A Method for Evaluating the Distribution of the Total Cost of a Random Process over its Lifetime

by
Phil Pollett (UQ)
Valerie Stefanov (UWA)

Ingredients

- A random process $(X(t), t \geq 0)$

Ingredients

- A random process $(X(t), t \geq 0)$
- A set of states A

Ingredients

- A random process $(X(t), t \geq 0)$
- A set of states A
- The time τ to first exit from A

Ingredients

- A random process $(X(t), t \geq 0)$
- A set of states A
- The time τ to first exit from A
- The cost (per unit time) f_{x} of being in state x

Ingredients

- A random process $(X(t), t \geq 0)$
- A set of states A
- The time τ to first exit from A
- The cost (per unit time) f_{x} of being in state x
- The "path integral"

$$
\Gamma=\int_{0}^{\tau} f_{X(t)} d t
$$

the total cost incurred before leaving A

Examples

- Let $X(t)$ be the water level in a dam at time t. If τ is the time the dam first empties, and $f_{x}=1_{\{x>l\}}$, then Γ is the total time that the level is above l :

$$
\Gamma=\int_{0}^{\tau} 1_{\{X(t)>l\}} d t .
$$

Examples

- Let $X(t)$ be the water level in a dam at time t. If τ is the time the dam first empties, and $f_{x}=1_{\{x>l\}}$, then Γ is the total time that the level is above l :

$$
\Gamma=\int_{0}^{\tau} 1_{\{X(t)>l\}} d t .
$$

- Let $(I(t), S(t))$ be the number of infectives and susceptibles in an epidemic at time t. If τ is the period of infection and $f_{(i, s)}=i$, then Γ is the total amount of infection:

$$
\Gamma=\int_{0}^{\tau} I(t) d t
$$

The problem

Our problem is to determine the expected total cost, and the distribution of the total cost.

For simplicity, suppose that $X(t)$ takes values in
$S=\{0,1, \ldots\}$. For example, $X(t)$ might be the number in a population at time t, and $A=\{1,2, \ldots\}$, so the τ is the time to extinction.

A first attempt

Let T_{j} be the total time that the process spends in state j during the period up to time τ and let N_{j} be the number of visits to j during that period. Then,

$$
\Gamma=\sum_{j \in A} f_{j} T_{j}
$$

A first attempt

Let T_{j} be the total time that the process spends in state j during the period up to time τ and let N_{j} be the number of visits to j during that period. Then,

$$
\Gamma=\sum_{j \in A} f_{j} T_{j} \quad \text { and } \quad T_{j}=\sum_{n=1}^{N_{j}} X_{j n},
$$

where $X_{j n}, n=1,2, \ldots$, are the successive occupancy times for state j.

A first attempt

Let T_{j} be the total time that the process spends in state j during the period up to time τ and let N_{j} be the number of visits to j during that period. Then,

$$
\Gamma=\sum_{j \in A} f_{j} T_{j} \quad \text { and } \quad T_{j}=\sum_{n=1}^{N_{j}} X_{j n},
$$

where $X_{j n}, n=1,2, \ldots$, are the successive occupancy times for state j. If these times are independent and identically distributed, then $E(\Gamma)=\sum_{j \in A} f_{j} E\left(N_{j}\right) \mu_{j}$, where μ_{j} is the mean occupancy time for state j.

Markovian models

We will assume that $(X(t), t \geq 0)$ is a Markov chain with transition rates $Q=\left(q_{i j}, i, j \in S\right)$, so that $q_{i j}$ represents the rate of transition from state i to state j, for $j \neq i$, and $q_{i i}=-q_{i}$, where $q_{i}:=\sum_{j \neq i} q_{i j}(<\infty)$ represents the total rate out of state i.

