Stochastic models for population networks

II: Discrete-time patch occupancy models [Exact results]

Phil Pollett
Department of Mathematics
The University of Queensland
http://www.maths.uq.edu.au/~pkp

AuSTRalian Research Council Centre of Excellence for Mathematic and Statistics of Complex Systems

Fionnuala Buckley (MASCOS)
Department of Mathematics The University of Queensland

Metapopulations

- A metapopulation is a population that is confined to a network of geographically separated habitat patches (for example a group of islands).
- Individual patches may suffer local extinction.
- Recolonization can occur through dispersal of individuals from other patches.
- In some instances there is an external source of immigration (mainland-island configuration).

Typical questions

Patch-occupancy models

Given an appropriate model

- Assessing population viability:
- What is the expected time to (total) extinction* ?
- What is the probability of extinction by time t^{*} ?
- Can we improve population viability ?
- How do we estimate the parameters of the model ?
- Can we determine the stationary/quasi-stationary distributions?

We record the number n_{t} of occupied patches at each time t and suppose that $\left(n_{t}, t \geq 0\right)$ is a Markov chain in discrete or continuous time.

In Lecture 1 we looked at the stochastic logistic (SL) model of Feller*.
*Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrscheinlichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.
*Or first total extinction in the mainland-island setup.

A continuous-time model

The SL model

There are J patches. Each occupied patch becomes empty at rate e and colonization of empty patches occurs at rate c / J for each occupied-unoccupied pair.
The state space of the Markov chain $\left(n_{t}, t \geq 0\right)$ is $S=\{0,1, \ldots, J\}$ and the transitions are:

$$
\begin{array}{lll}
n \rightarrow n+1 & \text { at rate } & \frac{c}{J} n(J-n) \\
n \rightarrow n-1 & \text { at rate } & \text { en }
\end{array}
$$

Mainland-island version (v is the immigration rate):

$$
\begin{array}{lll}
n \rightarrow n+1 & \text { at rate } & v(J-n)+\frac{c}{J} n(J-n) \\
n \rightarrow n-1 & \text { at rate } & \text { en }
\end{array}
$$

We identified an approximating deterministic model for the proportion, $X_{t}^{(J)}=n_{t} / J$, of occupied patches at time t. A functional law of large numbers established convergence of the family $\left(X_{t}^{(J)}\right)$ to the unique trajectory $\left(x_{t}\right)$ satisfying

$$
x_{t}^{\prime}=c x_{t}\left(1-x_{t}\right)-e x_{t}=c x_{t}\left(1-\rho-x_{t}\right),
$$

namely

$$
x_{t}=\frac{(1-\rho) x_{0}}{x_{0}+\left(1-\rho-x_{0}\right) e^{-(c-e) t}},
$$

being the classical Verhulst* model.

[^0]The SL model $(c<e) x=0$ stable The SL model $(c>e) x=1-e / c$ stable

Simulation of SL Model ($J=20, c=0.0325, e=0.1625$)

Theorem If $X_{0}^{(J)} \rightarrow x_{0}$ as $J \rightarrow \infty$, then the family of processes $\left(X_{t}^{(J)}\right)$ converges uniformly in probability on finite time intervals to the deterministic trajectory $\left(x_{t}\right)$: for every $\epsilon>0$,

$$
\lim _{J \rightarrow \infty} \operatorname{Pr}\left(\sup _{s \leq t}\left|X_{s}^{(J)}-x_{s}\right|>\epsilon\right)=0
$$

Accounting for life cycle
 Butterfly life cycle

Many species have life cycles (often annual) that consist of distinct phases, and the propensity for colonization and local extinction is different in each phase. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the California linderiella (Linderiella occidentalis), both listed under the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly (Euphydryas editha bayensis), now extinct

Egg $\simeq 4$ days

Larva (caterpillar) $\simeq 14$ days

Pupa (chrysalis) $\simeq 7$ days

Colonization and extinction phases

Colonization is restricted to the adult phase, and there is a greater propensity for local extinction in the non-adult phases.

We will assume that that colonization (C) and extinction (E) occur in separate distinct phases.

There are several ways to model this:

- A quasi-birth-death process with two phases
- A non-homogeneous continuous-time Markov chain (cycle between two sets of transition rates)
- A discrete-time Markov chain

Recall that there are J patches and that n_{t} is the number of occupied patches at time t. We suppose that $\left(n_{t}, t=0,1, \ldots\right)$ is a discrete-time Markov chain taking values in $S=\{0,1, \ldots, J\}$ with a 1-step transition matrix $P=\left(p_{i j}\right)$ constructed as follows.

