An SIS epidemic in a large population with individual variation

Phil Pollett

Department of Mathematics The University of Queensland http://www.maths.uq.edu.au/~pkp

Main message

Ross McVinish Department of Mathematics University of Queensland

[MP1] McVinish, R. and Pollett, P.K. (2012) A central limit theorem for a discretetime SIS model with individual variation. *Journal of Applied Probability* 49, 521– 530.

[MP2] McVinish, R. and Pollett, P.K. (2013) The deterministic limit of a stochastic logistic model with individual variation. *Mathematical Biosciences* 241, 109–114.

The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model was introduced [WD] to study infections, in a closed population of n individuals, that do not confer any long lasting immunity. If Y(t) is the number of infectives at time t, then $(Y(t), t \ge 0)$ is a continuous-time Markov chain on $\{0, 1, ..., n\}$ with transitions

 $Y \to Y + 1$ at rate $\frac{\lambda}{n}Y(n - Y)$ (infection) $Y \to Y - 1$ at rate μY (recovery)

[WD] Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic models of an epidemic. *Mathematical Biosciences* 11, 261–265.

The proportion of infectives Y(t)/n obeys a *law of large numbers*.

Theorem. If $Y(0)/n \rightarrow y_0$ as $n \rightarrow \infty$, then (Y(t)/n) converges in probability uniformly over finite time intervals to the solution of the ODE

$$\dot{y} = \lambda y(1-y) - \mu y = \lambda y(1-\rho - y),$$

where $\rho = \mu / \lambda$, namely

$$y(t) = \frac{(1-\rho)y_0}{y_0 + (1-\rho - y_0)e^{-\lambda(1-\rho)t}}, \quad y(0) = y_0.$$

Infection dies out ($\lambda < \mu$)

Infection becomes endemic ($\lambda > \mu$)

Suppose now that the population is heterogeneous in that individuals have different characteristics: individual i (i = 1, ..., n) has

- an exponentially distributed recovery period with mean μ_i^{-1} ;
- a resistence level λ_i^{-1} ; and,
- when infected, contributes κ_i to the infective potential of the population.

Suppose now that the population is heterogeneous in that individuals have different characteristics: individual i (i = 1, ..., n) has

- an exponentially distributed recovery period with mean μ_i^{-1} ;
- a resistence level λ_i^{-1} ; and,
- when infected, contributes κ_i to the infective potential of the population.

Let $X_i^{(n)}$ be 1 or 0 according to whether individual *i* is infected or not, and let $X^{(n)} = (X_1^{(n)}, \ldots, X_n^{(n)})$ be the state of the population.

The model

Suppose $(X^{(n)}(t), t \ge 0)$ is a continuous-time Markov chain on $\{0, 1\}^n$ with transitions

$$(\dots, 0, \dots) \to (\dots, 1, \dots) \quad \text{at rate} \quad \lambda_i f\left(\frac{1}{n} \sum_{j=1}^n \kappa_j X_j^{(n)}\right)$$
$$(\dots, 1, \dots) \to (\dots, 0, \dots) \quad \text{at rate} \quad \mu_i.$$
$$\uparrow$$

Position i $(i = 1, \ldots, n)$

The function $f : \mathbb{R}_+ \to \mathbb{R}_+$ is Lipschitz continuous.

The model

For this talk take $\kappa_i = 1$ and f(x) = x, so that our Markov chain has transitions

 $(\dots, 0, \dots) \to (\dots, 1, \dots) \quad \text{at rate} \quad \lambda_i \bar{X}^{(n)}$ $(\dots, 1, \dots) \to (\dots, 0, \dots) \quad \text{at rate} \quad \mu_i,$ \uparrow Position $i \ (i = 1, \dots, n)$

where $\bar{X}^{(n)} = \frac{1}{n} \sum_{j=1}^{n} X_j^{(n)}$ (the *proportion* of the population that is infected).

The model

For this talk take $\kappa_i = 1$ and f(x) = x, so that our Markov chain has transitions

 $(\dots, 0, \dots) \to (\dots, 1, \dots) \quad \text{at rate} \quad \lambda_i \bar{X}^{(n)}$ $(\dots, 1, \dots) \to (\dots, 0, \dots) \quad \text{at rate} \quad \mu_i,$ \uparrow Position $i \ (i = 1, \dots, n)$

where $\bar{X}^{(n)} = \frac{1}{n} \sum_{j=1}^{n} X_j^{(n)}$ (the *proportion* of the population that is infected).

