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The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model was introduced by Weiss and Dishon

to study infections, in a closed population of n individuals, that do not confer any long
lasting immunity:

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic
models of an epidemic. Mathematical Biosciences 11, 261-265.
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The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model was introduced by Weiss and Dishon

to study infections, in a closed population of n individuals, that do not confer any long
lasting immunity:

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic
models of an epidemic. Mathematical Biosciences 11, 261-265.

If Y(t) is the number of infectives at time ¢, then (Y(t), t > 0) is a continuous-time

Markov chain on {0,1,..., n} with transitions
Y - Y+1 atrate %Y(n -Y) (infection)
Y —>Y—1 atrate uY (recovery)

QACEMJ'

An SIS Epidemic in a Large Population 4 /24



The Stochastic SIS Model

The SIS (Susceptible-Infectious-Susceptible) Model was introduced by Weiss and Dishon

to study infections, in a closed population of n individuals, that do not confer any long
lasting immunity:

Weiss, G.H. and Dishon, M. (1971) On the asymptotic behavior of the stochastic and deterministic
models of an epidemic. Mathematical Biosciences 11, 261-265.

If Y(t) is the number of infectives at time ¢, then (Y(t), t > 0) is a continuous-time
Markov chain on {0,1,..., n} with transitions

Y - Y+1 atrate %Y(n -Y) (infection)

Y —>Y—1 atrate uY (recovery)

It is an example of the stochastic logistic model first proposed by Feller:

Feller, W. (1939) Die grundlagen der volterraschen theorie des kampfes ums dasein in wahrschein-
lichkeitsteoretischer behandlung. Acta Biotheoretica 5, 11-40.
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Behaviour for large n

We can prove a law of large numbers, which shows that the proportion of infectives
Y (t)/n converges in probability uniformly over finite time intervals to the solution of
the ODE

y=M1-y)—py=N1-p-y),

where p = /A, namely

(t) _ (1 *P)YO

B vo+1-p-— yo)e*)\(lfp)t’ y(0) = yo,

this being the Verhulst model (or logistic model) for population growth.
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Behaviour for large n

We can prove a law of large numbers, which shows that the proportion of infectives
Y (t)/n converges in probability uniformly over finite time intervals to the solution of
the ODE

y=M1-y)—py=N1-p-y),

where p = /A, namely

y(o) = Yo,

(t) _ (1 — p)yo
yo+ (1= p—yo)e ri=rt’

this being the Verhulst model (or logistic model) for population growth.

IfY(0)/n — yo as n — oo then, for all T > 0 and for any € > 0,

Y _ >e) o,

n

lim Pr{ sup y(t)

n—oo <0§t§T
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...
Aside: “We will give the name logistic to the curve” - Verhulst 1845

Cette équation étant intégrée donne, en observant que =0 répond
ap=b, :

_ 1 p(m — nb) ' n
c_;log.[ (4

b{m — np) ’
Nous donnerons le nom de logistique & la courbe (voyes la fiqure)

tenu compte de la propriété dont jouissent les denrées alimentaires, de se multiplier dans une
progression plus rapide que I'espéce humaine, lorsque le sol est nouvellement cultivé. Mais cet
age d'or de la société n'existe plus depuis longtemps pour les nations européennes. (Juant aux res-
sources qu'un grand peuple peut tirer du commerce étranger pour se procurer des subsistances,
il nous suffira de rappeler que, d'apres les calculs de M. Moreau de Jonnes, la récolte de la France,
en blé seulement, est de 70 millions d'hectolitres, et que pour transporter une pareille masse, il
faudrait 88,000 navires de cent tonneaux! Qu'on juge alors de la quantité des autres denrées ali-
mentaires. Lors méme qu'une partie considérable de la population {rangaise pourrait étre nourrie
de blés étrangers, jamais un gouvernement sage ne consentira A faire dépendre l'existence de mil-
lions de citoyens du bon vouloir des souverains étrangers.

Verhulst, P.F. (1845) Recherches mathématiques sur la loi d'accroissement de la population.

