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SPOM

Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
independently with probability c(nt/N), where
c : [0, 1] → [0, 1] is continuous, increasing and concave,
and c ′(0) > 0.
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SPOM

Colonization and extinction happen in distinct,
successive phases.

Colonization: unoccupied patches become occupied
independently with probability c(nt/N), where
c : [0, 1] → [0, 1] is continuous, increasing and concave,
and c ′(0) > 0.

Extinction: occupied patches remain occupied
independently with probability s.

MASCOS MASCOS Annual Conference, October 2010 - Page 17



N -patch SPOM

We have the following Chain Binomial structure:

nt+1
D
= Bin

(

nt + Bin
(

N − nt, c(nt/N)
)

, s
)
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N -patch SPOM

We have the following Chain Binomial structure:

nt+1
D
= Bin

(

nt + Bin
(

N − nt, c(nt/N)
)

, s
)

Notation: Bin(m, p) is a binomial random variable with
m trials and success probability p.
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CE Model
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CE Model - Evanescence
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CE Model - Quasi stationarity
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CE Model c ′(0) < (1 − s)/s
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CE Model c ′(0) > (1 − s)/s
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Metapopulations
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Infinite-patch SPOM

Prelude If c(0) = 0 and c has a continuous second
derivative near 0, then, for fixed n,

Bin(N − n, c(n/N))
D
→ Poi(mn), as N → ∞,

where m = c ′(0).
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Infinite-patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Poi
(

mnt

)

, s
)
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N -patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Bin
(

N − nt, c(nt/N)
)

, s
)

Bin(N − n, c(n/N))
D
→ Poi(mn) (as N → ∞)
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Infinite-patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Poi
(

mnt

)

, s
)

Claim The process (nt, t = 0, 1, . . . ) is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 − s + sz)e−ms(1−z).
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Infinite-patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Poi
(

mnt

)

, s
)

Claim The process (nt, t = 0, 1, . . . ) is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 − s + sz)e−ms(1−z).

(We think of the census times as marking the
‘generations’, the ‘particles’ being the occupied
patches, and the ‘offspring’ being the occupied
patches that they notionally replace in the succeeding
generation.)
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Infinite-patch SPOM

We have the following structure:
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Claim The process (nt, t = 0, 1, . . . ) is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 − s + sz)e−ms(1−z).

The mean number of offspring is µ = (1 + m)s.
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Infinite-patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Poi
(

mnt

)

, s
)

Claim The process (nt, t = 0, 1, . . . ) is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 − s + sz)e−ms(1−z).

The mean number of offspring is µ = (1 + m)s.

So, for example, E(nt|n0) = n0µ
t (t ≥ 1).
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Infinite-patch SPOM

We have the following structure:

nt+1
D
= Bin

(

nt + Poi
(

mnt

)

, s
)

Claim The process (nt, t = 0, 1, . . . ) is a branching
process (Galton-Watson process) whose offspring
distribution has pgf G(z) = (1 − s + sz)e−ms(1−z).

Theorem Extinction occurs with probability 1 if and
only if m ≤ (1 − s)/s; otherwise total extinction occurs
with probability ηn0, where η is the unique fixed point of
G on the interval (0, 1).
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CE Model c ′(0) < (1 − s)/s (η = 1)
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CE Model c ′(0) > (1 − s)/s (ηn0 = 0.0020837)
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Infinite-patch SPOM with regulation

Assume the following structure:

nt+1
D
= Bin

(

nt + Poi
(

m(nt)
)

, s
)

where m(n) ≥ 0.
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Infinite-patch SPOM with regulation

Assume the following structure:

nt+1
D
= Bin

(

nt + Poi
(

m(nt)
)

, s
)

where m(n) ≥ 0. A moment ago we had m(n) = mn.
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Infinite-patch SPOM with regulation
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We will consider what happens when the initial
number of occupied patches n0 becomes large.
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Infinite-patch SPOM with regulation

nt+1
D
= Bin

(

nt + Poi
(

m(nt)
)

, s
)

We will consider what happens when the initial
number of occupied patches n0 becomes large.

For some index N write m(n) = Nµ(n/N), and assume
µ is continuous with bounded first derivative.

We may take N to be simply n0 or, more generally,
following Klebaner∗, we may interpret N as being a
‘threshold’ with the property that n0/N → x0 as N → ∞.

∗Klebaner (1993) Population-dependent branching processes with a threshold.
Stochastic Process. Appl. 46, 115–127.

MASCOS MASCOS Annual Conference, October 2010 - Page 52



Infinite-patch SPOM with regulation

By choosing µ appropriately, we may allow for a
degree of regulation in the colonisation process.
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Infinite-patch SPOM with regulation

By choosing µ appropriately, we may allow for a
degree of regulation in the colonisation process.

For example, µ(x) might be of the form

• µ(x) = rx(a − x) (0 ≤ x ≤ a) (logistic growth);

• µ(x) = xer(1−x) (x ≥ 0) (Ricker dynamics);

• µ(x) = λx/(1 + ax)b (x ≥ 0) (Hassell dynamics).
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Infinite-patch SPOM with regulation

By choosing µ appropriately, we may allow for a
degree of regulation in the colonisation process.

For example, µ(x) might be of the form

• µ(x) = rx(a − x) (0 ≤ x ≤ a) (logistic growth);

• µ(x) = xer(1−x) (x ≥ 0) (Ricker dynamics);

• µ(x) = λx/(1 + ax)b (x ≥ 0) (Hassell dynamics);

• µ(x) = mx (x ≥ 0) (branching).

We can establish a law of large numbers for
X (N)

t
= nt/N , the number of occupied patches at

census t measured relative to the threshold.
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Infinite-patch SPOM - Convergence

Theorem For the infinite-patch CE model with
parameters s and µ(x), let X (N)

t
= nt/N be the number

of occupied patches at census t relative to the
threshold N .

Suppose that µ is continuous with bounded first
derivative.

If X (N)

0
2
→ x0 as N → ∞, then X (N)

t

2
→ xt for all t ≥ 1,

where (xt) is determined by xt+1 = f(xt) (t ≥ 0), where
f(x) = s(x + µ(x)).
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Infinite-patch SPOM - Ricker dynamics
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Bifurcation diagram for the infinite-patch deterministic CE model with Ricker
growth dynamics: xn+1 = 0.3 xn(1 + er(1−xn)) (r ranges from 0 to 7.2).
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Infinite-patch SPOM - Ricker dynamics
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Simulation (open circles) of the infinite-patch CE model with Ricker growth dy-
namics, together with the corresponding limiting deterministic trajectories (solid
circles). Here s = 0.3, N = 200 and (a) r = 0.84, (b) r = 1 (c) r = 4, (d) r = 5.
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