Metapopulations with dynamic extinction probabilities

Phil Pollett

The University of Queensland
http://www.maths.uq.edu.au/~pkp

ACEMS

Collaborators

Ross McVinish
Department of Mathematics
University of Queensland

Yui Sze (Jessica) Chan
Department of Mathematics
University of Queensland

0 e(

Metapopulations

Metapopulations

Metapopulations

(d)
 (d) (

SPOM

A stochastic patch occupancy model (SPOM)

SPOM

A stochastic patch occupancy model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied at time t.

SPOM

A stochastic patch occupancy model (SPOM)
Suppose that there are n patches.
Let $X_{t}^{(n)}=\left(X_{1, t}^{(n)}, \ldots, X_{n, t}^{(n)}\right)$, where $X_{i, t}^{(n)}$ is a binary variable indicating whether or not patch i is occupied at time t.

Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

For many species the propensity for colonization and local extinction is markedly different in different phases of their life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the California linderiella (Linderiella occidentalis), both listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly (Euphydryas editha bayensis), now extinct

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is observed after successive extinction phases (CE Model).

SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability

$$
c\left(\frac{1}{n} \sum_{j=1}^{n} X_{j, t}^{(n)} d\left(z_{i}, z_{j}\right) a_{j}\right),
$$

where $d(z, \tilde{z}) \geq 0$ measures the ease of movement between patches located at z and \tilde{z}, a_{j} is a weight related to the size of the patch j and $c:[0, \infty) \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

SPOM - Phase structure

For simplicity, take $d \equiv 1$ and $a \equiv 1$. So, \ldots
Colonization: unoccupied patch i becomes occupied with probability $c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

SPOM - Phase structure

For simplicity, take $d \equiv 1$ and $a \equiv 1$. So, \ldots
Colonization: unoccupied patch i becomes occupied with probability $c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

Proportion of patches occupied

SPOM - Phase structure

For simplicity, take $d \equiv 1$ and $a \equiv 1$. So, \ldots
Colonization: unoccupied patch i becomes occupied with probability $c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability $c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

Extinction: occupied patch i remains occupied with probability $s_{i, t}$.

SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability $c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)$, where $c:[0,1] \rightarrow[0,1]$ (called the colonisation function) is increasing and Lipschitz continuous, with $c(0)=0$ and $c^{\prime}(0)>0$.

Extinction: occupied patch i remains occupied with probability $s_{i, t}$.

Then, given the current state $X_{t}^{(n)}$ and survival probabilities s_{t}, the $X_{i, t+1}^{(n)}(i=1, \ldots, n)$ are independent with transitions

$$
\operatorname{Pr}\left(X_{i, t+1}^{(n)}=1 \mid X_{t}^{(n)}, s_{t}\right)=s_{i, t} X_{i, t}^{(n)}+s_{i, t} c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\left(1-X_{i, t}^{(n)}\right) .
$$

SPOM - Phase structure

Extinction: occupied patch i remains occupied with probability $s_{i, t}$.

We will assume that $\left(s_{i, t}\right)_{t=0}^{\infty}(i=1, \ldots, n)$ are independent Markov chains taking values in $[0,1]$ with common transition kernel $P(s, d r)$.

This covers the simple but important case where patches are classified as being suitable or unsuitable for occupancy.

SPOM - Homogeneous case

In the homogeneous case, where $s_{i}=s$ is the same for each i, the number $N_{t}^{(n)}$ of occupied patches at time t is Markovian, and, letting the initial number $N_{0}^{(n)}$ of occupied patches grow at the same rate as n we arrive at:

Theorem If $N_{0}^{(n)} / n \xrightarrow{p} x_{0}$ (a constant), then

$$
N_{t}^{(n)} / n \xrightarrow{p} x_{t}, \quad \text { for all } t \geq 1,
$$

with $\left(x_{t}\right)$ determined by $x_{t+1}=f\left(x_{t}\right)$, where

CE Model - Evanescence

CE Model - Quasi stationarity

Stability

$x_{t+1}=f\left(x_{t}\right)$, where $f(x)=s(x+(1-x) c(x))$.
Evanescence: $1+c^{\prime}(0) \leq 1 / s .0$ is the unique fixed point in $[0,1]$. It is stable.
Quasi stationarity: $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).

Stability

$$
x_{t+1}=f\left(x_{t}\right), \text { where } f(x)=s(x+(1-x) c(x))
$$

Evanescence: $1+c^{\prime}(0) \leq 1 / s$. 0 is the unique fixed point in $[0,1]$. It is stable.
Quasi stationarity: $1+c^{\prime}(0)>1 / s$. There are two fixed points in $[0,1]: 0$ (unstable) and $x^{*} \in(0,1)$ (stable).

