{i} q_{i j} \leq 0
$$

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$. It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

Theorem. Let P be an arbitrary Q-process. If m is invariant for P, then m is subinvariant for Q, and invariant for Q if and only if P satisfies the forward equations $\mathrm{FE}_{i j}$ over S :

$$
\left(\sum_{i} m_{i} p_{i j}(t)=m_{j} \quad \Rightarrow \quad \sum_{i} m_{i} q_{i j}=0\right) \quad \Leftrightarrow \quad \mathrm{FE}
$$

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$. It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

Theorem. Let P be an arbitrary Q-process. If m is invariant for P, then m is subinvariant for Q, and invariant for Q if and only if P satisfies the forward equations $\mathrm{FE}_{i j}$ over S.

An invariance result

Let $m=\left(m_{i}, i \in S\right)$ be a collection of strictly positive numbers. We call m a subinvariant measure for Q if $\sum_{i} m_{i} q_{i j} \leq 0$, and an invariant measure for Q if $\sum_{i} m_{i} q_{i j}=0$. It is called an invariant measure for P if $\sum_{i} m_{i} p_{i j}(t)=m_{j}$.

Theorem. Let P be an arbitrary Q-process. If m is invariant for P, then m is subinvariant for Q, and invariant for Q if and only if P satisfies the forward equations $\mathrm{FE}_{i j}$ over S.

Corollary. If m is invariant for the minimal process F, then m is invariant for Q.

A construction problem

Suppose that Q is a stable and conservative q-matrix, and that m is subinvariant for Q.

A construction problem

Suppose that Q is a stable and conservative q-matrix, and that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is invariant?

A construction problem

Suppose that Q is a stable and conservative q-matrix, and that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is invariant?

Problem 2. Does there exist an honest Q-process for which m is invariant?

A construction problem

Suppose that Q is a stable and conservative q-matrix, and that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is invariant?

Problem 2. Does there exist an honest Q-process for which m is invariant?

Problem 3. When such a Q-process exists, is it unique?

A construction problem

Suppose that Q is a stable and conservative q-matrix, and that m is subinvariant for Q.

Problem 1. Does there exist a Q-process for which m is invariant?

Problem 2. Does there exist an honest Q-process for which m is invariant?

Problem 3. When such a Q-process exists, is it unique?
Problem 4. In the case of non-uniqueness, can one identify all Q-processes (or perhaps all honest Q-processes) for which m is invariant?

The resolvent

Let P be a transition function.

The resolvent

Let P be a transition function. If we write

$$
\psi_{i j}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} p_{i j}(t) d t, \quad \lambda>0
$$

for the Laplace transform of $p_{i j}(\cdot)$, then $\Psi(\cdot)=\left(\psi_{i j}(\cdot), i, j \in S\right)$ enjoys the following properties:

- $\psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1$, and
- $\psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0$.

The resolvent

Let P be a transition function. If we write

$$
\psi_{i j}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} p_{i j}(t) d t, \quad \lambda>0
$$

for the Laplace transform of $p_{i j}(\cdot)$, then $\Psi(\cdot)=\left(\psi_{i j}(\cdot), i, j \in S\right)$ enjoys the following properties:

$$
\begin{aligned}
& \text { - } \psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1, \text { and } \\
& \text { - } \psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0 .
\end{aligned}
$$

Ψ is called the resolvent of P.

The resolvent

Let P be a transition function. If we write

$$
\psi_{i j}(\lambda)=\int_{0}^{\infty} e^{-\lambda t} p_{i j}(t) d t, \quad \lambda>0
$$

for the Laplace transform of $p_{i j}(\cdot)$, then $\Psi(\cdot)=\left(\psi_{i j}(\cdot), i, j \in S\right)$ enjoys the following properties:

- $\psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1$, and
- $\psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0$.
Ψ is called the resolvent of P. Indeed, if Ψ is a given resolvent, in that it satisfies these properties, then there exists a standard (!) process P with Ψ as its resolvent*.
*Reuter, G.E.H. (1967) Note on resolvents of denumerable submarkovian processes. Z. Wahrscheinlichkeitstheorie 9, 16-19.

Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q, and a resolvent Ψ satisfying the backward equations,

$$
\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \quad \lambda>0
$$

then Ψ determines a standard Q-process:

Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q, and a resolvent Ψ satisfying the backward equations,

$$
\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \quad \lambda>0
$$

then Ψ determines a standard Q-process: as $\lambda \rightarrow \infty$,

- $\lambda \psi_{i j}(\lambda) \rightarrow \delta_{i j}$, and
- $\lambda\left(\lambda \psi_{i j}(\lambda)-\delta_{i j}\right) \rightarrow q_{i j}$.

Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q, and a resolvent Ψ satisfying the backward equations,

$$
\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \quad \lambda>0
$$

then Ψ determines a standard Q-process: as $\lambda \rightarrow \infty$,

- $\lambda \psi_{i j}(\lambda) \rightarrow \delta_{i j}$, and
- $\lambda\left(\lambda \psi_{i j}(\lambda)-\delta_{i j}\right) \rightarrow q_{i j}$.

One can also use the resolvent to determine whether or not the Q-process is honest.

Identifying Q-processes

Now, if one is given a stable and conservative q-matrix Q, and a resolvent Ψ satisfying the backward equations,

$$
\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \quad \lambda>0
$$

then Ψ determines a standard Q-process: as $\lambda \rightarrow \infty$,

- $\lambda \psi_{i j}(\lambda) \rightarrow \delta_{i j}$, and
- $\lambda\left(\lambda \psi_{i j}(\lambda)-\delta_{i j}\right) \rightarrow q_{i j}$.

One can also use the resolvent to determine whether or not the Q-process is honest. This happens if and only if

$$
\sum_{j} \lambda \psi_{i j}(\lambda)=1, \quad i \in S, \lambda>0
$$

Identifying invariant measures

Theorem. Let P be an arbitrary process and let Ψ be its resolvent.

Identifying invariant measures

Theorem. Let P be an arbitrary process and let Ψ be its resolvent. Then, m is invariant for P if and only if it is invariant for Ψ

Identifying invariant measures

Theorem. Let P be an arbitrary process and let Ψ be its resolvent. Then, m is invariant for P if and only if it is invariant for Ψ, that is,

$$
\sum_{i} m_{i} p_{i j}(t)=m_{j}
$$

if and only if

$$
\sum_{i} m_{i} \lambda \psi_{i j}(\lambda)=m_{j} .
$$

Steps to identifying P

Steps to identifying a Q-process (an honest Q-process) for which a given m is invariant:

$$
\begin{aligned}
& \psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1, \text { and } \\
& \psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0 .
\end{aligned}
$$

Steps to identifying P

Steps to identifying a Q-process (an honest Q-process) for which a given m is invariant:

$$
\begin{aligned}
& \psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1, \text { and } \\
& \\
& \psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0 . \\
& \text { - } \lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \lambda>0 .
\end{aligned}
$$

Steps to identifying P

Steps to identifying a Q-process (an honest Q-process) for which a given m is invariant:

- $\psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1$, and
$\psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0$.
- $\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \lambda>0$.
- $\left(\sum_{j} \lambda \psi_{i j}(\lambda)=1, i \in S, \lambda>0.\right)$

Steps to identifying P

Steps to identifying a Q-process (an honest Q-process) for which a given m is invariant:

- $\psi_{i j}(\lambda) \geq 0, \sum_{j} \lambda \psi_{i j}(\lambda) \leq 1$, and
$\psi_{i j}(\lambda)-\psi_{i j}(\mu)+(\lambda-\mu) \sum_{k} \psi_{i k}(\lambda) \psi_{k j}(\mu)=0$.
- $\lambda \psi_{i j}(\lambda)=\delta_{i j}+\sum_{k} q_{i k} \psi_{k j}(\lambda), \lambda>0$.
- $\left(\sum_{j} \lambda \psi_{i j}(\lambda)=1, i \in S, \lambda>0.\right)$
- $\sum_{i} m_{i} \lambda \psi_{i j}(\lambda)=m_{j}$.

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q.

