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Example: a metapopulation model (illustrating quasi stationarity)

A metapopulation model: X; is the number of occupied patches at time ¢
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Quasi-stationary distribution

A metapopulation model: X; is the number of occupied patches at time ¢
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Main message

pii(t) : = Pr(Xse = j|Xs =)

= /OOO e %Q,(x)Q;(x) dy(x)
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What are they?

Birth-death processes
A birth-death process is a continuous-time Markov chain (X;, t > 0) taking values in
SuU{-1}, where S C {0,1,...}, with

Pr(Xetn = n+ 1| Xe = n) = Anh + o(h)

Pr(Xt+h =n-—- ].lXt = n) = ,unh + O(h)

Pr(Xern = nlXe = n) =1 — (An + pn)h + o(h)
(as h — 0). Other transitions happen with probability o(h).
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What are they?

Birth-death processes
A birth-death process is a continuous-time Markov chain (X;, t > 0) taking values in
SuU{-1}, where S C {0,1,...}, with
Pr(Xetn = n+ 1| Xe = n) = Anh + o(h)
Pr(Xt+h =n-—- ].lXt = n) = ,unh + O(h)
Pr(Xern = nlXe = n) =1 — (An + pn)h + o(h)

(as h — 0). Other transitions happen with probability o(h).

The birth rates (As, n > 0) and the death rates (un, n > 0) are all strictly positive
except perhaps o, which could be 0. State —1 is a “extinction state”, which can be
reached if j0 > 0.
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Birth-death processes

The birth rates (An, n > 0) and the death rates (un, n > 0) are all strictly positive,
except perhaps o, which could be 0. State —1 is a “extinction state”, which can be
reached if o > 0.

to >0
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Birth-death processes

The birth rates (An, n > 0) and the death rates (un, n > 0) are all strictly positive,
except perhaps o, which could be 0. State —1 is a “extinction state”, which can be
reached if o > 0.

to >0
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Explosive birth-death pro

Explosive birth-death processes

Suppose that A\, = 2%, i, = 2>"7* (n > 1), and po = 0, with S = {0,1,... }.
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Explosive birth-death pro

Explosive birth-death processes

Suppose that A\, = 2%, i, = 2>"7* (n > 1), and po = 0, with S = {0,1,... }.

An “equilibrium distribution” exists: m, = (3)""". But ...
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Explosive birth-death processes

Suppose that A\, = 2%, i, = 2>"7* (n > 1), and po = 0, with S = {0,1,... }.
An “equilibrium distribution” exists: m, = (3)""". But ...
When a jump occurs it is a birth with probability

22n 2

Pn = 22n 4 D2n—1 - §

Thus births are twice as likely as deaths, and so the process will have positive drift.
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irth-death pi

Explosive birth-death processes

30

25

20

15

10

Birth-death simulation (), = 22", p, = 2?"~!) - Explosion
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birth-death pr

Explosive birth-death processes

Birth-death simulation (X, = 2%, u, = 22"~!) - Explosion
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Explosive birth-death processes

Birth-death simulation (A, = 22, fhn = 22”’1) - Restart in State 0 after explosion
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ve birth-death pi

Explosive birth-death processes

Birth-death simulation (\, = 2%, u,, = 22"~!) - Regular boundary
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For a general Markov chain

The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities
pii(t) = Pr(Xsye = jIXs =1) (i,j € S, s,t > 0) do not depend on s.
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The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities
pii(t) = Pr(Xsye = jIXs =1) (i,j € S, s,t > 0) do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative)
transition rate matrix Q = (qj), the transition function P(t) = (pij(t)) satisfies the
backward equations

P'(t) = QP(t) (BE)
but not necessarily the forward equations
P'(t) = P(t)Q (FE)

(the derivative is taken elementwise). Note that @ = P’(0+).
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The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities
pii(t) = Pr(Xsye = jIXs =1) (i,j € S, s,t > 0) do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative)
transition rate matrix Q = (qj), the transition function P(t) = (pij(t)) satisfies the
backward equations

P'(t) = QP(t) (BE)
but not necessarily the forward equations
P'(t) = P(t)Q (FE)

(the derivative is taken elementwise). Note that @ = P’(0+).

There is however a minimal solution F(t) = (f;j(t)) to (BE) and this satisfies (FE).
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The Kolmogorov differential equations

The conditions we have imposed ensure that the transition probabilities
pii(t) = Pr(Xsye = jIXs =1) (i,j € S, s,t > 0) do not depend on s.