Nouveaux mémoires de I’Académie Royale des Sciences et Belles-Lettres de Bruxelles.
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.
Infection dies out quickly (A < p)

SIS Model simulation (n =50, A =2, u =10)
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Infection becomes endemic (A > p)

SIS Model simulation (n =50, A =10, pn =2)
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Individual variation

Suppose now that the population is heterogeneous in that individuals have different
characteristics: individual i (i =1,...,n) has

o an exponentially distributed recovery period with mean ,ufl (pi > 0);
o a resistence level A7! (\; > 0); and,

o when infected, contributes x; to the infective potential of the population.
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Individual variation

Suppose now that the population is heterogeneous in that individuals have different
characteristics: individual i (i =1,...,n) has

o an exponentially distributed recovery period with mean ,ufl (pi > 0);
o a resistence level A7! (\; > 0); and,

o when infected, contributes x; to the infective potential of the population.

Let X” be 1 or 0 according to whether individual i is infected or not, and let
X0 = (Xl("), ..., X{") be the state of the population.
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...
The model

Suppose (X" (t), t > 0) is a continuous-time Markov chain on {0,1}" with transitions

(.00, )= (o) 1,...) atrate A,-f(iz,ijxjgn))
j=1

(..y1,...)=(...,0,...) atrate pu;.
/l\

Position i (i =1,...,n)

The function f : Ry — R is assume to be Lipschitz continuous.
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The model

Suppose (X" (t), t > 0) is a continuous-time Markov chain on {0,1}" with transitions

(.00, )= (o) 1,...) atrate A,-f(izﬁjxjgn))
j=1

(..y1,...)=(...,0,...) atrate pu;.
/l\
Position i (i =1,...,n)

The function f : Ry — R is assume to be Lipschitz continuous.

Notice that the disease free state 0 = (0,0,...,0) is the sole absorbing state and the

remaining states form a communicating class from which 0 is accessible (and indeed
reached with probability 1).
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...
The model

For this talk take k; = 1 and f(x) = x, so that our Markov chain has transitions

(...;0,...) > (-..,1,...) atrate \X"
(..,1,...) = (...,0,...) atrate uj,

T

Position i (i =1,...,n)

where X" =1 Zle Xj(") (the proportion of the population that is infected).

n
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...
The model

For this talk take k; = 1 and f(x) = x, so that our Markov chain has transitions

(...;0,...) > (-..,1,...) atrate \X"
(..,1,...) = (...,0,...) atrate uj,

T
Position i (i =1,...,n)
where X" = %Zle Xj(") (the proportion of the population that is infected).

The plan: to get a handle on large n behaviour, and, then, to determine conditions for
endemicity.
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Endemicity (persistence of the epidemic)
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Disease free state is globally stable

SIS Model simulation (n =50)
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Endemicity!
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Our approach - Point processes

Think of the individual characteristics 6; := (A, pi) as (random) points in some subset S
of R%.
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Our approach - Point processes

Think of the individual characteristics 6; := (A, pi) as (random) points in some subset S
of R%.

Define sequences of random measures (¢”) and random-measure-valued processes
(m{”, t > 0) by
o (B) = #{0; € B}/n, B € B(S),

m(B) = #{0: € B: X\, =1}/n, B € B(S).
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Our approach - Point processes

Think of the individual characteristics 6; := (A, pi) as (random) points in some subset S
of R%.

Define sequences of random measures (¢”) and random-measure-valued processes
(m{”, t > 0) by
o (B) = #{0; € B}/n, B € B(S),

m(B) = #{0: € B: X\, =1}/n, B € B(S).

We are going to suppose that o 4 & for some non-random (probability) measure o.
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Our approach - Point processes

Equivalently, we may define (") and (m”) by

/h(e )o'” (df) = Zh
/h(é))m(t")(de) — %ix“

for hin C,(S), the class of bounded continuous functions that map S to R.
(Here 0 = (A, 1).)
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Our approach - Point processes

Equivalently, we may define (") and (m”) by

/h(e )o'” (df) = Zh
/h(é))m(t")(de) — %ix“

for hin C,(S), the class of bounded continuous functions that map S to R.
(Here 0 = (A, 1).)

For example (h = 1),

n

m{(S) = /mi”)(de) = %ZX,(,'? (proportion infected).

i=1
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A measure-valued limiting process

d d
Suppose that o % o and m{” 5 m, for some non-random measures o and m,. Then,

the sequence of measure-valued processes (m(t"), t > 0) converges weakly to the unique
solution (me, t > 0) of

(h,m¢) = (h,my) + /Ot L(h,ms)ds, he C[(S),

where (notation) (h,m) = [ h(0)m(d@), and

L(h, me) = me(S) (/ Ah(0)o(d6) f/)\h(ﬁ)mt(da))f/uh(e)mt(de),

gACEMJ'
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The limiting process

For all B € B(S) and t > 0, m¢(B) < o(B).
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The limiting process

For all B € B(S) and t > 0, m¢(B) < o(B).

