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The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model
was introduced [WD] to study infections, in a closed
population of n individuals, that do not confer any long
lasting immunity. If Y (t) is the number of infectives at
time t, then (Y (t), t ≥ 0) is a continuous-time Markov
chain on {0, 1, . . . , n} with transitions

Y → Y + 1 at rate
λ

n
Y (n− Y ) (infection)

Y → Y − 1 at rate µY (recovery)

[WD] Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of
the stochastic and deterministic models of an epidemic. Mathematical
Biosciences 11, 261–265.



Behaviour for large n

The proportion of infectives Y (t)/n obeys a law of
large numbers.

Theorem. If Y (0)/n→ y0 as n→ ∞, then (Y (t)/n)

converges in probability uniformly over finite time
intervals to the solution of the ODE

ẏ = λy(1− y)− µy = λy(1− ρ− y),

where ρ = µ/λ, namely

y(t) =
(1− ρ)y0

y0 + (1− ρ− y0)e−λ(1−ρ)t
, y(0) = y0.



Infection dies out (λ < µ)
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Infection becomes endemic (λ > µ)
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Individual variation

Suppose now that the population is heterogeneous in
that individuals have different characteristics:
individual i (i = 1, . . . , n) has

an exponentially distributed recovery period with
mean µ−1

i ;

a resistence level λ−1
i ; and,

when infected, contributes κi to the infective
potential of the population.
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Suppose now that the population is heterogeneous in
that individuals have different characteristics:
individual i (i = 1, . . . , n) has

an exponentially distributed recovery period with
mean µ−1

i ;

a resistence level λ−1
i ; and,

when infected, contributes κi to the infective
potential of the population.

Let X (n)

i be 1 or 0 according to whether individual i is
infected or not, and let X (n) = (X (n)

1 , . . . , X
(n)
n ) be the

state of the population.



The model

Suppose (X (n)(t), t ≥ 0) is a continuous-time Markov
chain on {0, 1}n with transitions

(. . . , 0, . . . ) → (. . . , 1, . . . ) at rate λif

(

1

n

n
∑

j=1

κjX
(n)

j

)

(. . . , 1, . . . ) → (. . . , 0, . . . ) at rate µi.

↑

Position i (i = 1, . . . , n)

The function f : R+ → R+ is Lipschitz continuous.



The model

For this talk take κi = 1 and f(x) = x, so that our
Markov chain has transitions
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↑

Position i (i = 1, . . . , n)
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The model

For this talk take κi = 1 and f(x) = x, so that our
Markov chain has transitions

(. . . , 0, . . . ) → (. . . , 1, . . . ) at rate λiX̄
(n)

(. . . , 1, . . . ) → (. . . , 0, . . . ) at rate µi,

↑

Position i (i = 1, . . . , n)

where X̄ (n) = 1
n

∑n

j=1X
(n)

j (the proportion of the
population that is infected).

The plan: to get a handle on large n behaviour, and,
then, to determine conditions for endemicity.



Endemicity
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Disease free state is globally stable
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Endemicity!
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Our approach - Point processes

Think of the individual characteristics θi := (λi, µi) as
(random) points in a subset S of R2

+.

Define sequences of random measures (σ(n)) and
random-measure-valued processes (m

(n)

t , t ≥ 0) by

σ(n)(B) = #{θi ∈ B}/n, B ∈ B(S),

m
(n)

t (B) = #{θi ∈ B : X
(n)

i,t = 1}/n, B ∈ B(S).
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Our approach - Point processes

Equivalently, we may define (σ(n)) and (m
(n)

t ) by
∫

h(θ)σ(n)(dθ) = 1
n

∑n

i=1 h(θi)

∫

h(θ)m
(n)

t (dθ) = 1
n

∑n

i=1X
(n)

i,t h(θi),

for h in C
b
(S), the class of bounded continuous

functions that map S to R. (Here θ = (λ, µ).)