The plan: to get a handle on large *n* behaviour, and, then, to determine conditions for endemicity.

Endemicity

Disease free state is globally stable

Endemicity!

Think of the individual characteristics $\theta_i := (\lambda_i, \mu_i)$ as (random) points in a subset *S* of \mathbb{R}^2_+ .

Define sequences of random measures $(\sigma^{(n)})$ and random-measure-valued processes $(m_t^{(n)}, t \ge 0)$ by

 $\sigma^{(n)}(B) = \#\{\theta_i \in B\}/n, \qquad B \in \mathcal{B}(S),$

 $m_t^{(n)}(B) = \#\{\theta_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}(S).$

Think of the individual characteristics $\theta_i := (\lambda_i, \mu_i)$ as (random) points in a subset *S* of \mathbb{R}^2_+ .

Define sequences of random measures $(\sigma^{(n)})$ and random-measure-valued processes $(m_t^{(n)}, t \ge 0)$ by

 $\sigma^{(n)}(B) = \#\{\theta_i \in B\}/n, \qquad B \in \mathcal{B}(S),$

$$m_t^{(n)}(B) = \#\{\theta_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}(S).$$

We are going to suppose that $\sigma^{(n)} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ .

Think of the individual characteristics $\theta_i := (\lambda_i, \mu_i)$ as (random) points in a subset *S* of \mathbb{R}^2_+ .

Define sequences of random measures $(\sigma^{(n)})$ and random-measure-valued processes $(m_t^{(n)}, t \ge 0)$ by

 $\sigma^{(n)}(B) = \#\{\theta_i \in B\}/n, \qquad B \in \mathcal{B}(S),$

 $m_t^{(n)}(B) = \#\{\theta_i \in B : X_{i,t}^{(n)} = 1\}/n, \qquad B \in \mathcal{B}(S).$

We are going to suppose that $\sigma^{(n)} \xrightarrow{d} \sigma$ for some non-random (probability) measure σ .

Equivalently, we may define $(\sigma^{(n)})$ and $(m_t^{(n)})$ by

$$\int h(\theta)\sigma^{(n)}(d\theta) = \frac{1}{n}\sum_{i=1}^{n}h(\theta_i)$$
$$\int h(\theta)m_t^{(n)}(d\theta) = \frac{1}{n}\sum_{i=1}^{n}X_{i,t}^{(n)}h(\theta_i),$$

for *h* in $C_b(S)$, the class of bounded continuous functions that map *S* to \mathbb{R} . (Here $\theta = (\lambda, \mu)$.)

Equivalently, we may define $(\sigma^{(n)})$ and $(m_t^{(n)})$ by

$$\int h(\theta)\sigma^{(n)}(d\theta) = \frac{1}{n}\sum_{i=1}^{n}h(\theta_i)$$

$$\int h(\theta) m_t^{(n)}(d\theta) = \frac{1}{n} \sum_{i=1}^n X_{i,t}^{(n)} h(\theta_i),$$

for *h* in $C_b(S)$, the class of bounded continuous functions that map *S* to \mathbb{R} . (Here $\theta = (\lambda, \mu)$.)

For example $(h \equiv 1)$,

 $m_t^{(n)}(S) = \int m_t^{(n)}(d\theta) = \frac{1}{n} \sum_{i=1}^n X_{i,t}^{(n)}$ (proportion infected).

A measure-valued limiting process

Theorem. [MP2] Suppose that $\sigma^{(n)} \stackrel{d}{\rightarrow} \sigma$ and $m_0^{(n)} \stackrel{d}{\rightarrow} m_0$ for some non-random measures σ and m_0 . Then, the sequence of measure-valued processes $(m_t^{(n)}, t \ge 0)$ converges weakly to the unique solution $(m_t, t \ge 0)$ of

$$(h, m_t) = (h, m_0) + \int_0^t L(h, m_s) \, ds, \quad h \in C_b(S),$$

where (notation) $(h, m) = \int h(\theta) m(d\theta)$, and

 $L(h, m_t) := m_t(S) \left(\int \lambda h(\theta) \sigma(d\theta) - \int \lambda h(\theta) m_t(d\theta) \right) - \int \mu h(\theta) m_t(d\theta).$

The limiting process

Lemma. For all $B \in \mathcal{B}(S)$ and $t \ge 0$, $m_t(B) \le \sigma(B)$.

Lemma. For all $B \in \mathcal{B}(S)$ and $t \ge 0$, $m_t(B) \le \sigma(B)$.