For any such time-homogeneous continuous-time Markov chain with (conservative)
transition rate matrix Q = (qj), the transition function P(t) = (pij(t)) satisfies the
backward equations

P'(t) = QP(t) (BE)
but not necessarily the forward equations

P'(t) = P(1)Q (FE)
(the derivative is taken elementwise). Note that @ = P’(0+).
There is however a minimal solution F(t) = (f;j(t)) to (BE) and this satisfies (FE).
Non-explosivity corresponds to F being the unigue solution to (BE). Otherwise F

governs the process up to the time of the (first) explosion. 9
ACEMS
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For birth-death processes

The Kolmogorov differential equations

For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to S = {0, 1, ...} has the form

—()\o + /J,o) Ao 0 0 0

JT5 —(A1 4 p1) A1 0 0

Q= 0 2 —(A2 + p2) A2 0
0 0 n3 —(A3+u3) A3
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For birth-death processes

The Kolmogorov differential equations

For birth-death processes the full range of behaviour is possible.

Here the transition rate matrix restricted to S = {0, 1, ...} has the form

—()\o + /J,o) Ao 0 0 0

JT5 —(A1 4 p1) A1 0 0

Q= 0 2 —(A2 + p2) A2 0
0 0 n3 —(A3+u3) A3

Returning to the example where \, = 22", i, = 2>"~! (n>1), and po = 0, we have ...
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For birth-death pr

The process governed by F (the "minimal process”)

Birth-death simulation (X, = 2%, u, = 22"~!) - Explosion
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A process where P satisfies (BE) but not (FE)
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Birth-death simulation (A, = 22, fhn = 22”’1) - Restart in State 0 after explosion

For birth-death pr
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For birth-death pro:

A process where P satisfies both (BE) and (FE)
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Birth-death simulation (\, = 2%, u,, = 22"~!) - Regular boundary
T
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The birth-death polynomials

The birth-death polynomials

Define a sequence (Q,, n € S) of polynomials by

Qo(x) =1
—xQo(x) = —(Ao + 10) Qo(x) + Ao Qi(x)
_XQn(X) - UnQn—l(x) - ()\n + ,Un)Qn(X) + )\nQn+1(X)7

and a sequence of strictly positive numbers (7,, n € S) by mo =1 and, for n > 1,

_ AoAL .. Ano1
H1fh2 - - - fn

n
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The birth-death polynomials

A explicit expression for pj(t)

Theorem (Karlin and McGregor (1957))

Let P(t) = (pij(t)) be any transition function that satisfies both the backward and the

forward equations (for example the minimal one). Then, there is a probability measure ¢
with support [0, 00) such that

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

IKarlin, S. and McGregor, J.L. (1957) The differential equations of birth-and-death processes, and
the Stieltjes Moment Problem. Trans. Amer. Math. Soc. 85, 489-546.
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The birth-death polynomials

A explicit expression for pj(t)

Theorem (Karlin and McGregor (1957))

Let P(t) = (pij(t)) be any transition function that satisfies both the backward and the
forward equations (for example the minimal one). Then, there is a probability measure ¢
with support [0, 00) such that

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

Since p;(0) = &, it is clear that (Q,) are orthogonal with orthogonalizing measure :

_ %

o)
P (i,j >0)

/0 7 00 Qi(x) ()
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The birth-death polynomials

A explicit expression for pj(t)

Theorem (Karlin and McGregor (1957))

Let P(t) = (pij(t)) be any transition function that satisfies both the backward and the
forward equations (for example the minimal one). Then, there is a probability measure ¢
with support [0, 00) such that

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

Proof. We use mathematical induction: on i using (BE) with j = 0 and then on j using
(FE). But, showing that there is a probability measure v with support [0, c0) whose
Laplace transform is poo(t), that is

() = [ e du() (:m | e 00 dw(x)),

0

is not completely straightforward. More on this later.
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))

P = [T TR (>0 £>0)

ﬁAcst
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The birth-death polynomials

A explicit expression for pj;;(t) - Why is it useful?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

This formula, together with the myriad of properties of (Q,) and 1, are used to develop
theory peculiar to birth-death processes.
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Some properties of (Qp) and 1)

Some properties of (Q,) and 1
Of particular interest and importance is the “interlacing” property of the zeros xj i
(i=1,---,n) of Qu: they are strictly positive, simple, and they satisfy

0 < Xn+1,i < Xn,i < Xn+1,i+1, (’ = 1a e, n,n Z 1))

from which it follows that the limits & = limp— 00 Xn,i (1 > 1) exist and satisfy
0 <& <& < oo
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Some properties of (Qp) and 1

Some properties of (Q,) and

Of particular interest and importance is the “interlacing” property of the zeros xj i

(i=1,---,n) of Qu: they are strictly positive, simple, and they satisfy
0 < Xn+1,i < Xn,i < Xn+1,i+1, (’ = 1a e, n,n Z 1))
from which it follows that the limits & = limp— 00 Xn,i (1 > 1) exist and satisfy

0<& <&iv1 <oo.

