Stochastic models for population networks

III: Discrete-time patch occupancy models [Deterministic and Gaussian approximations]

Phil Pollett

Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

AuStralian Research Council Centre of Excellence for Mathematic and Statistics of Complex Systems

Fionnuala Buckley (MASCOS)
Department of Mathematics The University of Queensland

Ross McVinish (MASCOS) Department of Mathematics The University of Queensland

Metapopulations Metapopulations

Mainland-island configuration

Metapopulations

- A metapopulation is a population that is confined to a network of geographically separated habitat patches (for example a group of islands).
- Individual patches may suffer local extinction.
- Recolonization can occur through dispersal of individuals from other patches.
- In some instances there is an external source of immigration (mainland-island configuration).

Accounting for life cycle

Patch-occupancy models

Many species have life cycles (often annual) that consist of distinct phases, and the propensity for colonization and local extinction is different in each phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the California linderiella (Linderiella occidentalis), both listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly (Euphydryas editha bayensis), now extinct

There are J patches. We record the number n_{t} occupied at time t and suppose that $\left(n_{t}, t \geq 0\right)$ is a discrete-time Markov chain taking values in $\{0,1, \ldots, J\}$ with transition matrix $P=\left(p_{i j}\right)$.

We assume that colonization (C) and extinction (E) occur in separate distinct phases which are governed by their own transition matrices, $E=\left(e_{i j}\right)$ and $C=\left(c_{i j}\right)$. Then, $P=E C$ if the census is taken after the colonization phase or $P=C E$ if the census is taken after the extinction phase.
$P=E C\left\{\begin{array}{cccc}t-1 & t & t+1 & t+2 \\ \vdots\end{array}\right.$

\cdots	E	C	E	C	E	C	E	C	E	C	E	\cdots

$P=C E\{$ $\begin{array}{cccc}\vdots & \vdots & \vdots & \vdots \\ t-1 & t & t+1 & t+2\end{array}$

Recall that the number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law $(0<e<1)$:

$$
e_{i, i-k}=\binom{i}{k} e^{k}(1-e)^{i-k} \quad(k=0,1, \ldots, i)
$$

($e_{i j}=0$ if $j>i$.) The number of colonizations when there are i patches occupied follows a $\operatorname{Bin}\left(J-i, c_{i}\right)$ law:

$$
c_{i, i+k}=\binom{J-i}{k} c_{i}^{k}\left(1-c_{i}\right)^{J-i-k},(k=0,1, \ldots, J-i)
$$

($c_{i j}=0$ if $j<i$.)

Patch-occupancy models
 Patch-occupancy models

Previously we look at two cases.

- $c_{i}=(i / J) c$, where $c \in(0,1]$ (c is the maximum colonization potential).
This entails $c_{0 j}=\delta_{0 j}$, so that 0 is an absorbing state and $\{1, \ldots, J\}$ is a communicating class.
- $c_{i}=c$, where $c \in(0,1]$ (fixed colonization probability-the Mainland-Island configuration).
Now $\{0,1, \ldots, J\}$ is irreducible.
Other possibilities include $c_{i}=c\left(1-\left(1-c_{1} / c\right)^{i}\right)$ and $c_{i}=1-\exp (-i \beta / J)$.

We might also "combine" the two models and thus account for both internal and external colonization: the number of colonizations when there are i patches occupied will be $C \sim \operatorname{Bin}(J-i, d+i c / J)$.

We obtained explicit results for the Mainland-Island model...

J-patch Mainland-Island models

Let $a=p-q=(1-e)(1-c)(0<a<1)$ and $q^{*}=q /(1-a)$, where
$E C$-model: $p=1-e(1-c)$ and $q=c$
$C E$-model: $p=1-e$ and $q=(1-e) c$
Define sequences $\left(p_{t}\right)$ and $\left(q_{t}\right)$ by

$$
q_{t}=q^{*}\left(1-a^{t}\right) \quad \text { and } \quad p_{t}=q_{t}+a^{t} \quad(t \geq 0)
$$

Theorem Given $n_{0}=i$ patches occupied initially, the number n_{t} occupied at time t has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are independent random variables with $B_{1} \sim \operatorname{Bin}\left(i, p_{t}\right)$ and $B_{2} \sim \operatorname{Bin}\left(J-i, q_{t}\right)$. The limiting distribution of n_{t} is $\operatorname{Bin}\left(J, q^{*}\right)$.

