Birth-Death Processes and Orthogonal Polynomials

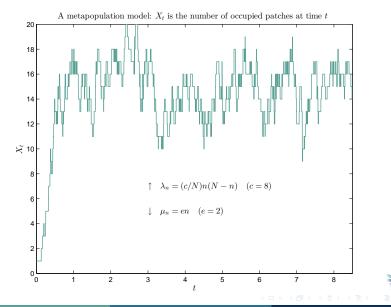
Phil. Pollett

The University of Queensland

India Institute of Technology Bombay

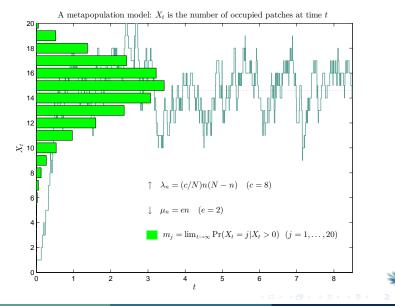
26 October 2015

Example: a metapopulation model (illustrating quasi stationarity)



CEM

Quasi-stationary distribution



ACEMſ

$p_{ij}(t) := \Pr(X_{s+t} = j | X_s = i)$

$$=\pi_j\int_0^\infty e^{-tx}\mathcal{Q}_i(x)\mathcal{Q}_j(x)\,d\psi(x)$$

Phil. Pollett (The University of Queensland) Birth-Death Processes and Orthogonal Polynomials

A *birth-death* process is a continuous-time Markov chain $(X_t, t \ge 0)$ taking values in $S \cup \{-1\}$, where $S \subseteq \{0, 1, ...\}$, with

$$\Pr(X_{t+h} = n+1 | X_t = n) = \lambda_n h + \circ(h)$$

$$\Pr(X_{t+h} = n-1 | X_t = n) = \mu_n h + \circ(h)$$

$$\Pr(X_{t+h} = n | X_t = n) = 1 - (\lambda_n + \mu_n)h + \circ(h)$$

(as $h \rightarrow 0$). Other transitions happen with probability $\circ(h)$.

A *birth-death* process is a continuous-time Markov chain $(X_t, t \ge 0)$ taking values in $S \cup \{-1\}$, where $S \subseteq \{0, 1, ...\}$, with

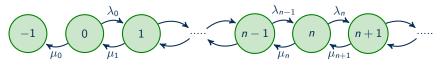
$$Pr(X_{t+h} = n + 1 | X_t = n) = \lambda_n h + \circ(h)$$
$$Pr(X_{t+h} = n - 1 | X_t = n) = \mu_n h + \circ(h)$$
$$Pr(X_{t+h} = n | X_t = n) = 1 - (\lambda_n + \mu_n)h + \circ(h)$$

(as $h \rightarrow 0$). Other transitions happen with probability $\circ(h)$.

The birth rates $(\lambda_n, n \ge 0)$ and the death rates $(\mu_n, n \ge 0)$ are all strictly positive except perhaps μ_0 , which could be 0. State -1 is a "extinction state", which can be reached if $\mu_0 > 0$.

The birth rates $(\lambda_n, n \ge 0)$ and the death rates $(\mu_n, n \ge 0)$ are all strictly positive, except perhaps μ_0 , which could be 0. State -1 is a "extinction state", which can be reached if $\mu_0 > 0$.

 $\mu_0 > 0$

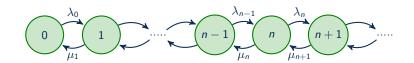


The birth rates $(\lambda_n, n \ge 0)$ and the death rates $(\mu_n, n \ge 0)$ are all strictly positive, except perhaps μ_0 , which could be 0. State -1 is a "extinction state", which can be reached if $\mu_0 > 0$.

 $\mu_0 > 0$



 $\mu_{0} = 0$



Suppose that $\lambda_n = 2^{2n}$, $\mu_n = 2^{2n-1}$ $(n \ge 1)$, and $\mu_0 = 0$, with $S = \{0, 1, ... \}$.

Suppose that $\lambda_n = 2^{2n}$, $\mu_n = 2^{2n-1}$ $(n \ge 1)$, and $\mu_0 = 0$, with $S = \{0, 1, ... \}$.

An "equilibrium distribution" exists: $\pi_n = (\frac{1}{2})^{n+1}$. But ...