Interestingly, & := inf supp(¢)) and & := inf{supp(¢)) N (&1, 00)}, quantities that are
particularly important in the theory of quasi-stationary distributions.

QACEMI
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The time to extinction

Consider the case o > 0:

)\0 >\n—1 >\n
@"—/@/"—j@/_\ ..... ‘-@‘:@_\ .....
~— ~
Ho M1 n Mn+1

2Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models.

Invited paper. European J. Operat. Res. 230, 1-14.
QACEMJ'
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The time to extinction

Consider the case jio > 0:

)\0 >\n—1 >\n
..........
~— ~
Ho M1 n Mn+1

Suppose that - (A7) "' = 0o, which ensures that the extinction state —1 is reached
with probability 1 (and necessarily the process is non-explosive).

2Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models.
Invited paper. European J. Operat. Res. 230, 1-14.
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The time to extinction

Consider the case jio > 0:

)\0 >\n—1 >\n
..........
~— ~
Ho M1 n Mn+1

Suppose that - (A7) "' = 0o, which ensures that the extinction state —1 is reached
with probability 1 (and necessarily the process is non-explosive).

Let T =inf{t > 0: X, = —1} be the time to extinction.

2Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models.
Invited paper. European J. Operat. Res. 230, 1-14.
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The time to extinction

Consider the case jio > 0:

)\0 >\n—1 >\n
..........
~— ~
Ho M1 n Mn+1

Suppose that - (A7) "' = 0o, which ensures that the extinction state —1 is reached
with probability 1 (and necessarily the process is non-explosive).

Let T =inf{t > 0: X, = —1} be the time to extinction.

Clearly Pr(T > t|Xo = i) — 0 as t — oo, but how fast?

2Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models.
Invited paper. European J. Operat. Res. 230, 1-14.
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Quasi-stationary distributions

The time to extinction

Consider the case jio > 0:

)\0 >\n—1 >\n
..... /A [
~— ~
Ho M1 n Mn+1

Suppose that - (A7) "' = 0o, which ensures that the extinction state —1 is reached
with probability 1 (and necessarily the process is non-explosive).

Let T =inf{t > 0: X, = —1} be the time to extinction.

Clearly Pr(T > t|Xo = i) — 0 as t — oo, but how fast?

Claim. mf{aZO/ eatPl’(T>t|X0:I)dt:OO}:§1
0

2Van Doorn, E.A. and Pollett, P.K. (2013) Quasi-stationary distributions for discrete-state models.
Invited paper. European J. Operat. Res. 230, 1-14.
*ACEMJ'
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Quasi-stationary distributions

A distribution u = (us,, n > 0) is called a limiting conditional distribution (or sometimes
quasi-stationary distribution) if u;(t) :== Pr(Xe = j|T > t,Xo = 1) = uj as t — 0.

3van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. Appl. Probab. 23, 683-700.

4Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distribu-
tions for birth-death processes. Adv. Appl. Probab. 29, 185-204.

QACEMI
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Quasi-stationary distributions

Quasi-stationary distributions

A distribution u = (us,, n > 0) is called a limiting conditional distribution (or sometimes
quasi-stationary distribution) if u;(t) :== Pr(Xe = j|T > t,Xo = 1) = uj as t — 0.

If & > 0 then uj(t) — uj i= pg "&1m;Qj(€1). If & = 0 then u;(t) — 0.

3van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. Appl. Probab. 23, 683—700.

4Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distribu-
tions for birth-death processes. Adv. Appl. Probab. 29, 185-204.
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Quasi-stationary distributions

Quasi-stationary distributions

A distribution u = (us,, n > 0) is called a limiting conditional distribution (or sometimes
quasi-stationary distribution) if u;(t) :== Pr(Xe = j|T > t,Xo = 1) = uj as t — 0.