We saw that
and

$$
\begin{aligned}
& \mathrm{E}\left(n_{t} \mid n_{0}=\right.i) \\
&=i p_{t}+(J-i) q_{t}=i a^{t}+J q_{t} \\
&\left.\rightarrow J q^{*} \text { as } t \rightarrow \infty\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}\left(n_{t} \mid n_{0}=i\right) & =i p_{t}\left(1-p_{t}\right)+(J-i) q_{t}\left(1-q_{t}\right) \\
& =i a^{t}\left(1-a^{t}\right)\left(1-2 q^{*}\right)+J q_{t}\left(1-q_{t}\right) \\
(& \left.\rightarrow J q^{*}\left(1-q^{*}\right) \text { as } t \rightarrow \infty\right)
\end{aligned}
$$

Now let $X_{t}^{(J)}=n_{t} / J$ be the proportion of occupied patches at time t. Let $\left.i^{(J)}\right)$ be a sequence of initial states such that $x_{0}^{(J)}:=i^{(J)} / J \rightarrow x_{0}$. Then, \ldots

Mainland-Island models: $J \rightarrow \infty$

As $J \rightarrow \infty$,
and

$$
\mathrm{E}\left(X_{t}^{(J)}\right) \rightarrow x_{0} p_{t}+\left(1-x_{0}\right) q_{t}
$$

$$
J \operatorname{Var}\left(X_{t}^{(J)}\right) \rightarrow x_{0} p_{t}\left(1-p_{t}\right)+\left(1-x_{0}\right) q_{t}\left(1-q_{t}\right) .
$$

Indeed, $X_{t}^{(J)} \xrightarrow{P} x_{t}$, where $x_{t}=x_{0} p_{t}+\left(1-x_{0}\right) q_{t}$, and, if $\sqrt{J}\left(x_{0}^{(J)}-x_{0}\right) \rightarrow z_{0}$ (the sequence of initial proportions converges to x_{0} at the "correct" rate), then
$\sqrt{J}\left(X_{t}^{(J)}-x_{t}\right) \xrightarrow{D} Z_{t}$, where $Z_{t} \sim \mathrm{~N}\left(a^{t} z_{0}, v_{t}\right)$ and

$$
v_{t}=x_{0} p_{t}\left(1-p_{t}\right)+\left(1-x_{0}\right) q_{t}\left(1-q_{t}\right) .
$$

We can do better .
Theorem $\left(X_{t_{1}}^{(J)}, X_{t_{2}}^{(J)}, \ldots, X_{t_{n}}^{(J)}\right) \xrightarrow{P}\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n}}\right)$, for any finite sequence of times $t_{1}, t_{2}, \ldots, t_{n}$.

For the corresponding central limit law, define the process $\left(Z_{t}^{(J)}, t \geq 0\right)$ by

$$
Z_{t}^{(J)}=\sqrt{J}\left(X_{t}^{(J)}-x_{t}\right)
$$

and suppose that $\sqrt{J}\left(x_{0}^{(J)}-x_{0}\right) \rightarrow z_{0}$.

Mainland-Island models: $J \rightarrow \infty$

Simulation: $P=E C$

Theorem The finite-dimensional distributions (FDDs) of $\left(Z_{t}^{(J)}\right)$ converge to those of the Gaussian Markov chain $\left(Z_{t}\right)$ defined by

$$
Z_{t+1}=a Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right)
$$

where $a=p-q=(1-e)(1-c)$ and $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, \sigma_{t}^{2}\right)$, where

$$
\sigma_{t}^{2}=x_{t} p(1-p)+\left(1-x_{t}\right) q(1-q) .
$$

Simulation: $P=E C$ (Deterministic path)

Simulation: $P=E C$ (Gaussian approx.)

We can also model the fluctuations about the limiting proportion of patches q^{*}. Let $Z_{t}^{(J)}=\sqrt{J}\left(X_{t}^{(J)}-q^{*}\right)$ and suppose that $\sqrt{J}\left(x_{0}^{(J)}-q^{*}\right) \rightarrow z_{0}$.