The extinction and colonization phases are governed by their own transition matrices, $E=\left(e_{i j}\right)$ and $C=\left(c_{i j}\right)$.

We let $P=E C$ if the census is taken after the colonization phase or $P=C E$ if the census is taken after the extinction phase.

$E C$ versus $C E$
 Extinction phase

Suppose that local extinction occurs at any given patch with probability $e(0<e<1)$, independently of other occupied patches. So, the number of extinctions when there are i patches occupied has a binomial Bin (i, e) distribution, and therefore

$$
e_{i, i-k}=\binom{i}{k} e^{k}(1-e)^{i-k} \quad(k=0,1, \ldots, i) .
$$

$P=C E\left\{\begin{array}{cccc}\vdots & \vdots & \vdots \\ & t-1 & t & t+1 \\ & & t+2\end{array}\right.$
We also have $e_{i j}=0$ if $j>i$.

Colonization phase

Colonization phase

Suppose that colonization occurs according to the following mechanism.
If there are i occupied patches, then each unoccupied patch is colonized with probability $c_{i}=(i / J) c$, where $c \in(0,1]$ is a fixed maximum colonization potential, the (hypothetical) probability that a single unoccupied patch is colonized by the fully occupied network.
So, the unoccupied patches are colonized independently with the same probability, this probability being proportional to the number of patches with the potential to colonize.

Therefore, the number of colonizations when there are i patches occupied has a binomial $\operatorname{Bin}\left(J-i, c_{i}\right)$ distribution, and so

$$
c_{i, i+k}=\binom{J-i}{k} c_{i}^{k}\left(1-c_{i}\right)^{J-i-k},(k=0,1, \ldots, J-i),
$$

In particular, $c_{0 j}=\delta_{0 j}$. We also have $c_{i j}=0$, for $j<i$.
Notice that 0 is an absorbing state and $C=\{1, \ldots, J\}$ is a communicating class.
There are other sensible choices for c_{i} : for example $c_{i}=c\left(1-\left(1-c_{1} / c\right)^{i}\right)$ or $c_{i}=1-\exp (-i \beta / J)$.

Evaluation of P

We can evaluate P elementwise as follows. If $P=E C$, then $p_{0 j}=\delta_{0 j}, p_{i 0}=e_{i 0}=e^{i}, i \geq 1$, and, for $i, j \geq 1$,

$$
p_{i j}=\sum_{k=1}^{\min \{i, j\}}\binom{i}{k}(1-e)^{k} e^{i-k}\binom{J-k}{j-k} c_{k}^{j-k}\left(1-c_{k}\right)^{J-j}
$$

If $P=C E$, then $p_{0 j}=\delta_{0 j}$, and, for $i \geq 1$ and $j \geq 0$,
$p_{i j}=\sum_{k=\max \{i, j\}}^{J}\binom{J-i}{k-i} c_{i}^{k-i}\left(1-c_{i}\right)^{J-k}\binom{k}{k-j} e^{k-j}(1-e)^{j}$.
In particular, for $i \geq 1, p_{i 0}=e^{i}\left(1-c_{i}(1-e)\right)^{J-i}$.

Equivalent independent phases

For the $C E$-model,

$$
\mathbf{E}\left(z^{n_{t+1}} \mid n_{t}=i\right)=(e+(1-e) z)^{i}\left(1-(1-e) c_{i}(1-z)\right)^{J-i} .
$$

Thus, given $n_{t}=i, n_{t+1}$ has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are two independent random variables with $B_{1} \sim \operatorname{Bin}(i, 1-e)$ and $B_{2} \sim \operatorname{Bin}\left(J-i,(1-e) c_{i}\right)$.
It is as if each of the i occupied patches remains occupied with probability $1-e$ and each of the $J-i$ unoccupied patches becomes occupied with probability $(1-e) c_{i}$, all J patches being affected independently.

For the $E C$-model, the best we can do is

$$
\mathrm{E}\left(z^{n_{t+1}} \mid n_{t}=i\right)=\mathrm{E}\left\{z^{B}\left(1-c_{B}(1-z)\right)^{J-B}\right\}
$$

where $B \sim \operatorname{Bin}(i, 1-e)$.