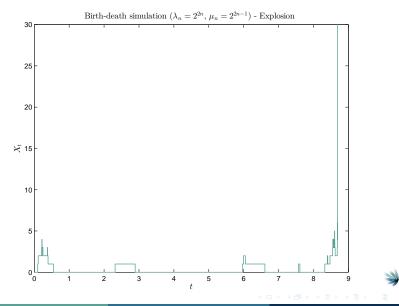
Suppose that $\lambda_n = 2^{2n}$, $\mu_n = 2^{2n-1}$ $(n \ge 1)$, and $\mu_0 = 0$, with $S = \{0, 1, \dots\}$.

An "equilibrium distribution" exists: $\pi_n = (\frac{1}{2})^{n+1}$. But ...

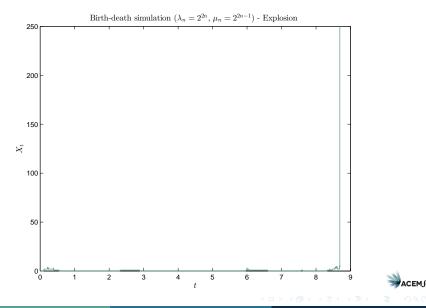
When a jump occurs it is a birth with probability

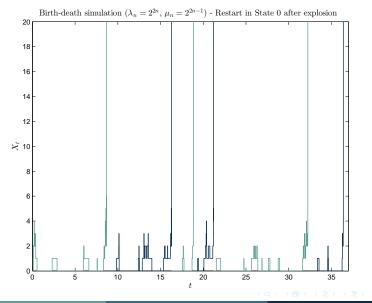
$$p_n = \frac{2^{2n}}{2^{2n} + 2^{2n-1}} = \frac{2}{3}.$$

Thus births are twice as likely as deaths, and so the process will have positive drift.

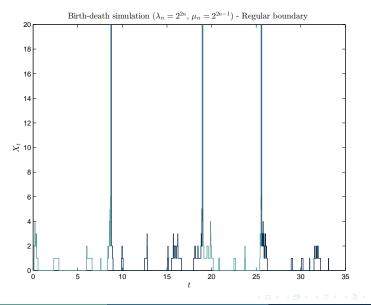


CEM





ACEMſ



ACEMſ

The conditions we have imposed ensure that the *transition probabilities* $p_{ij}(t) = \Pr(X_{s+t} = j | X_s = i) \ (i, j \in S, s, t \ge 0)$ do not depend on s.

The conditions we have imposed ensure that the *transition probabilities* $p_{ij}(t) = \Pr(X_{s+t} = j | X_s = i) \ (i, j \in S, \ s, t \ge 0)$ do not depend on s.

For any such *time-homogeneous* continuous-time Markov chain with (conservative) transition rate matrix $Q = (q_{ij})$, the *transition function* $P(t) = (p_{ij}(t))$ satisfies the *backward equations*

$$P'(t) = QP(t) \tag{BE}$$

but not necessarily the forward equations

$$P'(t) = P(t)Q \tag{FE}$$

(the derivative is taken elementwise). Note that Q = P'(0+).

The conditions we have imposed ensure that the *transition probabilities* $p_{ij}(t) = \Pr(X_{s+t} = j | X_s = i) \ (i, j \in S, \ s, t \ge 0)$ do not depend on s.

For any such *time-homogeneous* continuous-time Markov chain with (conservative) transition rate matrix $Q = (q_{ij})$, the *transition function* $P(t) = (p_{ij}(t))$ satisfies the *backward equations*

$$P'(t) = QP(t) \tag{BE}$$

but not necessarily the forward equations

$$P'(t) = P(t)Q \tag{FE}$$

(the derivative is taken elementwise). Note that Q = P'(0+).

There is however a minimal solution $F(t) = (f_{ij}(t))$ to (BE) and this satisfies (FE).

The conditions we have imposed ensure that the *transition probabilities* $p_{ij}(t) = \Pr(X_{s+t} = j | X_s = i) \ (i, j \in S, \ s, t \ge 0)$ do not depend on s.

For any such *time-homogeneous* continuous-time Markov chain with (conservative) transition rate matrix $Q = (q_{ij})$, the *transition function* $P(t) = (p_{ij}(t))$ satisfies the *backward equations*

$$P'(t) = QP(t) \tag{BE}$$

but not necessarily the forward equations

$$P'(t) = P(t)Q \tag{FE}$$

(the derivative is taken elementwise). Note that Q = P'(0+).