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q. Let $\Phi(\cdot)=\left(\phi_{i j}(\cdot), i, j \in S\right)$ be the resolvent of the minimal Q-process

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q. Let $\Phi(\cdot)=\left(\phi_{i j}(\cdot), i, j \in S\right)$ be the resolvent of the minimal Q-process and define $z(\cdot)=\left(z_{i}(\cdot), i \in S\right)$ and $d(\cdot)=\left(d_{i}(\cdot), i \in S\right)$ by

$$
z_{i}(\lambda)=1-\sum_{j} \lambda \phi_{i j}(\lambda),
$$

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q. Let $\Phi(\cdot)=\left(\phi_{i j}(\cdot), i, j \in S\right)$ be the resolvent of the minimal Q-process and define $z(\cdot)=\left(z_{i}(\cdot), i \in S\right)$ and $d(\cdot)=\left(d_{i}(\cdot), i \in S\right)$ by

$$
z_{i}(\lambda)=1-\sum_{j} \lambda \phi_{i j}(\lambda)
$$

and

$$
d_{i}(\lambda)=m_{i}-\sum_{j} m_{j} \lambda \phi_{j i}(\lambda) .
$$

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q. Let $\Phi(\cdot)=\left(\phi_{i j}(\cdot), i, j \in S\right)$ be the resolvent of the minimal Q-process and define $z(\cdot)=\left(z_{i}(\cdot), i \in S\right)$ and $d(\cdot)=\left(d_{i}(\cdot), i \in S\right)$ by

$$
z_{i}(\lambda)=1-\sum_{j} \lambda \phi_{i j}(\lambda),
$$

and

$$
d_{i}(\lambda)=m_{i}-\sum_{j} m_{j} \lambda \phi_{j i}(\lambda) .
$$

Then, if $d=0, m$ is invariant for the minimal Q-process.

Existence of a Q-process

Theorem. Let Q be a stable and conservative q-matrix, and suppose that m is a subinvariant measure for Q. Let $\Phi(\cdot)=\left(\phi_{i j}(\cdot), i, j \in S\right)$ be the resolvent of the minimal Q-process and define $z(\cdot)=\left(z_{i}(\cdot), i \in S\right)$ and $d(\cdot)=\left(d_{i}(\cdot), i \in S\right)$ by

$$
z_{i}(\lambda)=1-\sum_{j} \lambda \phi_{i j}(\lambda),
$$

and

$$
d_{i}(\lambda)=m_{i}-\sum_{j} m_{j} \lambda \phi_{j i}(\lambda) .
$$

Then, if $d=0, m$ is invariant for the minimal Q-process. Otherwise, if $\sum_{i} d_{i}(\lambda) \leq \sum_{i} m_{i} z_{i}(\lambda)<\infty$, for all $\lambda>0$, there exists a Q-process P for which m is invariant.

Existence of a Q-process

Theorem continued. The resolvent of one such process is given by

$$
\begin{equation*}
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{\lambda \sum_{k} m_{k} z_{k}(\lambda)} \tag{2}
\end{equation*}
$$

Existence of a Q-process

Theorem continued. The resolvent of one such process is given by

$$
\begin{equation*}
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{\lambda \sum_{k} m_{k} z_{k}(\lambda)} \tag{2}
\end{equation*}
$$

and this is honest if and only if $\sum_{i} d_{i}(\lambda)=\sum_{i} m_{i} z_{i}(\lambda)$, for all $\lambda>0$.

Existence of a Q-process

Theorem continued. The resolvent of one such process is given by

$$
\begin{equation*}
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{\lambda \sum_{k} m_{k} z_{k}(\lambda)}, \tag{2}
\end{equation*}
$$

and this is honest if and only if $\sum_{i} d_{i}(\lambda)=\sum_{i} m_{i} z_{i}(\lambda)$, for all $\lambda>0$. A sufficient condition for there to exist an honest Q-process for which m is invariant is that m satisfies $\sum_{j} m_{j}\left(1-\lambda \phi_{j j}(\lambda)\right)<\infty$, for all $\lambda>0$.

Existence of a Q-process

Theorem continued. The resolvent of one such process is given by

$$
\begin{equation*}
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{\lambda \sum_{k} m_{k} z_{k}(\lambda)} \tag{2}
\end{equation*}
$$

and this is honest if and only if $\sum_{i} d_{i}(\lambda)=\sum_{i} m_{i} z_{i}(\lambda)$, for all $\lambda>0$. A sufficient condition for there to exist an honest
Q-process for which m is invariant is that m satisfies
$\sum_{j} m_{j}\left(1-\lambda \phi_{j j}(\lambda)\right)<\infty$, for all $\lambda>0$.
Corollary. If m is a subinvariant probability distribution for Q, then there exists an honest Q-process with stationary distribution m. The resolvent of one such process is given by (2).

