Infinite-patch metapopulation models: branching, convergence and chaos

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Collaborator

Fionnuala Buckley MASCOS PhD Scholar University of Queensland

[^0]\[

$$
\begin{gathered}
0^{\circ} \oplus \\
0 \\
0
\end{gathered}
$$
\]

Metapopulations

$$
\begin{gathered}
0^{\circ} \\
0 \\
(\&)
\end{gathered}
$$

Metapopulations

Metapopulations

$$
\therefore 0_{0}
$$

SPOM

A Stochastic Patch Occupancy Model (SPOM)

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are N patches.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are N patches.
Let $n_{t} \in\{0,1, \ldots, N\}$ be the number occupied at time t.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are N patches.
Let $n_{t} \in\{0,1, \ldots, N\}$ be the number occupied at time t.
Assume $\left(n_{t}, t=0,1, \ldots\right)$ to be Markov chain.

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are N patches.
Let $n_{t} \in\{0,1, \ldots, N\}$ be the number occupied at time t.
Assume $\left(n_{t}, t=0,1, \ldots\right)$ to be Markov chain.
Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

We will we assume that the population is observed after successive extinction phases (CE Model).

SPOM

A Stochastic Patch Occupancy Model (SPOM)
Suppose that there are N patches.
Let $n_{t} \in\{0,1, \ldots, N\}$ be the number occupied at time t.
Assume $\left(n_{t}, t=0,1, \ldots\right)$ to be Markov chain.
Colonization and extinction happen in distinct, successive phases.

We will assume that the population is observed after successive extinction phases (CE Model).

SPOM

Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability $c\left(n_{t} / N\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave, and $c^{\prime}(0)>0$.

SPOM

Colonization and extinction happen in distinct, successive phases.

Colonization: unoccupied patches become occupied independently with probability $c\left(n_{t} / N\right)$, where $c:[0,1] \rightarrow[0,1]$ is continuous, increasing and concave, and $c^{\prime}(0)>0$.

Extinction: occupied patches remain occupied independently with probability s.

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

Notation: $\operatorname{Bin}(m, p)$ is a binomial random variable with m trials and success probability p.

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

N-patch SPOM

We have the following Chain Binomial structure:

N-patch SPOM

We have the following Chain Binomial structure:

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{D}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{D}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \xlongequal{D} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

N-patch SPOM

We have the following Chain Binomial structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

CE Model

CE Model

CE Model - Evanescence

CE Model - Quasi stationarity

CE Model - Evanescence

CE Model - Quasi stationarity

CE Model $c^{\prime}(0)<(1-s) / s$

CE Model $c^{\prime}(0)>(1-s) / s$

$$
\begin{gathered}
0^{\circ} \\
0 \\
(\&)
\end{gathered}
$$

Metapopulations

$$
\begin{aligned}
& \bigcirc \\
& \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \bigcirc \text { (b) } \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\
& \text { (d) } \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc
\end{aligned}
$$

Infinite-patch SPOM

Prelude If $c(0)=0$ and c has a continuous second derivative near 0 , then, for fixed n,

$$
\operatorname{Bin}(N-n, c(n / N)) \xrightarrow{\mathrm{D}} \mathrm{Poi}(m n), \quad \text { as } N \rightarrow \infty,
$$

where $m=c^{\prime}(0)$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

N-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Bin}\left(N-n_{t}, c\left(n_{t} / N\right)\right), s\right)
$$

$\operatorname{Bin}(N-n, c(n / N)) \xrightarrow{\mathrm{D}} \operatorname{Poi}(m n) \quad($ as $N \rightarrow \infty)$

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.
(We think of the census times as marking the 'generations', the 'particles' being the occupied patches, and the 'offspring' being the occupied patches that they notionally replace in the succeeding generation.)

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{D}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

The mean number of offspring is $\mu=(1+m) s$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

The mean number of offspring is $\mu=(1+m) s$.
So, for example, $\mathrm{E}\left(n_{t} \mid n_{0}\right)=n_{0} \mu^{t}(t \geq 1)$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

Infinite-patch SPOM

We have the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m n_{t}\right), s\right)
$$

Claim The process $\left(n_{t}, t=0,1, \ldots\right)$ is a branching process (Galton-Watson process) whose offspring distribution has pgf $G(z)=(1-s+s z) \mathrm{e}^{-m s(1-z)}$.

Theorem Extinction occurs with probability 1 if and only if $m \leq(1-s) / s$; otherwise total extinction occurs with probability $\eta^{n_{0}}$, where η is the unique fixed point of G on the interval $(0,1)$.

CE Model $c^{\prime}(0)<(1-s) / s \quad(\eta=1)$

CE Model $c^{\prime}(0)>(1-s) / s \quad\left(\eta^{n_{0}}=0.0020837\right)$

Infinite-patch SPOM with regulation

Assume the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

where $m(n) \geq 0$.