However, note the large- J asymptotics when $c_{i}=i c / J$. Write $p_{i}^{(J)}(z)=\mathrm{E}\left(z^{n_{t+1}} \mid n_{t}=i\right)$.
For the $C E$-model,

$$
\lim _{J \rightarrow \infty} p_{i}^{(J)}(z)=[e+(1-e) z \exp (-c(1-e)(1-z))]^{i}
$$

For the $E C$-model,

$$
\lim _{J \rightarrow \infty} p_{i}^{(J)}(z)=[e+(1-e) z \exp (-c(1-z))]^{i}
$$

Large-J

However, note the large- J asymptotics when $c_{i}=i c / J$.
Write $p_{i}^{(J)}(z)=\mathrm{E}\left(z^{n+1} \mid n_{t}=i\right)$.
For the CE-model,

$$
\lim _{J \rightarrow \infty} p_{i}^{(J)}(z)=[e+(1-e) z \exp (-c(1-e)(1-z))]^{i}
$$

For the EC-model,
$\lim _{J \rightarrow \infty} p_{i}^{(J)}(z)=[e+(1-e) z \exp (-c(1-z))]^{i}$
Branching!

Infinitely many patches

Now $S=\{0,1, \ldots\}$.
The number of extinctions when there are i patches occupied follows the $\operatorname{Bin}(i, e)$ law (as before), but in the colonization phase the number of colonizations when there are i patches occupied follows a Poisson ($i c$) Iaw (previously a binomial $\operatorname{Bin}(J-i, i c / J)$ law).

The effect is
Theorem Both infinite patch models are GaltonWatson branching processes.

Infinitely many patches - branching

Infinitely many patches - branching

The occupied patches independently produce "offspring" according to the following distributions.

For the $E C$-model, $p_{10}=e$ and

$$
p_{1 j}=(1-e) \exp (-c) \frac{c^{j-1}}{(j-1)!} \quad(j \geq 1)
$$

the interpretation being that each individual "dies" with probability e or otherwise is joined by a random number of new offspring that follows a Poisson(c) law.

For the $C E$-model, $p_{10}=e \exp (-c(1-e))$ and

$$
\begin{aligned}
& p_{1 j}=(1-e) \exp (-c(1-e)) \frac{(c(1-e))^{j-1}}{(j-1)!} \\
&+e \exp (-c(1-e)) \frac{(c(1-e))^{j}}{j!} \quad(j \geq 1) .
\end{aligned}
$$

The individual survives with probability $1-e$ or dies with probability e, and there is a random number of new offspring that follows a Poisson $(c(1-e))$ law.

We can now invoke the encylopaedic theory of branching processes.

Infinitely many patches

For both the $E C$ and $C E$ models, the mean number of offspring μ is given by $\mu=(1+c)(1-e)$. The corresponding variance σ^{2} is:

For the $E C$-model $\sigma^{2}=(1-e)\left((1+c)^{2} e+c\right)$.
For the $C E$-model $\sigma^{2}=(e+c)(1-e)$.
Notice that $\sigma_{E C}^{2}-\sigma_{C E}^{2}=c(2+c) e(1-e)>0$.
Recall that, given $n_{0}=i, \mathrm{E}\left(n_{t}\right)=i \mu^{t}$ and

$$
\operatorname{Var}\left(n_{t}\right)=\left\{\begin{array}{lll}
i \sigma^{2} t & \text { if } \mu=1 & (e=c /(1+c)) \\
i \sigma^{2}\left(\mu^{t}-1\right) \mu^{t-1} /(\mu-1) & \text { if } \mu \neq 1 & (e \neq c /(1+c)) .
\end{array}\right.
$$

Theorem For both models extinction occurs with probability 1 if and only if $e \geq c /(1+c)$; otherwise the extinction probability η is the unique solution to $s=p(s)$ on the interval $(0,1)$, where:

$$
\begin{aligned}
& E C \text {-model: } p(s)=e+(1-e) s \exp (-c(1-s)) \\
& C E \text {-model: } p(s)=(e+(1-e) s) \exp (-c(1-e)(1-s))
\end{aligned}
$$

And much more

- The expected time to extinction.
- Yaglom's theorem on limiting-conditional (quasi-stationary) distributions.

Back to the J-patch models

Simulation: $P=E C$

Recall that

In the extinction phase the number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law.

In the colonization phase the number of colonizations when there are i patches occupied follows a binomial $\operatorname{Bin}\left(J-i, c_{i}\right)$ law, where $c_{i}=i c / J$.

Exact analytical results are difficult to come by-later we study deterministic and Gaussian approximations.

Numerical procedures are routine.

