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Habitat dynamics

A continuous-time Markov chain {(m(t), n(t)), t ≥ 0}.
• S = {(m, n) : 0 ≤ n ≤ m ≤ M}

• m = the number of suitable patches
• n = the number of occupied patches
• M = the total number of patches (fixed)
• Transition rates {q(x, y), x, y ∈ S}:

q((m, n), (m + 1, n)) = r(M − m)

q((m, n), (m − 1, n)) = s(m − n)

q((m, n), (m − 1, n − 1)) = sn

q((m, n), (m, n + 1)) = c
n

M
(m − n)

q((m, n), (m, n − 1)) = en
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Metapopulation network

A continuous-time Markov chain {(n1(t), . . . , nM (t)), t ≥ 0}.
• S = {0, . . . , N1} × · · · × {0, . . . , NM}

• ni = the patch-i population size (capacity Ni)
• M = the total number of patches (fixed)
• Transition rates {q(x, y), x, y ∈ S}:

q(n, n + ei) = b
ni

Ni
(Ni − ni)

q(n, n − ei + ej) = γij
ni

Nj
(Nj − nj) (j 6= i)

q(n, n − ei) = µni.

Here b is the local birth rate, γij is the rate of migration from
patch i to patch j, and µ is the per-capita death rate.
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An auto-catalytic reaction

Consider the reaction A
X
→ B, where X is a catalyst.

A two stage (auto-catalytic) scheme:

A + X
k1→ 2X and 2X

k2→ B.

Let X(t) = number of X molecules at time t. Suppose that the
concentration of A is held constant; let a be the number of
molecules of A. The state space is S = {0, 1, 2, . . . } and the
transition rates are:

qij =











k1ai if j = i + 1

k2

(

i
2

)

if j = i − 2

0 otherwise.
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An auto-catalytic reaction
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Ingredients

• A (time-homogeneous) Markov chain (X(t), t ≥ 0) in
continuous time, taking values in S = {0, 1, 2, . . . }.

• Transition rates Q = {qij , i, j ∈ S}: qij (≥ 0), for j 6= i, is
the transition rate from state i to state j and qii = −qi,
where qi =

∑

j 6=i qij (< ∞) is the transition rate out of
state i.

• Assumptions : For simplicity, take 0 to be the sole
absorbing state (that is, q0j = 0), suppose that
C = {1, 2, . . . } is irreducible and that we reach 0 from C
with probability 1.

• Transition probabilities : P (t) = {pij(t), i, j ∈ S}, where
pij(t) = Pr(X(t) = j|X(0) = i). State probabilities :
p(t) = {pj(t), j ∈ S}, where pj(t) = Pr(X(t) = j).
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Ingredients

• Initial distribution : a = (aj , j ∈ S) (a0 = 0).

• Forward equations : the state probabilities satisfy
p ′(t) = p(t)Q, p(0) = a. In particular, since q0j = 0,

p ′
j(t) =

∑

i∈C

pi(t)qij , j ∈ S, t > 0.

• Conditional state probabilities : define
m(t) = (mj(t), j ∈ C) by

mj(t) = Pr(X(t) = j |X(t) ∈ C) =
pj(t)

∑

k∈C pk(t)
,

the chance of being in state j given that the process has not
reached 0.
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Quasi-stationary distributions

Question 1 . Does m(t) → m as t → ∞?

Question 2 . Can we choose the initial distribution a in order
that mj(t) = aj , j ∈ C, for all t > 0?

Definition . A distribution m = (mj , j ∈ C) satisfying m(t) = m

for all t > 0 is called a quasi-stationary distribution (QSD).
If m(t) → m then m is called a limiting-conditional distribution
(LCD).

Question 3 . Is the QSD unique?

Question 4 . When an LCD exists, is it a QSD?

Question 5 . Does the LCD depend on the initial distribution?
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Origins

Yaglom proved that the LCD exists for the subcritical
(Galton-Watson) branching process (in discrete time) starting
from a single initial ancestor:

A.M. Yaglom (1947) Certain limit theorems of the
theory of branching processes (in Russian). Dokl.
Acad. Nauk SSSR 56, 795–798.