There is however a minimal solution $F(t) = (f_{ij}(t))$ to (BE) and this satisfies (FE).

Non-explosivity corresponds to F being the *unique* solution to (BE). Otherwise F governs the process *up* to the time of the (first) explosion.

For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to $S = \{0, 1, \dots\}$ has the form

$$Q = \begin{pmatrix} -(\lambda_0 + \mu_0) & \lambda_0 & 0 & 0 & 0 & \dots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \dots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \dots \\ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

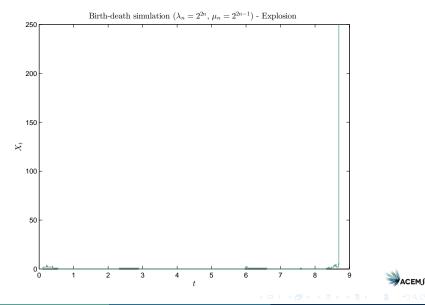
For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to $S=\{0,1,\dots\}$ has the form

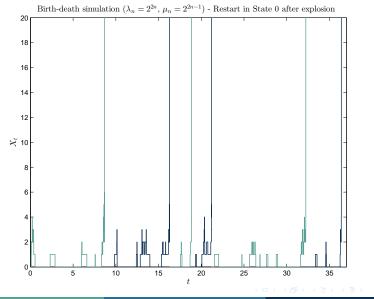
$$Q = \begin{pmatrix} -(\lambda_0 + \mu_0) & \lambda_0 & 0 & 0 & 0 & \dots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \dots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \dots \\ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Returning to the example where $\lambda_n = 2^{2n}$, $\mu_n = 2^{2n-1}$ $(n \ge 1)$, and $\mu_0 = 0$, we have ...

The process governed by F (the "minimal process")

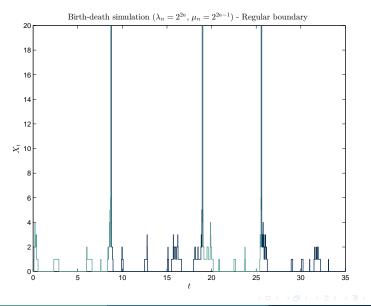


A process where *P* satisfies (BE) but not (FE)



CEM

A process where P satisfies both (BE) and (FE)



CEM

The birth-death polynomials

Define a sequence $(Q_n, n \in S)$ of polynomials by

$$\begin{aligned} \mathcal{Q}_0(x) &= 1 \\ -x\mathcal{Q}_0(x) &= -(\lambda_0 + \mu_0)\mathcal{Q}_0(x) + \lambda_0\mathcal{Q}_1(x) \\ -x\mathcal{Q}_n(x) &= \mu_n\mathcal{Q}_{n-1}(x) - (\lambda_n + \mu_n)\mathcal{Q}_n(x) + \lambda_n\mathcal{Q}_{n+1}(x), \end{aligned}$$

and a sequence of strictly positive numbers $(\pi_n, n \in S)$ by $\pi_0 = 1$ and, for $n \ge 1$,

$$\pi_n = \frac{\lambda_0 \lambda_1 \dots \lambda_{n-1}}{\mu_1 \mu_2 \dots \mu_n}$$

A explicit expression for $p_{ij}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

¹Karlin, S. and McGregor, J.L. (1957) The differential equations of birth-and-death processes, and the Stieltjes Moment Problem. *Trans. Amer. Math. Soc.* 85, 489–546.

A explicit expression for $p_{ij}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

Since $p_{ij}(0) = \delta_{ij}$, it is clear that (Q_n) are orthogonal with orthogonalizing measure ψ :

$$\int_0^\infty \mathcal{Q}_i(x)\mathcal{Q}_j(x)\,d\psi(x)=\frac{\delta_{ij}}{\pi_j}\qquad (i,j\ge 0).$$

A explicit expression for $p_{ij}(t)$

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0).$$

Proof. We use mathematical induction: on *i* using (BE) with j = 0 and then on *j* using (FE). But, showing that there is a probability measure ψ with support $[0, \infty)$ whose Laplace transform is $p_{00}(t)$, that is

$$p_{00}(t) = \int_0^\infty e^{-tx} d\psi(x) \left(= \pi_0 \int_0^\infty e^{-tx} \mathcal{Q}_0(x) \mathcal{Q}_0(x) d\psi(x) \right),$$

is not completely straightforward. More on this later.