In particular m; << o, and so m; has a (uniquely determined o-a.e.) Radon-Nikodym
derivative ¢ (> 0) with respect to o: m(B) = [; $:(0)o(d0).

An SIS Epidemic in a Large Population



The limiting process

For all B € B(S) and t > 0, m¢(B) < o(B).

In particular m; << o, and so m; has a (uniquely determined o-a.e.) Radon-Nikodym
derivative ¢ (> 0) with respect to o: m(B) = [; $:(0)o(d0).

The lemma also implies that ¢, < 1.
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The limiting process

For all B € B(S) and t > 0, m¢(B) < o(B).

In particular m; << o, and so m; has a (uniquely determined o-a.e.) Radon-Nikodym
derivative ¢ (> 0) with respect to o: m(B) = [; $:(0)o(d0).

The lemma also implies that ¢, < 1.
Now, “differentiate” both sides of
t
(h.m) = (homy) + [ L(h.m) o,
0

with respect to . We get .. ..
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The limiting process

The Radon-Nikodym derivative ¢:(\, ) satisfies

G =@ + /Ot ()\(1 - ¢s)/¢s(0')a(d0') - N¢s> ds.

ﬁAcst
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The limiting process

The Radon-Nikodym derivative ¢:(\, ) satisfies

G =@ + /Ot ()\(1 - ¢s)/¢s(0')a(d0') - N¢s> ds.

This formula can be used to study the long-term (t — o) behaviour of our model.
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The limiting process

The Radon-Nikodym derivative ¢:(\, ) satisfies

G =@ + /Ot ()\(1 - ¢s)/¢s(0')a(d0') - N¢s> ds

This formula can be used to study the long-term (t — o) behaviour of our model.

Any equilibrium point ¢., must satisfy

0= M1 6u0) [ 00a(6)0(d8") = .
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Equilibria of the limiting process

Any equilibrium point ¢., must satisfy

0= >‘(1 - d’cq) / ¢cq (O)U(dg) - M¢Cq .
On setting ¥ = [ ¢eq (0)0(dB), we see that

A
A+

and so, on integrating this over (A, 1) € S, we find that ¢ must solve the equation

Y =R(Y): //MH o(d), dp).

Geq ()\Mu) ( = eq (0) ) =
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Equilibria of the limiting process

Any equilibrium point ¢., must satisfy

0= >‘(1 - d’cq) / ¢cq (O)U(dg) - M¢Cq .
On setting ¥ = [ ¢eq (0)0(dB), we see that

A
A+

and so, on integrating this over (A, 1) € S, we find that ¢ must solve the equation

Y =R(Y): //MH o(d), dp).

Our stability criteria are expressed in terms of

_ //ga(d/\,du) =E(\/ui).

Geq ()\Mu) ( = eq (0) ) =
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Stability

Theorem

(a) If R'(0) < 1, then ¢ = 0 is the only fixed point of R, and ¢., = 0 is globally stable,
that is, for all ¢,, ¢+ — 0 on S. The latter entails m:(B) — 0, for all B € B(S), and
hence the disease free state is globally stable.
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Stability

Theorem

(a) If R'(0) < 1, then ¢ = 0 is the only fixed point of R, and ¢., = 0 is globally stable,
that is, for all ¢,, ¢+ — 0 on S. The latter entails m:(B) — 0, for all B € B(S), and
hence the disease free state is globally stable.

(b) If R'(0) > 1, then R has two fixed points, 0 and a positive fixed point 1., and
(subject to mild extra conditions), if (mo(S) =) (¢,,0) > 0, then

b
My +

The latter entails m:(B) — m.(B), for all B € B(S), where

m.(B) = /qb*(ﬂ (d6) //Mjﬁu (dX, dp),

implying endemicity.

Pr = Pu =
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Endemicity

SIS Model simulation (n = 50)
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Disease free state is globally stable

SIS Model simulation (n =50)
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Endemicity!
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