The single-exit case

Suppose that Q is a single-exit q-matrix

The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of bounded, non-negative vectors $\xi=\left(\xi_{i}, i \in S\right)$ which satisfy

$$
\sum_{j} q_{i j} \xi_{j}=\alpha \xi_{i}, \quad \alpha>0,
$$

has dimension 1.

The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of bounded, non-negative vectors $\xi=\left(\xi_{i}, i \in S\right)$ which satisfy

$$
\sum_{j} q_{i j} \xi_{j}=\alpha \xi_{i}, \quad \alpha>0,
$$

has dimension 1. (The minimal process has only one available "escape route" to infinity.)

The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of bounded, non-negative vectors $\xi=\left(\xi_{i}, i \in S\right)$ which satisfy

$$
\sum_{j} q_{i j} \xi_{j}=\alpha \xi_{i}, \quad \alpha>0,
$$

has dimension 1. (The minimal process has only one available "escape route" to infinity.) Then, the condition

$$
\sum_{i} d_{i}(\lambda) \leq \sum_{i} m_{i} z_{i}(\lambda)<\infty
$$

is necessary for the existence of a Q-process for which the specified measure is invariant;

The single-exit case

Suppose that Q is a single-exit q-matrix, that is, the space of bounded, non-negative vectors $\xi=\left(\xi_{i}, i \in S\right)$ which satisfy

$$
\sum_{j} q_{i j} \xi_{j}=\alpha \xi_{i}, \quad \alpha>0
$$

has dimension 1. (The minimal process has only one available "escape route" to infinity.) Then, the condition

$$
\sum_{i} d_{i}(\lambda) \leq \sum_{i} m_{i} z_{i}(\lambda)<\infty
$$

is necessary for the existence of a Q-process for which the specified measure is invariant; the Q-process is then determined uniquely by

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{\lambda \sum_{k} m_{k} z_{k}(\lambda)}
$$

Non-uniqueness

Non-uniqueness

Consider a pure-birth process with strictly positive birth rates $\left(q_{i}, i \geq 0\right)$, but imagine that we have two distinct sets of birth rates, $\left(q_{i}^{(0)}, i \geq 0\right)$ and ($\left.q_{i}^{(1)}, i \geq 0\right)$, which satisfy
$\sum_{i=0}^{\infty} 1 / q_{i}^{(r)}<\infty, r=0,1$.

Non-uniqueness

Consider a pure-birth process with strictly positive birth rates $\left(q_{i}, i \geq 0\right)$, but imagine that we have two distinct sets of birth rates, $\left(q_{i}^{(0)}, i \geq 0\right)$ and ($\left.q_{i}^{(1)}, i \geq 0\right)$, which satisfy
$\sum_{i=0}^{\infty} 1 / q_{i}^{(r)}<\infty, r=0,1$. Let $S=\{0,1\} \times\{0,1, \ldots\}$ and define $Q=\left(q_{x y}, x, y \in S\right)$ by

$$
q_{(r, i)(s, j)}= \begin{cases}q_{i}^{(r)}, & \text { if } j=i+1 \text { and } s=r, \\ -q_{i}^{(r)}, & \text { if } j=i \text { and } s=r \\ 0, & \text { otherwise }\end{cases}
$$

for $r=0,1$ and $i \geq 0$.

Non-uniqueness

Consider a pure-birth process with strictly positive birth rates $\left(q_{i}, i \geq 0\right)$, but imagine that we have two distinct sets of birth rates, $\left(q_{i}^{(0)}, i \geq 0\right)$ and ($\left.q_{i}^{(1)}, i \geq 0\right)$, which satisfy
$\sum_{i=0}^{\infty} 1 / q_{i}^{(r)}<\infty, r=0,1$. Let $S=\{0,1\} \times\{0,1, \ldots\}$ and define $Q=\left(q_{x y}, x, y \in S\right)$ by

$$
q_{(r, i)(s, j)}= \begin{cases}q_{i}^{(r)}, & \text { if } j=i+1 \text { and } s=r \\ -q_{i}^{(r)}, & \text { if } j=i \text { and } s=r \\ 0, & \text { otherwise }\end{cases}
$$

for $r=0,1$ and $i \geq 0$. The measure $m=\left(m_{x}, x \in S\right)$, given by $m_{(r, i)}=1 / q_{i}^{(r)}, r=0,1, i \geq 0$, is subinvariant for Q.