Corollary The FDDs of $\left(Z_{t}^{(J)}\right)$ converge to those of the autoregressive (AR-1) process $\left(Z_{t}\right)$ defined by

$$
Z_{t+1}=a Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right)
$$

where $a=p-q=(1-e)(1-c)$ and $E_{t}(t=0,1, \ldots)$ are iid Gaussian $\mathbf{N}\left(0, \sigma^{2}\right)$ random variables with $\sigma^{2}=q^{*}\left(1-q^{*}\right)\left(1-a^{2}\right)$.

AR-1 Simulation: $P=E C$

Gaussian approximations

Can we establish deterministic and Gaussian approximations for the basic J-patch models (where the distribution of n_{t} is not known explicitly)?

Is there a general theory of convergence for discrete-time Markov chains that share the salient features of the patch-occupancy models presented here?

Recall our numerical evaluation of quasi-stationary distributions for the basic J-patch models (described in Lecture 2)

Simulation and qsd: $P=E C$
Simulation and qsd: $P=C E$

General structure: density dependence

We have a sequence of Markov chains $\left(n_{t}^{(J)}\right)$ indexed by J, together with a function f such that

$$
\mathrm{E}\left(n_{t+1}^{(J)} \mid n_{t}^{(J)}\right)=J f\left(n_{t}^{(J)} / J\right)
$$

or, more generally, a sequence of functions $\left(f^{(J)}\right)$ such that

$$
\mathbf{E}\left(n_{t+1}^{(J)} \mid n_{t}^{(J)}\right)=J f^{(J)}\left(n_{t}^{(J)} / J\right)
$$

and $f^{(J)}$ converges uniformly to f.
We then define $\left(X_{t}^{(J)}\right)$ by $X_{t}^{(J)}=n_{t}^{(J)} / J$ and hope that if $X_{0}^{(J)} \rightarrow x_{0}$ as $J \rightarrow \infty$, then $\left(X_{t}^{(J)}\right) \xrightarrow{F D D}\left(x_{t}\right)$, where $\left(x_{t}\right)$ satisfies $x_{t+1}=f\left(x_{t}\right)$ (the limiting deterministic model).

General structure: density dependence

Next we suppose that there is a function s such that

$$
\operatorname{Var}\left(n_{t+1}^{(J)} \mid n_{t}^{(J)}\right)=J s\left(n_{t}^{(J)} / J\right)
$$

or, more generally, a sequence of functions $\left(s^{(J)}\right)$ such that

$$
\operatorname{Var}\left(n_{t+1}^{(J)} \mid n_{t}^{(J)}\right)=J s^{(J)}\left(n_{t}^{(J)} / J\right)
$$

and $s^{(J)}$ converges uniformly to s.
We then define $\left(Z_{t}^{(J)}\right)$ by $Z_{t}^{(J)}=\sqrt{J}\left(X_{t}^{(J)}-x_{t}\right)$ and hope that if $\sqrt{J}\left(X_{0}^{(J)}-x_{0}\right) \rightarrow z_{0}$, then $\left(Z_{t}^{(J)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is a Gaussian Markov chain with $Z_{0}=z_{0}$.

General structure: density dependence

General structure: density dependence

What will be the form of this chain?
Consider the simplest case, $f^{(J)}=f$ and $s^{(J)}=s$.
Formally, by Taylor's theorem,

$$
f\left(X_{t}^{(J)}\right)-f\left(x_{t}\right)=\left(X_{t}^{(J)}-x_{t}\right) f^{\prime}\left(x_{t}\right)+O\left(\left(X_{t}^{(J)}-x_{t}\right)^{2}\right)
$$

and so, since $\mathrm{E}\left(X_{t+1}^{(J)} \mid X_{t}^{(J)}\right)=f\left(X_{t}^{(J)}\right)$ and $x_{t+1}=f\left(x_{t}\right)$,

$$
\mathrm{E}\left(Z_{t+1}^{(J)}\right)=\sqrt{J}\left(\mathrm{E}\left(X_{t+1}^{(J)}\right)-f\left(x_{t}\right)\right)=f^{\prime}\left(x_{t}\right) \mathrm{E}\left(Z_{t}^{(J)}\right)+\cdots,
$$

suggesting that $\mathrm{E}\left(Z_{t+1}\right)=a_{t} \mathbf{E}\left(Z_{t}\right)$, where $a_{t}=f^{\prime}\left(x_{t}\right)$.