Theorem (Karlin and McGregor (1957))

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

Theorem (Karlin and McGregor (1957))

$$p_{ij}(\boldsymbol{t}) = \pi_j \int_0^\infty e^{-\boldsymbol{t} \times} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0).$$

Theorem (Karlin and McGregor (1957))

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

Theorem (Karlin and McGregor (1957))

$$p_{ij}(t) = \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \pi_j \mathcal{Q}_j(x) \, d\psi(x) \qquad (i, j \ge 0, \ t \ge 0).$$

Theorem (Karlin and McGregor (1957))

$$p_{ij}(t) = \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \pi_j \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0).$$

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

This formula, together with the myriad of properties of (Q_n) and ψ , are used to develop theory peculiar to birth-death processes.

Some properties of (\mathcal{Q}_n) and ψ

Of particular interest and importance is the "interlacing" property of the zeros $x_{n,i}$ $(i = 1, \dots, n)$ of Q_n : they are strictly positive, simple, and they satisfy

$$0 < x_{n+1,i} < x_{n,i} < x_{n+1,i+1}, (i = 1, \cdots, n, n \ge 1),$$

from which it follows that the limits $\xi_i = \lim_{n \to \infty} x_{n,i}$ $(i \ge 1)$ exist and satisfy $0 \le \xi_i \le \xi_{i+1} < \infty$.

Some properties of (\mathcal{Q}_n) and ψ

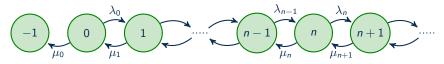
Of particular interest and importance is the "interlacing" property of the zeros $x_{n,i}$ $(i = 1, \dots, n)$ of Q_n : they are strictly positive, simple, and they satisfy

$$0 < x_{n+1,i} < x_{n,i} < x_{n+1,i+1}, (i = 1, \cdots, n, n \ge 1),$$

from which it follows that the limits $\xi_i = \lim_{n \to \infty} x_{n,i}$ $(i \ge 1)$ exist and satisfy $0 \le \xi_i \le \xi_{i+1} < \infty$.

Interestingly, $\xi_1 := \inf \operatorname{supp}(\psi)$ and $\xi_2 := \inf \{\operatorname{supp}(\psi) \cap (\xi_1, \infty)\}$, quantities that are particularly important in the theory of *quasi-stationary distributions*.

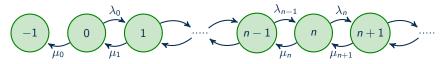
Consider the case $\mu_0 > 0$:



²Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models. Invited paper. *European J. Operat. Res.* 230, 1–14.

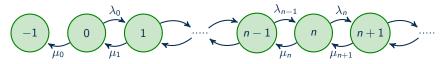
CFM (

Consider the case $\mu_0 > 0$:



Suppose that $\sum_{n=0}^{\infty} (\lambda_n \pi_n)^{-1} = \infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

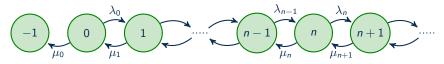
Consider the case $\mu_0 > 0$:



Suppose that $\sum_{n=0}^{\infty} (\lambda_n \pi_n)^{-1} = \infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T = \inf\{t \ge 0 : X_t = -1\}$ be the time to extinction.

Consider the case $\mu_0 > 0$:

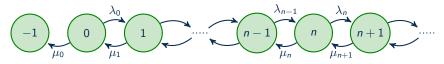


Suppose that $\sum_{n=0}^{\infty} (\lambda_n \pi_n)^{-1} = \infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T = \inf\{t \ge 0 : X_t = -1\}$ be the time to extinction.

Clearly $\Pr(T > t | X_0 = i) \rightarrow 0$ as $t \rightarrow \infty$, but how fast?

Consider the case $\mu_0 > 0$:



Suppose that $\sum_{n=0}^{\infty} (\lambda_n \pi_n)^{-1} = \infty$, which ensures that the extinction state -1 is reached with probability 1 (and necessarily the process is non-explosive).

Let $T = \inf\{t \ge 0 : X_t = -1\}$ be the time to extinction.