Non-uniqueness

Non-uniqueness

The resolvents of two distinct Q-processes for which m is invariant are given by

Non-uniqueness

The resolvents of two distinct Q-processes for which m is invariant are given by

$$
\psi_{(r, i)(s, j)}(\lambda)=\delta_{r s} \phi_{i j}^{(r)}(\lambda)+\frac{z_{i}^{(r)}(\lambda) \phi_{0 j}^{(s)}(\lambda)}{2-\left\{z_{0}^{(0)}(\lambda)+z_{0}^{(1)}(\lambda)\right\}}
$$

Non-uniqueness

The resolvents of two distinct Q-processes for which m is invariant are given by

$$
\psi_{(r, i)(s, j)}(\lambda)=\delta_{r s} \phi_{i j}^{(r)}(\lambda)+\frac{z_{i}^{(r)}(\lambda) \phi_{0 j}^{(s)}(\lambda)}{2-\left\{z_{0}^{(0)}(\lambda)+z_{0}^{(1)}(\lambda)\right\}}
$$

and

$$
\psi_{(r, i)(s, j)}(\lambda)=\left\{\begin{array}{cl}
\phi_{i j}^{(r)}(\lambda)+\frac{z_{i}^{(r)}(\lambda) z_{0}^{(1-r)}(\lambda) \phi_{0 j}^{(r)}(\lambda)}{1-z_{0}^{(0)}(\lambda) z_{0}^{(1)}(\lambda)}, & s=r \\
\frac{z_{i}^{(r)}(\lambda) \phi_{0 j}^{(1-r)}(\lambda)}{1-z_{0}^{(0)}(\lambda) z_{0}^{(1)}(\lambda)}, & s \neq r .
\end{array}\right.
$$

Non-uniqueness

Interpretation.

Non-uniqueness

Interpretation.
The first process chooses between $(0,0)$ and $(1,0)$ with equal probability as the starting point following an explosion, no matter which was the most recently traversed path.

Non-uniqueness

Interpretation.
The first process chooses between $(0,0)$ and $(1,0)$ with equal probability as the starting point following an explosion, no matter which was the most recently traversed path.

The second process traverses alternate paths following successive explosions.

The reversible case

Suppose that Q is symmetrically reversible with respect to m

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$.

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$. Then, $d_{i}(\lambda)=m_{i} z_{i}(\lambda)$, and so we arrive at the following corollary*.

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$. Then, $d_{i}(\lambda)=m_{i} z_{i}(\lambda)$, and so we arrive at the following corollary*.
Corollary. If Q is reversible with respect to m

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$. Then, $d_{i}(\lambda)=m_{i} z_{i}(\lambda)$, and so we arrive at the following corollary*.
Corollary. If Q is reversible with respect to m, then there exists uniquely a Q-function P for which m is invariant if and only if $\sum_{j} m_{j} z_{j}(\lambda)<\infty$, for all $\lambda>0$.

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$. Then, $d_{i}(\lambda)=m_{i} z_{i}(\lambda)$, and so we arrive at the following corollary*.
Corollary. If Q is reversible with respect to m, then there exists uniquely a Q-function P for which m is invariant if and only if $\sum_{j} m_{j} z_{j}(\lambda)<\infty$, for all $\lambda>0$. It is honest and its resolvent is given by

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) m_{j} z_{j}(\lambda)}{\lambda \sum_{k \in S} m_{k} z_{k}(\lambda)} .
$$

The reversible case

Suppose that Q is symmetrically reversible with respect to m, that is, $m_{i} q_{i j}=m_{j} q_{j i}, i, j \in S$. Then, $d_{i}(\lambda)=m_{i} z_{i}(\lambda)$, and so we arrive at the following corollary*.
Corollary. If Q is reversible with respect to m, then there exists uniquely a Q-function P for which m is invariant if and only if $\sum_{j} m_{j} z_{j}(\lambda)<\infty$, for all $\lambda>0$. It is honest and its resolvent is given by