The moment condition [finite variance of the number of
offspring] was removed by Joffe (1967) and Heathcote,
Seneta and Vere-Jones (1967).

Even earlier, Kolmogorov (1938) proved the convergence of
the conditional mean number of individuals.
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Origins

The finite state space case was dispensed with early on using
Perron Frobenius Theory. The QSD exists uniquely and is the
LCD (the same for all initial distributions):

J.N. Darroch and E. Seneta. (1965) On
quasi-stationary distributions in absorbing
discrete-time Markov chains. J. Appl. Probab. 2,
88–100.

J.N. Darroch and E. Seneta. (1967) On
quasi-stationary distributions in absorbing
continuous-time finite Markov chains. J. Appl.
Probab. 4, 192–196.
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Everyone knows that ...

Digression . Suppose for the moment that S is irreducible.

• If a stationary distribution (πP (t) = π) exists, then it is
unique.
• S is recurrent iff mP (t) ≤ m has a positive solution, unique
up to constant multiples, which satisfies mP (t) = m (m is
called an invariant measure).
• mP (t) = m implies mQ = 0. (Warning: mQ = 0 does not
necessarily imply mP (t) = m.)

• πQ ≤ 0 implies πP (t) = π iff Q is regular (non-explosive), in
which case πQ = 0 (π is called an equilibrium distribution).
• If S is recurrent, then S is positive recurrent iff the invariant
measure m is finite (

∑

j mj < ∞), in which case the
limiting distribution is given by πi = mi/

∑

j mj .
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Open Problem 1

Develop a satisfactory
theory of QSDs/LCDs
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First major advance

Conditions for the existence of LCDs for countable-state
Markov chains in discrete time.

E. Seneta and D. Vere-Jones (1966) On
quasi-stationary distributions in discrete-time
Markov chains with a denumerable infinity of states.
J. Appl. Probab. 3, 403–434.

D. Vere-Jones (1962) Geometric ergodicity in
denumerable Markov chains. Quart. J. Math.
Oxford 13, 7–28.

The R-classification was introduced (R-recurrent, R-transient,
R-null recurrent, R-positive recurrent).
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First major advance

Seneta and Vere-Jones discovered that:

• QSDs may not be unique.
• Basically, R-positive recurrence (to be defined later) is

sufficient for the existence of an LCD.
• R-positive recurrence is hard to check.
• R-positive recurrence is not necessary for the existence

of an LCD.
• When LCDs exists, they may depend on the initial

distribution (Galton-Watson branching process).
Sufficient conditions were given for non-dependence.

• There are many other kinds of LCDs.
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Continuous time

“Analogous” papers for the continuous-time case:

D. Vere-Jones (1969) Some limit theorems for
evanescent processes. Austral. J. Statist. 11,
67–78.

J.F.C. Kingman (1963) The exponential decay of
Markov transition probabilities. Proc. London Math.
Soc. 13, 337–358.

The LCD can exist in the λ-transient case (continuous-time
analogue of R-transient):

E. Seneta (1966) Quasi-stationary behaviour in the
random walk with continuous time. Austral. J.
Statist. 8, 92–98.
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λ-classification

Following Vere-Jones (1962), Kingman (1963) proved that the
limit

λ (= λC) = lim
t→∞

−
1

t
log pij(t)

exists and is the same for all i, j ∈ C, where C is any
irreducible class. This limit satisfies

• 0 ≤ λ < ∞,
• pii(t) ≤ e−λt, i ∈ C, and indeed

• pij(t) ≤ Mije
−λt, i, j ∈ C, for suitable constants Mij .

λ is called the decay parameter (of C).
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λ-classification

The irreducible class C is said to be λ-recurrent if
∫ ∞

0
eλtpij(t) dt = ∞

for some (and then all) i, j ∈ C. Otherwise, C is λ-transient .

A λ-recurrent class C is called λ-null recurrent if eλtpij(t) → 0

as t → ∞ for some (and then all) i, j ∈ C. It is called λ-positive
recurrent if eλtpij(t) → mij (strictly positive constants) for
some (and then all) i, j ∈ C.
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λ-classification

For each irreducible class C there always exist λ-subinvariant
quantities:

λ-subinvariant measure m = (mj , j ∈ C):

∑

i∈C

mipij(t) ≤ e−λtmj , j ∈ C, t ≥ 0.