CE Model - Evanescence

CE Model - Quasi stationarity

SPOM - General case

Return now to the general case, where patch survival probabilities evolve in time, and we keep track of which patches are occupied...

$$
\operatorname{Pr}\left(X_{i, t+1}^{(n)}=1 \mid X_{t}^{(n)}, s_{t}\right)=s_{i, t} X_{i, t}^{(n)}+s_{i, t} c\left(n^{-1} \sum_{j=1}^{n} X_{j, t}^{(n)}\right)\left(1-X_{i, t}^{(n)}\right) .
$$

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Define sequences ($\sigma_{n, t}$) and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n, t}(B)=\#\left\{s_{i, t} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i, t} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Define sequences $\left(\sigma_{n, t}\right)$ and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n, t}(B)=\#\left\{s_{i, t} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i, t} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Define sequences ($\sigma_{n, t}$) and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n, t}(B)=\#\left\{s_{i, t} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i, t} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Define sequences ($\sigma_{n, t}$) and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n, t}(B)=\#\left\{s_{i, t} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i, t} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n, 0} \xrightarrow{d} \sigma_{0}$ for some non-random (probability) measure σ_{0}.

Our approach - Point processes

Treat the collection of patch survival probabilities and those of occupied patches at time t as point processes on $[0,1]$.

Define sequences ($\sigma_{n, t}$) and ($\mu_{n, t}$) of random measures by

$$
\begin{gathered}
\sigma_{n, t}(B)=\#\left\{s_{i, t} \in B\right\} / n, \quad B \in \mathcal{B}([0,1]), \\
\mu_{n, t}(B)=\#\left\{s_{i, t} \in B: X_{i, t}^{(n)}=1\right\} / n, \quad B \in \mathcal{B}([0,1]) .
\end{gathered}
$$

We are going to suppose that $\sigma_{n, 0} \xrightarrow{d} \sigma_{0}$ for some non-random (probability) measure σ_{0}.

Think of σ_{0} as being the initial distribution of survival probabilities.

Our approach - Point processes

Equivalently, we may define ($\sigma_{n, t}$) and ($\mu_{n, t}$) by

$$
\begin{gathered}
\int h(s) \sigma_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i, t}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i, t}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$.

Our approach - Point processes

Equivalently, we may define ($\sigma_{n, t}$) and ($\mu_{n, t}$) by

$$
\begin{gathered}
\int h(s) \sigma_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} h\left(s_{i, t}\right) \\
\int h(s) \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} h\left(s_{i, t}\right),
\end{gathered}
$$

for h in $C^{+}([0,1])$, the class of continuous functions that map $[0,1]$ to $[0, \infty)$. For example $(h \equiv 1)$,

$$
\left.\int \mu_{n, t}(d s)=\frac{1}{n} \sum_{i=1}^{n} X_{i, t}^{(n)} \quad \text { (proportion occupied }\right) .
$$

Our approach - Point processes

Suppose that $\sigma_{n, 0} \xrightarrow{d} \sigma_{0}$ for some non-random (probability) measure σ_{0}. Although this assumption concerns only the initial variation in the survival probabilities, it implies a similar 'law of large numbers' for them at all times.

Lemma $\quad \sigma_{n, t} \xrightarrow{d} \sigma_{t}$, where σ_{t} is defined by the recursion

$$
\int h(s) \sigma_{t+1}(d s)=\int h(s) \int P(r, d s) \sigma_{t}(d r),
$$

for all $h \in C^{+}([0,1])$.

A measure-valued difference equation

Theorem Suppose that $\mu_{n, 0} \xrightarrow{d} \mu_{0}$ for some non-random measure μ_{0}. Then, $\mu_{n, t} \xrightarrow{d} \mu_{t}$ for all $t=1,2, \ldots$, where μ_{t} is defined by the following recursion: for $h \in C^{+}([0,1])$,

$$
\begin{array}{r}
\int h(s) \mu_{t+1}(d s)=c_{t} \int s \int h(r) P(s, d r) \sigma_{t}(d s) \\
\left(1-c_{t}\right) \int s \int h(r) P(s, d r) \mu_{t}(d s)
\end{array}
$$

where $c_{t}=c\left(\mu_{t}([0,1])\right)=c\left(\int \mu_{t}(d s)\right)$.

Survival probability simulation

CE Model - Evanescence

CE Model - Persistence

CE Model - Persistence

CE Model - Evanescence

CE Model - Evanescence

CE Model - Persistence