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) m_{j} z_{j}(\lambda)}{\lambda \sum_{k \in S} m_{k} z_{k}(\lambda)} .
$$

Moreover, P is reversible with respect to m in that $m_{i} p_{i j}(t)=m_{j} p_{j i}(t)$ (or, equivalently, $m_{i} \psi_{i j}(\lambda)=m_{j} \psi_{j i}(\lambda)$).
*Hou Chen-Ting and Chen Mufa (1980) Markov processes and field theory. Kexue. Tongbao 25, 807-811.

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates ($\mu_{i}, i \geq 1$) are strictly positive.

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates ($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates
($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Proposition. Let $m=\left(m_{i}, i \in S\right)$ be the essentially unique invariant measure for Q.

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates
($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Proposition. Let $m=\left(m_{i}, i \in S\right)$ be the essentially unique invariant measure for Q.

- m is invariant for the minimal Q-process if and only if (3) holds.

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates
($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Proposition. Let $m=\left(m_{i}, i \in S\right)$ be the essentially unique invariant measure for Q.

- m is invariant for the minimal Q-process if and only if (3) holds.
- When (3) fails, there exists uniquely a Q-process P for which m is invariant if and only if m is finite

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates
($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Proposition. Let $m=\left(m_{i}, i \in S\right)$ be the essentially unique invariant measure for Q.

- m is invariant for the minimal Q-process if and only if (3) holds.
- When (3) fails, there exists uniquely a Q-process P for which m is invariant if and only if m is finite, in which case P is the unique, honest Q-process which satisfies $\mathrm{FE}_{i j}$

Birth-death processes

Suppose that the birth rates $\left(\lambda_{i}, i \geq 0\right)$ and death rates ($\mu_{i}, i \geq 1$) are strictly positive. Q is then regular if and only if

$$
\begin{equation*}
\sum_{i=0}^{\infty} \frac{1}{\lambda_{i} m_{i}} \sum_{j=0}^{i} m_{j}=\infty \tag{3}
\end{equation*}
$$

Proposition. Let $m=\left(m_{i}, i \in S\right)$ be the essentially unique invariant measure for Q.

- m is invariant for the minimal Q-process if and only if (3) holds.
- When (3) fails, there exists uniquely a Q-process P for which m is invariant if and only if m is finite, in which case P is the unique, honest Q-process which satisfies $\mathrm{FE}_{i j} ; P$ is positive recurrent and its stationary distribution is obtained by normalizing m.

μ-Invariance

Suppose that $S=\{0\} \cup C$, where 0 is an absorbing state and C is irreducible (for F).

μ-Invariance

Suppose that $S=\{0\} \cup C$, where 0 is an absorbing state and C is irreducible (for F). Let $\mu \geq 0$.

μ-Invariance

Suppose that $S=\{0\} \cup C$, where 0 is an absorbing state and C is irreducible (for F). Let $\mu \geq 0$. A collection $m=\left(m_{i}, i \in C\right)$ of strictly positive numbers is called a μ-subinvariant measure for Q if

$$
\sum_{i \in C} m_{i} q_{i j} \leq-\mu m_{j}, \quad j \in C
$$

μ-Invariance

Suppose that $S=\{0\} \cup C$, where 0 is an absorbing state and C is irreducible (for F). Let $\mu \geq 0$. A collection $m=\left(m_{i}, i \in C\right)$ of strictly positive numbers is called a μ-subinvariant measure for Q if

$$
\sum_{i \in C} m_{i} q_{i j} \leq-\mu m_{j}, \quad j \in C
$$

and a μ-invariant measure for Q if

$$
\sum_{i \in C} m_{i} q_{i j}=-\mu m_{j}, \quad j \in C
$$

μ-Invariance

Suppose that $S=\{0\} \cup C$, where 0 is an absorbing state and C is irreducible (for F). Let $\mu \geq 0$. A collection $m=\left(m_{i}, i \in C\right)$ of strictly positive numbers is called a μ-subinvariant measure for Q if