Markovian models

We will assume that $(X(t), t \geq 0)$ is a Markov chain with transition rates $Q=\left(q_{i j}, i, j \in S\right)$, so that $q_{i j}$ represents the rate of transition from state i to state j, for $j \neq i$, and $q_{i i}=-q_{i}$, where $q_{i}:=\sum_{j \neq i} q_{i j}(<\infty)$ represents the total rate out of state i. An example is the birth-death process, which has $q_{i, i+1}=\lambda_{i}$ (birth rates) and $q_{i, i-1}=\mu_{i}$ (death rates), with $\mu_{0}=0$ and otherwise $0\left(q_{i}=\lambda_{i}+\mu_{i}\right)$:

$$
Q=\left(\begin{array}{ccccc}
-\lambda_{0} & \lambda_{0} & 0 & 0 & \cdots \\
\mu_{1} & -\left(\lambda_{1}+\mu_{1}\right) & \lambda_{1} & 0 & \cdots \\
0 & \mu_{2} & -\left(\lambda_{2}+\mu_{2}\right) & \lambda_{2} & \cdots \\
\vdots & \vdots & \vdots & 0 & \ddots
\end{array}\right)
$$

The expected value of Γ

Let $e_{i}=E_{i}(\Gamma):=E(\Gamma \mid X(0)=i)$, and condition on the time of the first jump and the state visited at that time, to get

$$
E_{i}(\Gamma)=\int_{0}^{\infty} \sum_{k \neq i}\left(\frac{f_{i}}{q_{i}}+E_{k}(\Gamma)\right) \frac{q_{i k}}{q_{i}} q_{i} e^{-q_{i} u} d u,
$$

which leads to

$$
q_{i} e_{i}=f_{i}+\sum_{k \neq i} q_{i k} e_{k},
$$

so that

$$
\sum_{k} q_{i k} e_{k}+f_{i}=0 . \quad(Q \boldsymbol{e}=-\boldsymbol{f})
$$

The expected value of Γ

We can do better:
Theorem $1 \quad e=\left(e_{i}, i \in A\right)$, where $e_{i}=E_{i}(\Gamma)$, is the minimal non-negative solution to

$$
\sum_{k \in A} q_{i k} z_{k}+f_{i}=0, \quad i \in A, \quad(Q \boldsymbol{z}+\boldsymbol{f}=\mathbf{0})
$$

in the sense that e satisfies these equations, and, if $\boldsymbol{z}=\left(z_{i}, i \in A\right)$ is any non-negative solution, then $e_{i} \leq z_{i}$ for all $i \in A$.

Birth-death processes

Assume that the birth rates $\left(\lambda_{i}, i \geq 1\right)$ and the death rates ($\mu_{i}, i \geq 0$) are all strictly positive, except that $\lambda_{0}=0$. So, all states in $A=\{1,2, \ldots\}$ intercommunicate, and 0 is an absorbing state (corresponding to population extinction).

Define potential coefficients ($\pi_{i}, i \geq 1$) by $\pi_{1}=1$ and

$$
\pi_{i}=\prod_{j=2}^{i} \frac{\lambda_{j-1}}{\mu_{j}}, \quad i \geq 2
$$

and assume that $A:=\sum_{i=1}^{\infty} 1 /\left(\mu_{i} \pi_{i}\right)$ diverges, a condition that corresponds to extinction being certain.

Birth-death processes

On applying Theorem 1 we get:
Proposition The expected cost up to the time of extinction is given by

$$
E_{i}(\Gamma)=\sum_{j=1}^{i} \frac{1}{\mu_{j} \pi_{j}} \sum_{k=j}^{\infty} f_{k} \pi_{k},
$$

for all $i \geq 1$, this being finite if and only if $\sum_{k=1}^{\infty} f_{k} \pi_{k}<\infty$.