Moreover, $J \operatorname{Var}\left(X_{t+1}^{(J)} \mid X_{t}^{(J)}\right)=s\left(X_{t}^{(J)}\right)$, suggesting that

$$
Z_{t+1}=a_{t} Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right)
$$

where $a_{t}=f^{\prime}\left(x_{t}\right)$ and $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, s\left(x_{t}\right)\right)$.

If $x_{\text {eq }}$ is a fixed point of f, and $\sqrt{J}\left(X_{0}^{(J)}-x_{\text {eq }}\right) \rightarrow z_{0}$, then we might hope that $\left(Z_{t}^{(J)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the AR-1 process defined by $Z_{t+1}=a Z_{t}+E_{t}, Z_{0}=z_{0}$, where $a=f^{\prime}\left(x_{\mathrm{eq}}\right)$ and $E_{t}(t=0,1, \ldots)$ are iid Gaussian $\mathrm{N}\left(0, s\left(x_{\text {eq }}\right)\right)$ random variables.

Convergence of Markov chains

We can adapt results of Alan Karr* for our purpose.
*Karr, A.F. (1975) Weak convergence of a sequence of Markov chains. Probability Theory and Related Fields 33, 41-48.

He considered a sequence of time-homogeneous Markov chains ($X_{t}^{(n)}$) on a general state space $(\Omega, \mathcal{F})=(E, \mathcal{E})^{\mathbb{N}}$ with transition kernels $\left(K_{n}(x, A)\right.$, $x \in E, A \in \mathcal{E}$) and initial distributions ($\left.\pi_{n}(A), A \in \mathcal{E}\right)$.
He proved that if (i) $\pi_{n} \Rightarrow \pi$ and (ii) $x_{n} \rightarrow x$ in E implies $K_{n}\left(x_{n}, \cdot\right) \Rightarrow K(x, \cdot \cdot)$, then the corresponding probability measures $\left(\mathbb{P}_{n}^{\pi_{n}}\right)$ on (Ω, \mathcal{F}) also converge: $\mathbb{P}_{n}^{\pi_{n}} \Rightarrow \mathbb{P}^{\pi}$.

The "adaption" to our two-phase patch-occupancy models is simply to observe that Karr's main result (his Theorem 1) remains true for a time inhomogeneous Markov chain with alternating transition kernels: U, V, U, V, \ldots.

For a sequence of such chains we will have a sequence of pairs (U_{n}, V_{n}). In addition to (i), we check (ii') that $x_{n} \rightarrow x$ in E implies $U_{n}\left(x_{n}, \cdot\right) \Rightarrow U(x, \cdot)$ and $V_{n}\left(x_{n}, \cdot\right) \Rightarrow V(x, \cdot)$.

J-patch models: convergence

We follow the above programme for the (timehomogeneous) Markov chain ($X_{t}^{(J)}, Z_{t}^{(J)}$), where recall that $X_{t}^{(J)}$ is the proportion of occupied patches at time t and $Z_{t}^{(J)}=\sqrt{J}\left(X_{t}^{(J)}-x_{t}\right)$, where $\left(x_{t}\right)$ is the limiting deterministic trajectory. We apply the adaption of Karr's results to the two-phase counterpart of $\left(X_{t}^{(J)}, Z_{t}^{(J)}\right)$.

Notation. In what follows, y_{t} is the next state after one phase (E or C) of the limiting deterministic trajectory and Y_{t} is the next state of the limiting Gaussian process (the current states being x_{t} and Z_{t}).