Our approach - Point processes

Equivalently, we may define (σ(n)) and (m
(n)

t ) by
∫

h(θ)σ(n)(dθ) = 1
n

∑n

i=1 h(θi)

∫

h(θ)m
(n)

t (dθ) = 1
n

∑n

i=1X
(n)

i,t h(θi),

for h in C
b
(S), the class of bounded continuous

functions that map S to R. (Here θ = (λ, µ).)

For example (h ≡ 1),

m
(n)

t (S) =
∫

m
(n)

t (dθ) = 1
n

∑n

i=1X
(n)

i,t (proportion infected).



A measure-valued limiting process

Theorem. [MP2] Suppose that σ(n) d
→ σ and m

(n)

0

d
→ m0

for some non-random measures σ and m0 . Then, the
sequence of measure-valued processes (m

(n)

t , t ≥ 0)

converges weakly to the unique solution (mt, t ≥ 0) of

(h,mt) = (h,m0 ) +
∫ t

0
L(h,ms) ds, h ∈ C

b
(S),

where (notation) (h,m) =
∫

h(θ)m(dθ), and

L(h,mt) := mt(S)
(∫

λh(θ)σ(dθ)−
∫

λh(θ)mt(dθ)
)

−
∫

µh(θ)mt(dθ).



The limiting process

Lemma. For all B ∈ B(S) and t ≥ 0, mt(B) ≤ σ(B).
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The limiting process

Lemma. For all B ∈ B(S) and t ≥ 0, mt(B) ≤ σ(B).

In particular mt << σ, and so mt has a (uniquely
determined σ-a.e.) Radon-Nikodym derivative φt (≥ 0)

with respect to σ: mt(B) =
∫

B
φt(θ)σ(dθ).

The lemma also implies that φt ≤ 1.

Now, “differentiate” both sides of

(h,mt) = (h,m0 ) +
∫ t

0
L(h,ms) ds,

with respect to σ. We get . . . .



The limiting process

Corollary. The Radon-Nikodym derivative φt(λ, µ)

satisfies

φt = φ0 +
∫ t

0

(

λ(1− φs)
∫

φs(θ
′)σ(dθ ′)− µφs

)

ds.
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The limiting process

Corollary. The Radon-Nikodym derivative φt(λ, µ)

satisfies

φt = φ0 +
∫ t

0

(

λ(1− φs)
∫

φs(θ
′)σ(dθ ′)− µφs

)

ds.

This can be used to study the long-term (t→ ∞)

behaviour of our model.

An equilibrium φeq must satisfy

0 = λ(1− φeq )
∫

φeq (θ ′)σ(dθ ′)− µφeq .



Equilibria of the limiting process

An equilibrium φeq must satisfy

0 = λ(1− φeq )
∫

φeq (θ)σ(dθ)− µφeq .

On setting ψ =
∫

φeq (θ)σ(dθ), we see that

φeq (λ, µ) ( = φeq (θ) ) =
λψ

λψ + µ
,

and so, on integrating this over (λ, µ) ∈ S, we find that
ψ must solve the equation

ψ = R(ψ) :=

∫

λψ

λψ + µ
σ(dλ, dµ).



Stability

Theorem. (a) If R ′(0) ≤ 1, then ψ = 0 is the only fixed
point of R, and φeq = 0 is globally stable, that is, for all
φ0 , φt → 0 on S. The latter entails mt(B) → 0, for all
B ∈ B(S), and hence the disease free state is globally
stable.



Stability

Theorem. (b) If R ′(0) > 1, then R has two fixed points,
0 and a positive fixed point ψ∗, and (subject to mild
extra conditions), if (m0(S) =) (φ0 , σ) > 0, then

φt → φ∗ :=
λψ∗

λψ∗ + µ
.

The latter entails mt(B) → m∗(B), for all B ∈ B(S),
where

m∗(B) =

∫

B

φ∗(θ)σ(dθ) =

∫

B

λψ∗

λψ∗ + µ
σ(dλ, dµ),

implying endemicity .



Endemicity
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Disease free state is globally stable
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