If & > 0 then uj(t) — uj i= pg "&1m;Qj(€1). If & = 0 then u;(t) — 0.

Again, how fast?

3van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. Appl. Probab. 23, 683—700.

4Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distribu-
tions for birth-death processes. Adv. Appl. Probab. 29, 185-204.
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Quasi-stationary distributions

Quasi-stationary distributions

A distribution u = (us,, n > 0) is called a limiting conditional distribution (or sometimes
quasi-stationary distribution) if u;(t) :== Pr(Xe = j|T > t,Xo = 1) = uj as t — 0.

If & > 0 then uj(t) — uj i= pg "&1m;Qj(€1). If & = 0 then u;(t) — 0.

Again, how fast?

Claim. inf {a >0: / e™|uj(t) — uj| dt = oo} =& — & (same for all i,j € S).
0

3van Doorn, E.A. (1991) Quasi-stationary distributions and convergence to quasi-stationarity of
birth-death processes. Adv. Appl. Probab. 23, 683—700.

4Kijima, M., Nair, M.G., Pollett, P.K. and van Doorn, E.A. (1997) Limiting conditional distribu-
tions for birth-death processes. Adv. Appl. Probab. 29, 185-204.
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Recall ...

Theorem (Karlin and McGregor (1957))

Let P(t) = (pij(t)) be any transition function that satisfies both the backward and the
forward equations (for example the minimal one). Then, there is a probability measure ¢
with support [0, 00) such that

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

Proof. We use mathematical induction: on i using (BE) with j = 0 and then on j using
(FE). But, showing that there is a probability measure v with support [0, c0) whose
Laplace transform is poo(t), that is

() = [ e du() (:m | e 00 dw(x)),

0

is not completely straightforward. More on this later.
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Why does this work?

Why does this work?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

gACEMJ'
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Why does this work?

Why does this work?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

Why is there a ¢ whose Laplace transform is poo(t): poo(t) = / e ™ dih(x)?
0

gACEMJ'

Birth-Death Processes and Orthogonal Polynomials



Why does this work?

Theorem (Karlin and McGregor (1957))

pi(t) = 5 / T e T Q()Q(x) de(x)  (1.j >0, t>0).

Why is there a ¢ whose Laplace transform is poo(t): poo(t) = / e ™ dih(x)?
0

Answer. Weak symmetry: miq; = 7jqji (miX\i = Tip1jtis1)

gACEMJ'
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Why does this work?

Finite state Markov chains - some linear algebra

Let (X¢, t > 0) be a continuous-time Markov chain taking values in S = {0,1,..., N}
with (conservative) transition rate matrix Q. So, there is collection 7 = (7}, j € S) of
strictly positive numbers such that wQ = 0, that is

Y mag=my qi  (€S)

€S i€eS

*ACEMJ'
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Why does this work?

Finite state Markov chains - some linear algebra

Let (X¢, t > 0) be a continuous-time Markov chain taking values in S = {0,1,..., N}
with (conservative) transition rate matrix Q. So, there is collection 7 = (7}, j € S) of
strictly positive numbers such that wQ = 0, that is

Y mag=my qi  (€S)

€S i€eS

Suppose that Q is weakly symmetric with respect to 7: m;qj = 7jq;i.

QACEMI
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Why does this work?

Finite state Markov chains - some linear algebra

Let (X¢, t > 0) be a continuous-time Markov chain taking values in S = {0,1,..., N}
with (conservative) transition rate matrix Q. So, there is collection 7 = (7}, j € S) of
strictly positive numbers such that wQ = 0, that is

Y mai=my ai (€S
ics ies
Suppose that Q is weakly symmetric with respect to 7: m;qj = 7jq;i.

Let A be the symmetric matrix with entries aj = /7iqjj/\/7j. It is orthogonally similar to
a diagonal matrix D = diag{do, d1,...,dv}: A= MDMT ..., et cetera, ...

QACEMJ'
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Finite state Markov chains - some linear algebra

Let (X¢, t > 0) be a continuous-time Markov chain taking values in S = {0,1,..., N}
with (conservative) transition rate matrix Q. So, there is collection 7 = (7}, j € S) of
strictly positive numbers such that wQ = 0, that is

Y mai=my ai (€S
ics ies
Suppose that Q is weakly symmetric with respect to 7: m;qj = 7jq;i.