E-phase. Let $\left(i^{(J)}\right)$ be a sequence of integers such that $i^{(J)} \in\{0,1, \ldots, J\}$ and $x^{(J)}:=i^{(J)} / J \rightarrow x$ as $J \rightarrow \infty$, and suppose that $B^{(J)} \sim \operatorname{Bin}\left(i^{(J)}, p\right)$, where $p=1-e$ $(0<e<1)$. Thus, $B^{(J)}$ is the number of survivors of the extinction phase starting with $i^{(J)}$ occupied patches.
Let $X^{(J)}=B^{(J)} / J$. It is easy to see that $X^{(J)} \xrightarrow{P} p x$, and, if $\sqrt{N}\left(x^{(J)}-x\right) \rightarrow z$, then $\sqrt{N}\left(X^{(J)}-p x\right) \xrightarrow{D} Z$, where $Z \sim \mathrm{~N}(p z, x p(1-p))$. Therefore,

$$
y_{t}=(1-e) x_{t} \quad \text { and } \quad Y_{t}=(1-e) Z_{t}+\mathbf{N}\left(0, e(1-e) x_{t}\right) .
$$

J-patch models: convergence

C-phase. Let $\left(i^{(J)}\right)$ be a sequence of integers such that $i^{(J)} \in\{0,1, \ldots, J\}$ and $x^{(J)}:=i^{(J)} / J \rightarrow x$ as $J \rightarrow \infty$, and suppose that $C^{(J)} \sim \operatorname{Bin}\left(J-i^{(J)}, c i^{(J)} / J\right)(0<c<1)$. Thus, $C^{(J)}$ is the number of colonizations starting with $i^{(J)}$ occupied patches. Let $X^{(J)}=x^{(J)}+C^{(J)} / J$ (being the proportion of occupied patches after the colonization phase). It is easy to prove that $X^{(J)} \xrightarrow{P} x(1+c-c x)$, and, if $\sqrt{J}\left(x^{(J)}-x\right) \rightarrow z$, then $\sqrt{J}\left(X^{(J)}-x(1+c-c x)\right) \xrightarrow{D} Z$, where $Z \sim \mathrm{~N}((1+c-2 c x) z, c x(1-x)(1-c x))$. Therefore,

$$
\begin{aligned}
& y_{t}=x_{t}\left(1+c-c x_{t}\right) \quad \text { and } \\
& Y_{t}=\left(1+c-2 c x_{t}\right) Z_{t}+\mathrm{N}\left(0, c x_{t}\left(1-x_{t}\right)\left(1-c x_{t}\right)\right) .
\end{aligned}
$$

We can thus "build" the limiting deterministic $\left(x_{t}\right)$ trajectory and the limiting Gaussian process $\left(Z_{t}\right)$ for each of our models (EC and CE) by specifying $f(x)$ such that $x_{t+1}=f\left(x_{t}\right)$, and $a(x)$ and $s(x)$ such that $Z_{t+1}=a\left(x_{t}\right) Z_{t}+\mathbf{N}\left(0, s\left(x_{t}\right)\right)$.

We find that $a(x)=f^{\prime}(x)$, as expected.

J-patch models: convergence

EC-model. $f(x)=(1-e)(1+c-c(1-e) x) x$ and

$$
\begin{aligned}
Z_{t+1}= & \left(1+c-2 c(1-e) x_{t}\right)\left[(1-e) Z_{t}+\mathbf{N}\left(0, e(1-e) x_{t}\right)\right] \\
& +\mathbf{N}\left(0, c(1-e) x_{t}\left(1-(1-e) x_{t}\right)\left(1-c(1-e) x_{t}\right)\right),
\end{aligned}
$$

implying that $a(x)=(1-e)(1+c-2 c(1-e) x)$ and

$$
\begin{gathered}
s(x)=c(1-e) x(1-(1-e) x)(1-c(1-e) x) \\
+(1+c-2 c(1-e) x)^{2} e(1-e) x \\
=(1-e)\left[c(1-(1-e) x)(1-c(1-e) x)+e(1+c-2 c(1-e) x)^{2}\right] x .
\end{gathered}
$$

CE-model. $f(x)=(1-e)(1+c-c x) x$ and

$$
\begin{aligned}
Z_{t+1}=(1-e)\left[\left(1+c-2 c x_{t}\right)\right. & \left.Z_{t}+\mathbf{N}\left(0, c x_{t}\left(1-x_{t}\right)\left(1-c x_{t}\right)\right)\right] \\
& +\mathbf{N}\left(0, e(1-e) x_{t}\left(1+c-c x_{t}\right)\right)
\end{aligned}
$$

implying that $a(x)=(1-e)(1+c-2 c x)$ and

$$
\begin{gathered}
s(x)=e(1-e) x(1+c-c x)+(1-e)^{2} c x(1-x)(1-c x) \\
\cdots=(1-e)[e+c(1-x)(1-c(1-e) x)] x .
\end{gathered}
$$