The distribution of Γ

Let $y_{i}(\theta)=E_{i}\left(e^{-\theta \Gamma}\right)$ be the Laplace-Steiltjes transform of the distribution of Γ :

$$
y_{i}(\theta)=\int_{0}^{\infty} e^{-\theta x} d \operatorname{Pr}(\Gamma \leq x \mid X(0)=i) .
$$

A similar argument leads to:
Theorem 2 For each $\theta>0, \boldsymbol{y}(\theta)=\left(y_{i}(\theta), i \in S\right)$ is the maximal solution to

$$
\sum_{k \in S} q_{i k} z_{k}=\theta f_{i} z_{i}, \quad i \in A,
$$

with $0 \leq z_{i} \leq 1$ for $i \in A$ and $z_{i}=1$ for $i \notin A$.

A catastrophe process

Assume that the transition rates have the form

$$
q_{i j}= \begin{cases}i \rho a, & i \geq 0, j=i+1, \\ -i \rho, & i \geq 0, j=i, \\ i \rho d_{i-j}, & i \geq 2,1 \leq j<i, \\ i \rho \sum_{k \geq i} d_{k}, & i \geq 1, j=0,\end{cases}
$$

with all other transition rates equal to 0 . Here ρ and a are positive, d_{i} is positive for at least one i in $A=\{1,2, \ldots\}$ and $a+\sum_{i=1}^{\infty} d_{i}=1$.
Clearly 0 is an absorbing state for the process and A is a communicating class.

A catastrophe process

We will consider only the subcritical case, where the drift D, given by $D=a-\sum_{i=1}^{\infty} i d_{i}$, is strictly negative and extinction is certain. Let $b(s)=d(s)-s$, where d is the probability generating function $d(s)=a+\sum_{i=1}^{\infty} d_{i} s^{i+1}$, $|s|<1$. We can evaluate $E_{i}\left(e^{-\theta \Gamma}\right)$ for specific choices of f. Take $f_{i}=i$. We seek the maximal solution to

$$
\sum_{j=0}^{\infty} q_{i j} z_{j}=\theta i z_{i}, \quad i \geq 1,
$$

satisfying $0 \leq z_{i} \leq 1$ for $i \geq 1$ and $z_{0}=1$.

A catastrophe process

We will consider only the subcritical case, where the drift D, given by $D=a-\sum_{i=1}^{\infty} i d_{i}$, is strictly negative and extinction is certain. Let $b(s)=d(s)-s$, where d is the probability generating function $d(s)=a+\sum_{i=1}^{\infty} d_{i} s^{i+1}$, $|s|<1$. We can evaluate $E_{i}\left(e^{-\theta \Gamma}\right)$ for specific choices of f. Take $f_{i}=i$. We seek the maximal solution to

$$
\rho a z_{i+1}-\rho z_{i}+\rho \sum_{j=1}^{i-1} d_{i-j} z_{j}+\rho z_{0} \sum_{j=i}^{\infty} d_{j}=\theta z_{i}, \quad i \geq 1,
$$

satisfying $0 \leq z_{i} \leq 1$ for $i \geq 1$ and $z_{0}=1$.

A catastrophe process

Multiplying by s^{i-1} and summing over i gives

$$
\sum_{i=1}^{\infty} E_{i}\left(e^{-\theta \Gamma}\right) s^{i-1}=\frac{1}{1-s}-\frac{\theta\left(\gamma_{\theta}-s\right)}{\left(1-\gamma_{\theta}\right)(1-s)(\rho b(s)-\theta s)},
$$

where γ_{θ} is the unique solution to $\rho b(s)=\theta s$ on the interval $0<s<\sigma$. In the case of "geometric catastrophes" $\left(d_{i}=d(1-q) q^{i-1}, i \geq 1\right.$, where $d>0$ satisfies $a+d=1$, and $0 \leq q<1$), we get

$$
E_{i}\left(e^{-\theta \Gamma}\right)=\frac{\beta(\theta)-q}{1-q}(\beta(\theta))^{i-1}, \quad i \geq 1,
$$

where $\beta(\theta)$ is the smaller of the two zeros of $a \rho s^{2}-(\rho(1+q a)+\theta) s+\rho(d+q a)+q \theta$.