Clearly $\Pr(T > t | X_0 = i) \rightarrow 0$ as $t \rightarrow \infty$, but how fast?

Claim. inf
$$\left\{a \ge 0 : \int_0^\infty e^{at} \Pr(T > t | X_0 = i) dt = \infty\right\} = \xi_1.$$

A distribution $u = (u_n, n \ge 0)$ is called a *limiting conditional distribution* (or sometimes quasi-stationary distribution) if $u_{ij}(t) := \Pr(X_t = j | T > t, X_0 = i) \rightarrow u_j$ as $t \rightarrow \infty$.

- ³van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. *Adv. Appl. Probab.* 23, 683–700.
- ⁴Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. *Adv. Appl. Probab.* 29, 185–204.

A distribution $u = (u_n, n \ge 0)$ is called a *limiting conditional distribution* (or sometimes quasi-stationary distribution) if $u_{ij}(t) := \Pr(X_t = j | T > t, X_0 = i) \rightarrow u_j$ as $t \rightarrow \infty$.

Theorem

If $\xi_1 > 0$ then $u_{ij}(t) \to u_j := \mu_0^{-1} \xi_1 \pi_j \mathcal{Q}_j(\xi_1)$. If $\xi_1 = 0$ then $u_j(t) \to 0$.

- ³van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. *Adv. Appl. Probab.* 23, 683–700.
- ⁴Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. *Adv. Appl. Probab.* 29, 185–204.

Quasi-stationary distributions

A distribution $u = (u_n, n \ge 0)$ is called a *limiting conditional distribution* (or sometimes quasi-stationary distribution) if $u_{ij}(t) := \Pr(X_t = j | T > t, X_0 = i) \rightarrow u_j$ as $t \rightarrow \infty$.

Theorem If $\xi_1 > 0$ then $u_{ij}(t) \to u_j := \mu_0^{-1} \xi_1 \pi_j Q_j(\xi_1)$. If $\xi_1 = 0$ then $u_j(t) \to 0$.

Again, how fast?

³van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. *Adv. Appl. Probab.* 23, 683–700.

⁴Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. *Adv. Appl. Probab.* 29, 185–204.

Quasi-stationary distributions

A distribution $u = (u_n, n \ge 0)$ is called a *limiting conditional distribution* (or sometimes quasi-stationary distribution) if $u_{ij}(t) := \Pr(X_t = j | T > t, X_0 = i) \rightarrow u_j$ as $t \rightarrow \infty$.

Theorem

If
$$\xi_1 > 0$$
 then $u_{ij}(t) \to u_j := \mu_0^{-1} \xi_1 \pi_j \mathcal{Q}_j(\xi_1)$. If $\xi_1 = 0$ then $u_j(t) \to 0$.

Again, how fast?

Claim. inf
$$\left\{a \ge 0 : \int_0^\infty e^{at} |u_{ij}(t) - u_j| dt = \infty\right\} = \xi_2 - \xi_1$$
 (same for all $i, j \in S$).

³van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes. *Adv. Appl. Probab.* 23, 683–700.

⁴Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distributions for birth-death processes. *Adv. Appl. Probab.* 29, 185–204.

Recall . . .

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

Proof. We use mathematical induction: on *i* using (BE) with j = 0 and then on *j* using (FE). But, showing that there is a probability measure ψ with support $[0, \infty)$ whose Laplace transform is $p_{00}(t)$, that is

$$p_{00}(t) = \int_0^\infty e^{-tx} d\psi(x) \left(= \pi_0 \int_0^\infty e^{-tx} \mathcal{Q}_0(x) \mathcal{Q}_0(x) d\psi(x) \right),$$

is not completely straightforward. More on this later.

Theorem (Karlin and McGregor (1957))

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0).$$

Why is there a ψ whose Laplace transform is $p_{00}(t)$: $p_{00}(t) = \int_0^\infty e^{-tx} d\psi(x)$?

Theorem (Karlin and McGregor (1957))

Let $P(t) = (p_{ij}(t))$ be any transition function that satisfies both the backward and the forward equations (for example the minimal one). Then, there is a probability measure ψ with support $[0, \infty)$ such that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0).$$

Why is there a ψ whose Laplace transform is $p_{00}(t)$: $p_{00}(t) = \int_0^\infty e^{-tx} d\psi(x)$?