Simulation: $P=C E$
 Extinction probability: vary t

Extinction probability: vary \boldsymbol{n}_{0}
Expected extinction time: vary \boldsymbol{n}_{0}

Simulation: $P=E C$

Simulation: $P=C E$

Quasi stationarity

Simulation and qsd: $P=E C$

We can model this behaviour using a limiting conditional distribution (Icd) ($\left.m_{j}, j=1, \ldots, J\right)$; often called a quasi-stationary distribution (qsd)*.
Icd:

$$
\lim _{t \rightarrow \infty} \operatorname{Pr}\left(n_{t}=j \mid n_{t} \neq 0\right)=m_{j}
$$

qsd:

$$
\operatorname{Pr}\left(n_{0}=j\right)=m_{j} \Longrightarrow \operatorname{Pr}\left(n_{t}=j \mid n_{t} \neq 0\right)=m_{j} \quad(\forall t>0) .
$$

*In the infinite state space setting, the distinction between Icd and is both subtle and interesting.

Simulation and qsd: $P=C E$
 J-patch Mainland-Island models

In the extinction phase the number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law.

In the colonization phase the number of colonizations when there are i patches occupied follows a binomial $\operatorname{Bin}(J-i, c)$ law.

In the extinction phase the number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law.

In the colonization phase the number of colonizations when there are i patches occupied follows a binomial $\operatorname{Bin}(J-i, c)$ law. Now the colonization probability c does not depend on how many patches are occupied.

In the extinction phase the number of extinctions when there are i patches occupied follows a $\operatorname{Bin}(i, e)$ law.

In the colonization phase the number of colonizations when there are i patches occupied follows a binomial $\operatorname{Bin}(J-i, c)$ law. Now the colonization probability c does not depend on how many patches are occupied.

This greatly simplifies the analysis!

J-patch Mainland-Island models

The behaviour of both models can be summarized in terms of a single pair of parameters (p, q) :

$$
\begin{aligned}
& E C \text {-model: } p=1-e(1-c) \text { and } q=c \\
& C E \text {-model: } p=1-e \text { and } q=(1-e) c
\end{aligned}
$$

Proposition Given $n_{t}=i, n_{t+1}$ has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are two independent random variables with $B_{1} \sim \operatorname{Bin}(i, p)$ and $B_{2} \sim \operatorname{Bin}(J-i, q)$.

Proposition Given $n_{t}=i, n_{t+1}$ has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are two independent random variables with $B_{1} \sim \operatorname{Bin}(i, p)$ and $B_{2} \sim \operatorname{Bin}(J-i, q)$.

It is as if each of the i currently occupied patches remains occupied with probability p and each of the $J-i$ currently unoccupied patches become occupied with probability q (all patches being affected independently). Thus the process has some of the character of an urn model.

We can improve on this result

J-patch Mainland-Island models

Reparameterize by setting $a=p-q=(1-e)(1-c)$, being the same for both models $(0<a<1)$, and $q^{*}=q /(1-a)$. Define sequences $\left(p_{t}\right)$ and $\left(q_{t}\right)$ by

$$
q_{t}=q^{*}\left(1-a^{t}\right) \quad \text { and } \quad p_{t}=q_{t}+a^{t} \quad(t \geq 0) .
$$

Theorem Given $n_{0}=i$ patches occupied initially, the number n_{t} occupied at time t has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are independent random variables with $B_{1} \sim \operatorname{Bin}\left(i, p_{t}\right)$ and $B_{2} \sim \operatorname{Bin}\left(J-i, q_{t}\right)$. The limiting distribution of n_{t} is $\operatorname{Bin}\left(J, q^{*}\right)$.

Theorem Given $n_{0}=i$ patches occupied initially, the number n_{t} occupied at time t has the same distribution as $B_{1}+B_{2}$, where B_{1} and B_{2} are independent random variables with $B_{1} \sim \operatorname{Bin}\left(i, p_{t}\right)$ and $B_{2} \sim \operatorname{Bin}\left(J-i, q_{t}\right)$. The limiting distribution of n_{t} is $\operatorname{Bin}\left(J, q^{*}\right)$.

It is as if each of the i initially occupied patches remains occupied with probability p_{t} and each of the $J-i$ initially unoccupied patches become occupied with probability q_{t} (all patches being affected independently). The limiting expected proportion occupied is q^{*}.