$$
\sum_{i \in C} m_{i} q_{i j} \leq-\mu m_{j}, \quad j \in C,
$$

and a μ-invariant measure for Q if

$$
\sum_{i \in C} m_{i} q_{i j}=-\mu m_{j}, \quad j \in C .
$$

It is called a μ-invariant measure for P, where P is any transition function, if

$$
\sum_{i \in C} m_{i} p_{i j}(t)=e^{-\mu t} m_{j}, \quad j \in C .
$$

Quasi-stationary distributions

Proposition. A probability distribution $\pi=\left(\pi_{i}, i \in C\right)$ is a μ-invariant measure for some $\mu>0$, that is,

$$
\sum_{i \in C} \pi_{i} p_{i j}(t)=e^{-\mu t} \pi_{j}, \quad j \in C
$$

if and only if it is a quasi-stationary distribution

Quasi-stationary distributions

Proposition. A probability distribution $\pi=\left(\pi_{i}, i \in C\right)$ is a μ-invariant measure for some $\mu>0$, that is,

$$
\sum_{i \in C} \pi_{i} p_{i j}(t)=e^{-\mu t} \pi_{j}, \quad j \in C,
$$

if and only if it is a quasi-stationary distribution: for $j \in C$,

$$
p_{j}(t)=\sum_{i \in C} m_{i} p_{i j}(t) \Rightarrow \frac{p_{j}(t)}{\sum_{k \in C} p_{k}(t)}=m_{j} .
$$

μ-invariance for F

Theorem. If m is μ-invariant for P, then m is μ-subinvariant for Q

μ-invariance for F

Theorem. If m is μ-invariant for P, then m is μ-subinvariant for Q, and μ-invariant for Q if and only if P satisfies the forward equations over C.

μ-invariance for F

Theorem. If m is μ-invariant for P, then m is μ-subinvariant for Q, and μ-invariant for Q if and only if P satisfies the forward equations over C. For example, if m is μ-invariant for the minimal process, then it is μ-invariant for Q.

μ-invariance for F

Theorem. If m is μ-invariant for P, then m is μ-subinvariant for Q, and μ-invariant for Q if and only if P satisfies the forward equations over C. For example, if m is μ-invariant for the minimal process, then it is μ-invariant for Q.

Theorem. If m is μ-invariant for Q, then it is μ-invariant for F if and only if the equations $\sum_{i \in C} y_{i} q_{i j}=-\nu y_{j}, 0 \leq y_{i} \leq m_{i}$, $i \in C$, have no non-trivial solution for some (and then all) $\nu<\mu$.

μ-invariance for F

Theorem. If m is μ-invariant for P, then m is μ-subinvariant for Q, and μ-invariant for Q if and only if P satisfies the forward equations over C. For example, if m is μ-invariant for the minimal process, then it is μ-invariant for Q.

Theorem. If m is μ-invariant for Q, then it is μ-invariant for F if and only if the equations $\sum_{i \in C} y_{i} q_{i j}=-\nu y_{j}, 0 \leq y_{i} \leq m_{i}$, $i \in C$, have no non-trivial solution for some (and then all) $\nu<\mu$.
Theorem. If m is a finite μ-invariant measure for Q, then

$$
\begin{equation*}
\mu \sum_{i \in C} m_{i} a_{i}^{F} \leq \sum_{i \in C} m_{i} q_{i 0} \tag{4}
\end{equation*}
$$

where $a_{i}^{F}=\lim _{t \rightarrow \infty} f_{i 0}(t)$, and m is μ-invariant for F if and only if equality holds in (4).

Q-processes with a given m

Theorem. (Existence) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

Q-processes with a given m

Theorem. (Existence) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

1. If the minimal Q-process F is honest, then m is a μ-invariant measure on C for F if and only if

$$
\sum_{i \in C} m_{i} q_{i 0}=\mu \sum_{i \in C} m_{i}
$$

in which case m is μ-invariant for Q.

Q-processes with a given m

Theorem. (Existence) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

1. If the minimal Q-process F is honest, then m is a μ-invariant measure on C for F if and only if

$$
\sum_{i \in C} m_{i} q_{i 0}=\mu \sum_{i \in C} m_{i}
$$

in which case m is μ-invariant for Q.
2. If F is dishonest, then there exists a Q-process P for which m is μ-invariant on C if and only if

$$
\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}
$$

Q-processes with a given m

Theorem continued.

