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The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model was introduced by Weiss and Dishon
to study infections, in a closed population of n individuals, that do not confer any long
lasting immunity:

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic

models of an epidemic. Mathematical Biosciences 11, 261–265.

If Y (t) is the number of infectives at time t, then (Y (t), t ≥ 0) is a continuous-time
Markov chain on {0, 1, . . . , n} with transitions

Y → Y + 1 at rate
λ

n
Y (n − Y ) (infection)

Y → Y − 1 at rate µY (recovery)

It is an example of the stochastic logistic model first proposed by Feller:

Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrschein-

lichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11–40.
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Behaviour for large n

We can prove a law of large numbers, which shows that the proportion of infectives
Y (t)/n converges in probability uniformly over finite time intervals to the solution of
the ODE

ẏ = λy(1− y)− µy = λy(1− ρ− y),

where ρ = µ/λ, namely

y(t) =
(1− ρ)y0

y0 + (1− ρ− y0)e−λ(1−ρ)t
, y(0) = y0,

this being the Verhulst model (or logistic model) for population growth.

Theorem

If Y (0)/n→ y0 as n→∞ then, for all T > 0 and for any ε > 0,

lim
n→∞

Pr

(
sup

0≤t≤T

∣∣∣∣Y (t)

n
− y(t)

∣∣∣∣ > ε

)
= 0.
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Aside: “We will give the name logistic to the curve” - Verhulst 1845

Verhulst, P.F. (1845) Recherches mathématiques sur la loi d’accroissement de la population.

Nouveaux mémoires de l’Académie Royale des Sciences et Belles-Lettres de Bruxelles.
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Infection dies out quickly (λ < µ)
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Infection becomes endemic (λ > µ)
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Individual variation

Suppose now that the population is heterogeneous in that individuals have different
characteristics: individual i (i = 1, . . . , n) has

an exponentially distributed recovery period with mean µ−1
i (µi > 0);

a resistence level λ−1
i (λi > 0); and,

when infected, contributes κi to the infective potential of the population.

Let X (n)

i be 1 or 0 according to whether individual i is infected or not, and let
X (n) = (X (n)

1 , . . . ,X
(n)
n ) be the state of the population.
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The model

Suppose (X (n) (t), t ≥ 0) is a continuous-time Markov chain on {0, 1}n with transitions

(. . . , 0, . . . )→ (. . . , 1, . . . ) at rate λi f

(
1

n

n∑
j=1

κjX
(n)

j

)
(. . . , 1, . . . )→ (. . . , 0, . . . ) at rate µi .

↑
Position i (i = 1, . . . , n)

The function f : R+ → R+ is assume to be Lipschitz continuous.

Notice that the disease free state 0 = (0, 0, . . . , 0) is the sole absorbing state and the
remaining states form a communicating class from which 0 is accessible (and indeed
reached with probability 1).
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The model

For this talk take κi = 1 and f (x) = x , so that our Markov chain has transitions

(. . . , 0, . . . )→ (. . . , 1, . . . ) at rate λi X̄
(n)

(. . . , 1, . . . )→ (. . . , 0, . . . ) at rate µi ,

↑
Position i (i = 1, . . . , n)

where X̄ (n) = 1
n

∑n
j=1 X

(n)

j (the proportion of the population that is infected).

The plan: to get a handle on large n behaviour, and, then, to determine conditions for
endemicity.
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Endemicity (persistence of the epidemic)
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Disease free state is globally stable
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Endemicity!

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
SIS Model simulation (n =50)

t

P
ro
p
or
ti
on

in
fe
ct
ed

R
′(0) =2.8

0 1 2 3
0

0.2

0.4

λi ∼ Γ(1.4,1)

0 1 2 3
0

0.2

0.4

µi ∼ Γ(1.5,1)

Phil. Pollett (The University of Queensland) An SIS Epidemic in a Large Population 14 / 24



Our approach - Point processes

Think of the individual characteristics θi := (λi , µi ) as (random) points in some subset S
of R2

+.