J-patch models: convergence

Theorem For either of the J-patch state-dependent models, if $X_{0}^{(J)} \rightarrow x_{0}$ as $J \rightarrow \infty$, then

$$
\left(X_{t_{1}}^{(J)}, X_{t_{2}}^{(J)}, \ldots, X_{t_{n}}^{(J)}\right) \xrightarrow{P}\left(x_{t_{1}}, x_{t_{2}}, \ldots, x_{t_{n}}\right)
$$

for any finite sequence of times $t_{1}, t_{2}, \ldots, t_{n}$, where $\left(x_{t}\right)$ is defined by the recursion $x_{t+1}=f\left(x_{t}\right)$ with

EC-model: $f(x)=(1-e)(1+c-c(1-e) x) x$
$C E$-model: $f(x)=(1-e)(1+c-c x) x$

Theorem If, additionally, $\sqrt{J}\left(X_{0}^{(J)}-x_{0}\right) \rightarrow z_{0}$, then $\left(Z_{t}^{(J)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the Gaussian Markov chain defined by

$$
Z_{t+1}=f^{\prime}\left(x_{t}\right) Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right)
$$

where $E_{t}(t=0,1, \ldots)$ are independent Gaussian random variables with $E_{t} \sim \mathbf{N}\left(0, s\left(x_{t}\right)\right)$ and

$$
\begin{array}{r}
E C \text {-model: } s(x)=(1-e)[c(1-(1-e) x)(1-c(1-e) x) \\
\left.+e(1+c-2 c(1-e) x)^{2}\right] x \\
C E \text {-model: } s(x)=(1-e)[e+c(1-x)(1-c(1-e) x)] x
\end{array}
$$

Simulation: $P=E C$

Simulation: $P=E C$ (Deterministic path)

Simulation: $P=E C$ (Gaussian approx.) Simulation: $P=C E$

J-patch models: convergence

In both cases (EC and CE) the deterministic model has two equilibria, $x=0$ and $x=x^{*}$, given by

$$
\begin{aligned}
E C \text {-model: } & & x^{*} & =\frac{1}{1-e}\left(1-\frac{e}{c(1-e)}\right) \\
& C E \text {-model: } & & x^{*}=1-\frac{e}{c(1-e)}
\end{aligned}
$$

Indeed, we may write $f(x)=x\left(1+r\left(1-x / x^{*}\right)\right)$, $r=c(1-e)-e$ for both models (the form of the discrete-time logistic model), and we obtain the condition $c>e /(1-e)$ for x^{*} to be positive and then stable. Note: this is the condition for supercriticality in the corresponding infinite-patch model (Lecture 2).

Corollary If $c>e /(1-e)$, so that x^{*} given above is stable, and $\sqrt{J}\left(X_{0}^{(J)}-x^{*}\right) \rightarrow z_{0}$, then $\left(Z_{t}^{(J)}\right) \xrightarrow{F D D}\left(Z_{t}\right)$, where $\left(Z_{t}\right)$ is the AR-1 process defined by

$$
Z_{t+1}=(1+e-c(1-e)) Z_{t}+E_{t} \quad\left(Z_{0}=z_{0}\right)
$$

where $E_{t}(t=0,1, \ldots)$ are independent Gaussian $\mathrm{N}\left(0, \sigma^{2}\right)$ random variables with

$$
\begin{aligned}
& E C \text {-model: } \sigma^{2}=(1-e)\left[c\left(1-(1-e) x^{*}\right)\left(1-c(1-e) x^{*}\right)\right. \\
&\left.+e\left(1+c-2 c(1-e) x^{*}\right)^{2}\right] x^{*} \\
& C E \text {-model: } \sigma^{2}=(1-e)\left[e+c\left(1-x^{*}\right)\left(1-c(1-e) x^{*}\right)\right] x^{*}
\end{aligned}
$$

Simulation: $P=C E$ (AR-1 approx.)
 AR-1 Simulation: $P=C E$