Let A be the symmetric matrix with entries a; = \/miq;//7;. It is orthogonally similar to
a diagonal matrix D = diag{do, d1,...,dv}: A= MDMT ..., et cetera, ... leading to
the spectral solution of P'(t) = QP(t) (BE):

pi(t) = m; Z edth,(-k)Q(-k)7 where Ql(.k) =

Birth-Death Processes and Orthogonal Polynomials



Why does tt

General symmetric Markov chains - some functional analysis

Let w = (mj, j € S) be a collection of strictly positive numbers and suppose that P is
weakly symmetric with respect to m: mip;(t) = mipi(t) (i,j € S).

5Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition opera-
tors, and the corresponding integral representations for Markov processes with a countable infinity

of states. Proc. London Math. Soc. 9, 417-431.
QACEMJ'
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General symmetric Markov chains - some functional analysis

Let w = (mj, j € S) be a collection of strictly positive numbers and suppose that P is
weakly symmetric with respect to m: mip;(t) = mipi(t) (i,j € S).

Define T : o — ¢> by

(Tex); = xi(mi/m)?pi(t)  (i€S, x € o).

i€s

5Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition opera-
tors, and the corresponding integral representations for Markov processes with a countable infinity
of states. Proc. London Math. Soc. 9, 417-431.
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General symmetric Markov chains - some functional analysis

Let w = (mj, j € S) be a collection of strictly positive numbers and suppose that P is
weakly symmetric with respect to m: mip;(t) = mipi(t) (i,j € S).

Define T : o — ¢> by
(Tex); = > xi(mi/m) Pps(t)  (I€S, x€b).
€S

Then (T¢, t > 0) is a semigroup which is self adjointing (T:x,y) = (x, Tey).
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General symmetric Markov chains - some functional analysis

Let w = (mj, j € S) be a collection of strictly positive numbers and suppose that P is
weakly symmetric with respect to m: mip;(t) = mipi(t) (i,j € S).

Define T : o — ¢> by
(Tex); = > xi(mi/m) Pps(t)  (I€S, x€b).
ies
Then (T¢, t > 0) is a semigroup which is self adjointing (T:x,y) = (x, Tey).

Kendall used a result of Riesz and Sz.-Nagy on the spectral representation of self-adjoint
semigroups to show that there is a finite signed measure ~;; with support [0, c0) such that

pi(t) = (my/mi) /2 / e dry(x).

[0,00)

Furthermore, ;i is a probability measure.

5Kendall, D.G (1959) Unitary dilations of one-parameter semigroups of Markov transition opera-
tors, and the corresponding integral representations for Markov processes with a countable infinity
of states. Proc. London Math. Soc. 9, 417-431.
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Why does this work?

General symmetric Markov chains - speculation

In can be seen from the definition of the birth-death polynomials @ = (Q,, n € S),

Qo(x) =1
—xQo(x) = —(Ao + o) Qo(x) + Ao Qi1(x)
_XQn(X) - HnQn—l(x) - ()\n + ,Un)Qn(X) + )\nQn+1(X)7

and the form of transition rate matrix restricted to S = {0,1,...},

—()\o + ,uo) Ao 0 0 0
H1 —(A1 4 p1) A1 0 0
Q= 0 2 —(A2 + p2) A2 0 ,
0 0 13 —(Az3+pu3)  As
that @ = Q(x) as a column vector satisfies QQ = —xQ (Q(x) is an x-invariant vector

for Q), and R = R(x), where R;(x) = m;Qj(x), as a row vector satisfies RQ = —xR
(R(x) is an x-invariant measure for Q).
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General symmetric Markov chains - speculation

One might speculate that
pi(t) = / Q) di(x)  (ij >0, t>0)
0

holds more generally under weak symmetry (miqij = 7;q;i) for a function system

Q = (Qn, n € S) (necessarily orthogonal with respect to ) satisfying QQ = —xQ.
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Why does this work?

General symmetric Markov chains - speculation

One might speculate that
pi(t) = / Q) di(x)  (ij >0, t>0)
0

holds more generally under weak symmetry (miqij = 7;q;i) for a function system
Q = (Qn, n € S) (necessarily orthogonal with respect to ) satisfying QQ = —xQ.

It might perhaps be too much to expect that
pi(t) :/ e T QRi(x) dib(x)  (i,j >0, t>0)
0

holds with just wQ = 0 for function systems Q = (Q,, n€ S) and R =(R,, n€ S)
satisfying QQ = —xQ and RQ = —xR, and, of necessity,

/0 T ORI () =85 (i) > 0).
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