The resolvent Ψ of one such Q-process for which m is μ-invariant has the form

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

and e satisfies $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$.

Q-processes with a given m

Theorem. (Uniqueness) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

Q-processes with a given m

Theorem. (Uniqueness) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

1. If m is μ-invariant for the minimal Q-process F, which is true if and only if $\mu \sum_{i \in C} m_{i} a_{i}^{F}=\sum_{i \in C} m_{i} q_{i 0}$, then it is the unique Q-process for which m is μ-invariant on C. When this condition holds, m is μ-invariant on C for Q.

Q-processes with a given m

Theorem. (Uniqueness) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

1. If m is μ-invariant for the minimal Q-process F, which is true if and only if $\mu \sum_{i \in C} m_{i} a_{i}^{F}=\sum_{i \in C} m_{i} q_{i 0}$, then it is the unique Q-process for which m is μ-invariant on C. When this condition holds, m is μ-invariant on C for Q.
2. If m is not μ-invariant for the minimal Q-process, there exists uniquely a Q-process for which m is μ-invariant only if

$$
\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}
$$

Q-processes with a given m

Theorem. (Uniqueness) Let $\mu>0$ and suppose that Q admits a finite μ-subinvariant measure m on C.

1. If m is μ-invariant for the minimal Q-process F, which is true if and only if $\mu \sum_{i \in C} m_{i} a_{i}^{F}=\sum_{i \in C} m_{i} q_{i 0}$, then it is the unique Q-process for which m is μ-invariant on C. When this condition holds, m is μ-invariant on C for Q.
2. If m is not μ-invariant for the minimal Q-process, there exists uniquely a Q-process for which m is μ-invariant only if

$$
\begin{equation*}
\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i} \tag{5}
\end{equation*}
$$

3. If Q is single-exit, there exists uniquely Q-process for which m is μ-invariant if and only if (5) holds.

Q-processes with a given m

Theorem continued. If If Q is single-exit, and
$\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}$ then all Q-processes for which m is μ-invariant can be constructed using

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

by varying e in the range $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$.

Q-processes with a given m

Theorem continued. If If Q is single-exit, and
$\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}$ then all Q-processes for which m is μ-invariant can be constructed using

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

by varying e in the range $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$. Exactly one of these is honest

Q-processes with a given m

Theorem continued. If If Q is single-exit, and
$\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}$ then all Q-processes for which m is μ-invariant can be constructed using

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

by varying e in the range $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$. Exactly one of these is honest: obtained by setting $e=\mu \sum_{i \in C} m_{i}$.

Q-processes with a given m

Theorem continued. If If Q is single-exit, and
$\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}$ then all Q-processes for which m is μ-invariant can be constructed using

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

by varying e in the range $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$. Exactly one of these is honest: obtained by setting $e=\mu \sum_{i \in C} m_{i}$. And, exactly one satisfies the forward equations $\mathrm{FE}_{i 0}$ over $i \in C$

Q-processes with a given m

Theorem continued. If If Q is single-exit, and
$\sum_{i \in C} m_{i} q_{i 0} \leq \mu \sum_{i \in C} m_{i}$ then all Q-processes for which m is μ-invariant can be constructed using

$$
\psi_{i j}(\lambda)=\phi_{i j}(\lambda)+\frac{z_{i}(\lambda) d_{j}(\lambda)}{(\lambda+\mu) \sum_{k \in C} m_{k} z_{k}(\lambda)}, \quad i, j \in S
$$

where $d_{j}(\lambda)=m_{j}-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i j}(\lambda), \quad j \in C$,

$$
d_{0}(\lambda)=e / \lambda-\sum_{i \in C} m_{i}(\lambda+\mu) \phi_{i 0}(\lambda),
$$

by varying e in the range $\sum_{i \in C} m_{i} q_{i 0} \leq e \leq \mu \sum_{i \in C} m_{i}$. Exactly one of these is honest: obtained by setting $e=\mu \sum_{i \in C} m_{i}$. And, exactly one satisfies the forward equations $\mathrm{FE}_{i 0}$ over $i \in C$: obtained by setting $e=\sum_{i \in C} m_{i} q_{i 0}$.