Answer. Weak symmetry: $\pi_i q_{ij} = \pi_j q_{ji} (\pi_i \lambda_i = \pi_{i+1} \mu_{i+1})$

Finite state Markov chains - some linear algebra

Let $(X_t, t \ge 0)$ be a continuous-time Markov chain taking values in $S = \{0, 1, ..., N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi = (\pi_j, j \in S)$ of strictly positive numbers such that $\pi Q = 0$, that is

$$\sum_{i\in S}\pi_i q_{ij}=\pi_j\sum_{i\in S}q_{ji}$$
 $(j\in S)$

Finite state Markov chains - some linear algebra

Let $(X_t, t \ge 0)$ be a continuous-time Markov chain taking values in $S = \{0, 1, ..., N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi = (\pi_j, j \in S)$ of strictly positive numbers such that $\pi Q = 0$, that is

$$\sum_{i\in S} \pi_i q_{ij} = \pi_j \sum_{i\in S} q_{ji} \qquad (j\in S).$$

Suppose that Q is weakly symmetric with respect to π : $\pi_i q_{ij} = \pi_j q_{ji}$.

Finite state Markov chains - some linear algebra

Let $(X_t, t \ge 0)$ be a continuous-time Markov chain taking values in $S = \{0, 1, \dots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi = (\pi_i, j \in S)$ of strictly positive numbers such that $\pi Q = 0$, that is

$$\sum_{i\in S}\pi_i q_{ij}=\pi_j\sum_{i\in S}q_{ji}\qquad (j\in S).$$

Suppose that Q is weakly symmetric with respect to π : $\pi_i q_{ii} = \pi_i q_{ii}$.

Let A be the symmetric matrix with entries $a_{ij} = \sqrt{\pi_i} q_{ij} / \sqrt{\pi_j}$. It is orthogonally similar to a diagonal matrix $D = \text{diag}\{d_0, d_1, \ldots, d_N\}$: $A = MDM^{\top} \ldots$, et cetera, \ldots

Finite state Markov chains - some linear algebra

Let $(X_t, t \ge 0)$ be a continuous-time Markov chain taking values in $S = \{0, 1, \dots, N\}$ with (conservative) transition rate matrix Q. So, there is collection $\pi = (\pi_i, j \in S)$ of strictly positive numbers such that $\pi Q = 0$, that is

$$\sum_{i\in S}\pi_i q_{ij}=\pi_j\sum_{i\in S}q_{ji}\qquad (j\in S).$$

Suppose that Q is weakly symmetric with respect to π : $\pi_i q_{ii} = \pi_i q_{ii}$.

Let A be the symmetric matrix with entries $a_{ij} = \sqrt{\pi_i}q_{ij}/\sqrt{\pi_j}$. It is orthogonally similar to a diagonal matrix $D = \text{diag}\{d_0, d_1, \dots, d_N\}$: $A = MDM^{\top}$..., et cetera, ... leading to the spectral solution of P'(t) = QP(t) (BE):

$$p_{ij}(t) = \pi_j \sum_{k=0}^N e^{d_k t} \mathcal{Q}_i^{(k)} \mathcal{Q}_j^{(k)}, \qquad ext{where } \mathcal{Q}_i^{(k)} = rac{M_{ik}}{\sqrt{\pi_i}}.$$

Let $\pi = (\pi_j, j \in S)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_i \rho_{ij}(t) = \pi_j \rho_{ji}(t)$ $(i, j \in S)$.

Let $\pi = (\pi_j, j \in S)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_i \rho_{ij}(t) = \pi_j \rho_{ji}(t)$ $(i, j \in S)$.

Define $T_t: \ell_2 \to \ell_2$ by

$$(T_t x)_j = \sum_{i \in S} x_i (\pi_i / \pi_j)^{1/2} p_{ij}(t) \qquad (i \in S, x \in \ell_2).$$

Let $\pi = (\pi_j, j \in S)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_i \rho_{ij}(t) = \pi_j \rho_{ji}(t)$ $(i, j \in S)$.

Define $T_t: \ell_2 \to \ell_2$ by

$$(T_t x)_j = \sum_{i \in S} x_i (\pi_i / \pi_j)^{1/2} p_{ij}(t) \qquad (i \in S, x \in \ell_2).$$

Then $(T_t, t \ge 0)$ is a semigroup which is self adjointing $\langle T_t x, y \rangle = \langle x, T_t y \rangle$.