In particular $m_t \ll \sigma$, and so m_t has a (uniquely determined σ -a.e.) Radon-Nikodym derivative $\phi_t \geq 0$) with respect to σ : $m_t(B) = \int_B \phi_t(\theta) \sigma(d\theta)$.

Lemma. For all $B \in \mathcal{B}(S)$ and $t \ge 0$, $m_t(B) \le \sigma(B)$.

In particular $m_t \ll \sigma$, and so m_t has a (uniquely determined σ -a.e.) Radon-Nikodym derivative $\phi_t \geq 0$) with respect to σ : $m_t(B) = \int_B \phi_t(\theta) \sigma(d\theta)$.

The lemma also implies that $\phi_t \leq 1$.

Lemma. For all $B \in \mathcal{B}(S)$ and $t \ge 0$, $m_t(B) \le \sigma(B)$.

In particular $m_t \ll \sigma$, and so m_t has a (uniquely determined σ -a.e.) Radon-Nikodym derivative $\phi_t \geq 0$) with respect to σ : $m_t(B) = \int_B \phi_t(\theta) \sigma(d\theta)$.

The lemma also implies that $\phi_t \leq 1$.

Now, "differentiate" both sides of

$$(h, m_t) = (h, m_0) + \int_0^t L(h, m_s) \, ds,$$

with respect to σ . We get

The limiting process

Corollary. The Radon-Nikodym derivative $\phi_t(\lambda, \mu)$ satisfies

$$\phi_t = \phi_0 + \int_0^t \left(\lambda (1 - \phi_s) \int \phi_s(\theta') \sigma(d\theta') - \mu \phi_s \right) ds.$$

Corollary. The Radon-Nikodym derivative $\phi_t(\lambda, \mu)$ satisfies

$$\phi_t = \phi_0 + \int_0^t \left(\lambda(1-\phi_s)\int \phi_s(\theta')\sigma(d\theta') - \mu\phi_s\right) ds.$$

This can be used to study the long-term $(t \to \infty)$ behaviour of our model.

Corollary. The Radon-Nikodym derivative $\phi_t(\lambda, \mu)$ satisfies

$$\phi_t = \phi_0 + \int_0^t \left(\lambda(1-\phi_s)\int \phi_s(\theta')\sigma(d\theta') - \mu\phi_s\right) ds.$$

This can be used to study the long-term $(t \to \infty)$ behaviour of our model.

An equilibrium ϕ_{eq} must satisfy

$$0 = \lambda (1 - \phi_{eq}) \int \phi_{eq} (\theta') \sigma(d\theta') - \mu \phi_{eq}.$$

Equilibria of the limiting process

An equilibrium ϕ_{eq} must satisfy

$$0 = \lambda (1 - \phi_{eq}) \int \phi_{eq}(\theta) \sigma(d\theta) - \mu \phi_{eq}.$$

On setting $\psi = \int \phi_{eq}(\theta) \sigma(d\theta)$, we see that

$$\phi_{\rm eq}(\lambda,\mu) \ (=\phi_{\rm eq}(\theta) \) = \frac{\lambda\psi}{\lambda\psi+\mu},$$

and so, on integrating this over $(\lambda, \mu) \in S$, we find that ψ must solve the equation

$$\psi = R(\psi) := \int \frac{\lambda \psi}{\lambda \psi + \mu} \sigma(d\lambda, d\mu).$$

Stability

Theorem. (a) If $R'(0) \leq 1$, then $\psi = 0$ is the only fixed point of R, and $\phi_{eq} = 0$ is globally stable, that is, for all ϕ_0 , $\phi_t \to 0$ on S. The latter entails $m_t(B) \to 0$, for all $B \in \mathcal{B}(S)$, and hence the disease free state is globally stable.

Stability

Theorem. (b) If R'(0) > 1, then R has two fixed points, 0 and a positive fixed point ψ_* , and (subject to mild extra conditions), if $(m_0(S) =)$ $(\phi_0, \sigma) > 0$, then

$$\phi_t \to \phi_* := \frac{\lambda \psi_*}{\lambda \psi_* + \mu}$$

The latter entails $m_t(B) \rightarrow m_*(B)$, for all $B \in \mathcal{B}(S)$, where

$$m_*(B) = \int_B \phi_*(\theta) \sigma(d\theta) = \int_B \frac{\lambda \psi_*}{\lambda \psi_* + \mu} \sigma(d\lambda, d\mu),$$

implying endemicity.

Endemicity

Disease free state is globally stable

Endemicity!