Infinite-patch SPOM with regulation

Assume the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

where $m(n) \geq 0$. A moment ago we had $m(n)=m n$.

Infinite-patch SPOM with regulation

Assume the following structure:

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

where $m(n) \geq 0$.

Infinite-patch SPOM with regulation

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

Infinite-patch SPOM with regulation

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

We will consider what happens when the initial number of occupied patches n_{0} becomes large.

Infinite-patch SPOM with regulation

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

We will consider what happens when the initial number of occupied patches n_{0} becomes large.
For some index N write $m(n)=N \mu(n / N)$, and assume μ is continuous with bounded first derivative.

Infinite-patch SPOM with regulation

$$
n_{t+1} \stackrel{\mathrm{D}}{=} \operatorname{Bin}\left(n_{t}+\operatorname{Poi}\left(m\left(n_{t}\right)\right), s\right)
$$

We will consider what happens when the initial number of occupied patches n_{0} becomes large.
For some index N write $m(n)=N \mu(n / N)$, and assume μ is continuous with bounded first derivative.

We may take N to be simply n_{0} or, more generally, following Klebaner*, we may interpret N as being a 'threshold' with the property that $n_{0} / N \rightarrow x_{0}$ as $N \rightarrow \infty$.
*Klebaner (1993) Population-dependent branching processes with a threshold. Stochastic Process. Appl. 46, 115-127.

Infinite-patch SPOM with regulation

By choosing μ appropriately, we may allow for a degree of regulation in the colonisation process.

Infinite-patch SPOM with regulation

By choosing μ appropriately, we may allow for a degree of regulation in the colonisation process.

For example, $\mu(x)$ might be of the form

- $\mu(x)=r x(a-x)(0 \leq x \leq a)$ (logistic growth);
- $\mu(x)=x \mathrm{e}^{r(1-x)}(x \geq 0)$ (Ricker dynamics);
- $\mu(x)=\lambda x /(1+a x)^{b}(x \geq 0)$ (Hassell dynamics).

Infinite-patch SPOM with regulation

By choosing μ appropriately, we may allow for a degree of regulation in the colonisation process.

For example, $\mu(x)$ might be of the form

- $\mu(x)=r x(a-x)(0 \leq x \leq a)$ (logistic growth);
- $\mu(x)=x \mathrm{e}^{r(1-x)}(x \geq 0)$ (Ricker dynamics);
- $\mu(x)=\lambda x /(1+a x)^{b}(x \geq 0)$ (Hassell dynamics);
- $\mu(x)=m x(x \geq 0)$ (branching).

Infinite-patch SPOM with regulation

By choosing μ appropriately, we may allow for a degree of regulation in the colonisation process.
For example, $\mu(x)$ might be of the form

- $\mu(x)=r x(a-x)(0 \leq x \leq a)$ (logistic growth);
- $\mu(x)=x \mathrm{e}^{r(1-x)}(x \geq 0)$ (Ricker dynamics);
- $\mu(x)=\lambda x /(1+a x)^{b}(x \geq 0)$ (Hassell dynamics);
- $\mu(x)=m x(x \geq 0)$ (branching).

We can establish a law of large numbers for $X_{t}^{(N)}=n_{t} / N$, the number of occupied patches at census t measured relative to the threshold.

Infinite-patch SPOM - Convergence

Theorem For the infinite-patch CE model with parameters s and $\mu(x)$, let $X_{t}^{(N)}=n_{t} / N$ be the number of occupied patches at census t relative to the threshold N.

Suppose that μ is continuous with bounded first derivative.
If $X_{0}^{(N)} \xrightarrow{2} x_{0}$ as $N \rightarrow \infty$, then $X_{t}^{(N)} \xrightarrow{2} x_{t}$ for all $t \geq 1$, where $\left(x_{t}\right)$ is determined by $x_{t+1}=f\left(x_{t}\right)(t \geq 0)$, where $f(x)=s(x+\mu(x))$.

Infinite-patch SPOM - Ricker dynamics

Bifurcation diagram for the infinite-patch deterministic CE model with Ricker growth dynamics: $x_{n+1}=0.3 x_{n}\left(1+\mathrm{e}^{r\left(1-x_{n}\right)}\right)(r$ ranges from 0 to 7.2$)$.

Infinite-patch SPOM - Ricker dynamics

(a)

(c)

(b)

(d)

Simulation (open circles) of the infinite-patch CE model with Ricker growth dynamics, together with the corresponding limiting deterministic trajectories (solid circles). Here $s=0.3, N=200$ and (a) $r=0.84$, (b) $r=1$ (c) $r=4$, (d) $r=5$.

[^0]: *Buckley, F.M. and Pollett, P.K. (2010) Limit theorems for discrete-time metapopulation models. Probability Surveys 7, 53-83.