Define sequences of random measures (σ(n) ) and random-measure-valued processes

(m
(n)

t , t ≥ 0) by
σ(n) (B) = #{θi ∈ B}/n, B ∈ B(S),

m
(n)

t (B) = #{θi ∈ B : X
(n)

i,t = 1}/n, B ∈ B(S).

We are going to suppose that σ(n) d→ σ for some non-random (probability) measure σ.
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Our approach - Point processes

Equivalently, we may define (σ(n) ) and (m
(n)

t ) by∫
h(θ)σ(n) (dθ) =

1

n

n∑
i=1

h(θi )

∫
h(θ)m

(n)

t (dθ) =
1

n

n∑
i=1

X
(n)

i,t h(θi ),

for h in Cb(S), the class of bounded continuous functions that map S to R.

(Here θ = (λ, µ).)

For example (h ≡ 1),

m
(n)

t (S) =

∫
m

(n)

t (dθ) =
1

n

n∑
i=1

X
(n)

i,t (proportion infected).
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A measure-valued limiting process

Theorem

Suppose that σ(n) d→ σ and m
(n)

0

d→ m0 for some non-random measures σ and m0 . Then,

the sequence of measure-valued processes (m
(n)

t , t ≥ 0) converges weakly to the unique
solution (mt , t ≥ 0) of

(h,mt) = (h,m0 ) +

∫ t

0

L(h,ms) ds, h ∈ Cb(S),

where (notation) (h,m) =
∫
h(θ)m(dθ), and

L(h,mt) := mt(S)

(∫
λh(θ)σ(dθ)−

∫
λh(θ)mt(dθ)

)
−
∫
µh(θ)mt(dθ).
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The limiting process

Lemma

For all B ∈ B(S) and t ≥ 0, mt(B) ≤ σ(B).

In particular mt << σ, and so mt has a (uniquely determined σ-a.e.) Radon-Nikodym
derivative φt (≥ 0) with respect to σ: mt(B) =

∫
B
φt(θ)σ(dθ).

The lemma also implies that φt ≤ 1.

Now, “differentiate” both sides of

(h,mt) = (h,m0 ) +

∫ t

0

L(h,ms) ds,

with respect to σ. We get . . . .
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The limiting process

Corollary

The Radon-Nikodym derivative φt(λ, µ) satisfies

φt = φ0 +

∫ t

0

(
λ(1− φs)

∫
φs(θ

′)σ(dθ ′)− µφs

)
ds.

This formula can be used to study the long-term (t →∞) behaviour of our model.

Any equilibrium point φeq must satisfy

0 = λ(1− φeq )

∫
φeq (θ ′)σ(dθ ′)− µφeq .
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Equilibria of the limiting process

Any equilibrium point φeq must satisfy

0 = λ(1− φeq )

∫
φeq (θ)σ(dθ)− µφeq .

On setting ψ =
∫
φeq (θ)σ(dθ), we see that

φeq (λ, µ) ( = φeq (θ) ) =
λψ

λψ + µ
,

and so, on integrating this over (λ, µ) ∈ S , we find that ψ must solve the equation

ψ = R(ψ) :=

∫∫
λψ

λψ + µ
σ(dλ, dµ).

Our stability criteria are expressed in terms of

R ′(0) =

∫∫
λ

µ
σ(dλ, dµ) = E (λi/µi ) .
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Stability

Theorem

(a) If R ′(0) ≤ 1, then ψ = 0 is the only fixed point of R, and φeq = 0 is globally stable,
that is, for all φ0 , φt → 0 on S . The latter entails mt(B)→ 0, for all B ∈ B(S), and
hence the disease free state is globally stable.

(b) If R ′(0) > 1, then R has two fixed points, 0 and a positive fixed point ψ∗, and
(subject to mild extra conditions), if (m0(S) =) (φ0 , σ) > 0, then

φt → φ∗ :=
λψ∗

λψ∗ + µ
.

The latter entails mt(B)→ m∗(B), for all B ∈ B(S), where

m∗(B) =

∫
B

φ∗(θ)σ(dθ) =

∫∫
B

λψ∗
λψ∗ + µ

σ(dλ, dµ),

implying endemicity .
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Endemicity
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Disease free state is globally stable
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Endemicity!
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