J-patch Mainland-Island models

Simulation and sd: $P=E C$

We have in particular that

$$
\begin{aligned}
& \mathrm{E}\left(n_{t} \mid n_{0}=\right.i) \\
&=i p_{t}+(J-i) q_{t}=i a^{t}+J q_{t} \\
&(\left.\rightarrow J q^{*} \text { as } t \rightarrow \infty\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \operatorname{Var}\left(n_{t} \mid n_{0}=i\right)=i p_{t}\left(1-p_{t}\right)+(J-i) q_{t}\left(1-q_{t}\right) \\
&=i a^{t}\left(1-a^{t}\right)\left(1-2 q^{*}\right)+J q_{t}\left(1-q_{t}\right) \\
&\left(\rightarrow J q^{*}\left(1-q^{*}\right) \text { as } t \rightarrow \infty\right) .
\end{aligned}
$$

Simulation and sd: $P=C E$

Infinite-patch Mainland-Island models

Now suppose that $c=d / J$ (imagine that a fixed external colonization potential d is distributed evenly among all J patches).
In the limit as $J \rightarrow \infty$, the number of unoccupied patches that are colonized has a Poisson distribution with mean d (all unoccupied patches being affected independently).
Thus, the analogous infinite-patch model has $c_{i j}=0$ for $j<i$ and $c_{i j}=\exp (-d) d^{j-i} /(j-i)!(j=i, i+1, \ldots)$.
Note that in contrast with our earlier infinite-state models, state 0 is no longer absorbing.

Infinite-patch Mainland-Island models

Let $m=d$ for the $E C$-model and $m=(1-e) d$ for the $C E$-model.

Proposition Given $n_{t}=i, n_{t+1}$ has the same distribution as $B+M$, where B and M are two independent random variables with $B \sim \operatorname{Bin}(i, 1-e)$ and $M \sim \operatorname{Poisson}(m)$.

It is as if each of the i currently occupied patches remains occupied with probability $1-e$ and a Poisson distributed number of unoccupied patches become occupied, the mean number being m (all patches being affected independently).

Infinite-patch Mainland-Island models

Indeed we observe that ..
Proposition The process $\left(n_{t}\right)$ is a Galton-Watson process with immigration: each occupied patch has a Bernoulli Bin $(1,1-e)$ distributed number of offspring and in each generation there is a Poisson (m) number of immigrants. The mean number of offspring is $1-e$ (<1) and the mean number of immigrants is $m(<\infty)$.

Again we can invoke general theory.

Infinite-patch Mainland-Island models

Theorem For the infinite-patch model with parameters e and m, given $n_{0}=i$ patches occupied initially, the number n_{t} occupied at time t has the same distribution as $B_{t}+M_{t}$, where B_{t} and M_{t} are two independent random variables with $B_{t} \sim \operatorname{Bin}\left(i,(1-e)^{t}\right)$ and $M_{t} \sim \operatorname{Poisson}\left(m_{t}\right)$, where $m_{t}=(m / e)\left(1-(1-e)^{t}\right)$. The limiting distribution of n_{t} is Poisson $(\mathrm{m} / \mathrm{e})$.

It is as if each of the i initially occupied patches remains occupied with probability $(1-e)^{t}$ and a Poisson distributed number unoccupied patches become occupied, the mean number being m_{t} (all patches affected independently).

Simulation and sd: $P=C E$
 First passage times

A measure of persistence for the Mainland-Island models is the expected time to first total extinction of the island network.

Theorem For the J-patch Mainland-Island model with parameters p and q, given $n_{0}=i$ patches occupied initially, the expected time to first enter state 0 is given by

$$
\begin{aligned}
\mu_{i 0} & =\sum_{k=1}^{J}\binom{J}{k} \frac{b^{k}}{1-a^{k}}-\sum_{j=0}^{i}\binom{i}{j}(-1)^{j} \sum_{k=0}^{J-i}\binom{J-i}{k} \frac{b^{k}\left(1-\delta_{j 0} \delta_{k 0}\right)}{1-a^{j+k}} \\
& =\sum_{n=0}^{\infty}\left[\left(1+b a^{n}\right)^{J}-\left(1-a^{n}\right)^{i}\left(1+b a^{n}\right)^{J-i}\right],
\end{aligned}
$$

where $a=p-q$ and $b=q /(1-p)$.

Theorem For the infinite-patch Mainland-Island model with parameters e and m, given $n_{0}=i$ patches occupied initially, the expected time to first enter state 0 is always finite and is given by

$$
\begin{aligned}
\mu_{i 0} & =\sum_{j=1}^{i}\binom{i}{j}(-1)^{j+1} \sum_{n=0}^{\infty}(1-e)^{j n} \exp \left(\frac{m}{e}(1-e)^{n}\right) \\
& =\sum_{n=0}^{\infty}\left[1-\left(1-(1-e)^{n}\right)^{i}\right] \exp \left(\frac{m}{e}(1-e)^{n}\right) .
\end{aligned}
$$

[^0]: *Verhulst, P.F. (1838) Notice sur la loi que la population suit dans son accroisement. Corr. Math. et Phys. X, 113-121.