Let $\pi = (\pi_j, j \in S)$ be a collection of strictly positive numbers and suppose that P is weakly symmetric with respect to π : $\pi_i \rho_{ij}(t) = \pi_j \rho_{ji}(t)$ $(i, j \in S)$.

Define $T_t: \ell_2 \to \ell_2$ by

$$(T_t x)_j = \sum_{i \in S} x_i (\pi_i / \pi_j)^{1/2} p_{ij}(t) \qquad (i \in S, x \in \ell_2).$$

Then $(T_t, t \ge 0)$ is a semigroup which is self adjointing $\langle T_t x, y \rangle = \langle x, T_t y \rangle$.

Kendall used a result of Riesz and Sz.-Nagy on the spectral representation of self-adjoint semigroups to show that there is a finite signed measure γ_{ij} with support $[0, \infty)$ such that

$$p_{ij}(t) = (\pi_j/\pi_i)^{1/2} \int_{[0,\infty)} e^{-tx} d\gamma_{ij}(x).$$

Furthermore, γ_{ii} is a probability measure.

General symmetric Markov chains - speculation

In can be seen from the definition of the birth-death polynomials $\mathcal{Q} = (\mathcal{Q}_n, n \in S)$,

$$\begin{aligned} \mathcal{Q}_0(x) &= 1 \\ -x\mathcal{Q}_0(x) &= -(\lambda_0 + \mu_0)\mathcal{Q}_0(x) + \lambda_0\mathcal{Q}_1(x) \\ -x\mathcal{Q}_n(x) &= \mu_n\mathcal{Q}_{n-1}(x) - (\lambda_n + \mu_n)\mathcal{Q}_n(x) + \lambda_n\mathcal{Q}_{n+1}(x), \end{aligned}$$

and the form of transition rate matrix restricted to $S = \{0, 1, \dots\}$,

$$Q = \begin{pmatrix} -(\lambda_0 + \mu_0) & \lambda_0 & 0 & 0 & 0 & \cdots \\ \mu_1 & -(\lambda_1 + \mu_1) & \lambda_1 & 0 & 0 & \cdots \\ 0 & \mu_2 & -(\lambda_2 + \mu_2) & \lambda_2 & 0 & \cdots \\ 0 & 0 & \mu_3 & -(\lambda_3 + \mu_3) & \lambda_3 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix},$$

that Q = Q(x) as a column vector satisfies QQ = -xQ (Q(x) is an x-invariant vector for Q), and $\mathcal{R} = \mathcal{R}(x)$, where $\mathcal{R}_j(x) = \pi_j Q_j(x)$, as a row vector satisfies $\mathcal{R}Q = -x\mathcal{R}$ ($\mathcal{R}(x)$ is an x-invariant measure for Q).

General symmetric Markov chains - speculation

One might speculate that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

holds more generally under weak symmetry $(\pi_i q_{ij} = \pi_j q_{ji})$ for a function system $Q = (Q_n, n \in S)$ (necessarily orthogonal with respect to ψ) satisfying QQ = -xQ.

General symmetric Markov chains - speculation

One might speculate that

$$p_{ij}(t) = \pi_j \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{Q}_j(x) d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

holds more generally under weak symmetry $(\pi_i q_{ij} = \pi_j q_{ji})$ for a function system $Q = (Q_n, n \in S)$ (necessarily orthogonal with respect to ψ) satisfying QQ = -xQ.

It might perhaps be too much to expect that

$$p_{ij}(t) = \int_0^\infty e^{-tx} \mathcal{Q}_i(x) \mathcal{R}_j(x) \, d\psi(x) \qquad (i,j \ge 0, \ t \ge 0)$$

holds with just $\pi Q = 0$ for function systems $\mathcal{Q} = (\mathcal{Q}_n, n \in S)$ and $\mathcal{R} = (\mathcal{R}_n, n \in S)$ satisfying $Q\mathcal{Q} = -x\mathcal{Q}$ and $\mathcal{R}Q = -x\mathcal{R}$, and, of necessity,

$$\int_0^\infty \mathcal{Q}_i(x) \mathcal{R}_j(x) \, d\psi(x) = \delta_{ij} \qquad (i,j \ge 0).$$