λ-subinvariant vector (function) x = (xj , j ∈ C):

∑

i∈C

pji(t)xi ≤ e−λtxj , j ∈ C, t ≥ 0.

These quantities are called λ-invariant if equality holds for
some (and then all) j ∈ C.
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λ-classification

The irreducible class C is λ-recurrent iff the λ-subinvariant
measure m and the λ-subinvariant vector x are unique and
λ-invariant:

∑

i∈C

mipij(t) = e−λtmj ,
∑

i∈C

pji(t)xi = e−λtxj .

If C is λ-recurrent , then it is λ-positive recurrent iff
∑

k∈C mkxk < ∞, in which case

lim
t→∞

eλtpij(t) =
ximj

∑

k∈C mkxk

, i, j ∈ C.
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Significance of λ-positivity

mij(t) : = Pr(X(t) = j|X(t) ∈ C, X(0) = i)

=
Pr(X(t) = j|X(0) = i)

Pr(X(t) ∈ C|X(0) = i)

=
pij(t)

∑

k∈C pik(t)
=

eλtpij(t)
∑

k∈C eλtpik(t)

So, formally, mij(t) →
ximj

∑

k∈C ximk

=
mj

∑

k∈C mk

.

In fact, if C is λ-positive recurrent, then, for each i,
mij(t) → mj/

∑

k∈C mk, where m = (mj , j ∈ C) is the
(essentially unique) λ-invariant measure (with the
interpretation that the limit is 0 if

∑

k∈C mk = ∞).
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Strong ratio limit property

Since eλtpij(t) → ximj/
∑

k∈C mkxk, i, j ∈ C, when C is
λ-positive recurrent, we have that

pij(s + t)

pkl(t)
→ e−λs ximj

xkml

, i, j, k, l ∈ C, s ≥ 0.

This strong ratio limit property may hold in the λ-null recurrent
case (Orey (1961), Kingman and Orey (1964), Pruit (1965),
Folkman and Port (1966), Papangelou (1967) and Kersting
(1974, 1976), and even the λ-transient case (Kesten (1963)).

F. Papangelou (1968) Strong ratio limits,
R-recurrence and mixing properties of discrete
parameter Markov processes. Z. Wahrscheinlich
-keitstheorie und Verw. Gebiete 8, 259–297.
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Strong ratio limit property

Note that λ-positive recurrence also implies

Pr(T > t + s|X(0) = i)

Pr(T > t|X(0) = k)
=

∑

j∈C pij(s + t)
∑

j∈C pkj(t)
→ e−λs xi

xk

,

where T is the time to absorption. This again holds more
generally:

S.D. Jacka, and G.O. Roberts (1995) Weak
convergence of conditioned processes on a
countable state space. J. Appl. Probab. 32,
902–916.

Key to conditioned process limits.
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Summary

This is all very unsatisfactory.

• λ-classification is (surprisingly) not the key to the
existence of a LCD.

• The SRLP appears to be the key (but illudes us).
• When the LCD exists for a given starting state, it is a

(the?) λ-invariant probability measure for P .
• The LCD may depend on the initial distribution.
• We need criteria in terms of the transition rates Q, and

criteria we can check.
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Birth-death processes

The LCD exists for all starting states iff λ > 0 (just like
Yaglom’s Theorem):

P. Good (1968) The limiting behaviour of transient
birth and death processes conditioned on survival.
J. Austral. Math. Soc. Ser. B 8, 716–722.

Unfortunately wrong! Corrected in:

E.A. van Doorn (1991) Quasi-stationary distribut
-ions and convergence to quasi-stationarity of birth
-death processes. Adv. Appl. Probab. 23, 683–700.

But, unlike for branching processes, we do not know λ
explicitly. The LCD was given by van Doorn in terms of the
(Karlin and McGregor) orthogonal polynomials.
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Fresh start

Recall the definitions of QSD and LCD in terms of the
conditional state probabilities m(t) = (mj(t), j ∈ C):

mj(t) = Pr(X(t) = j |X(t) ∈ C) =
Pr(X(t) = j)

Pr(X(t) ∈ C)
=

pj(t)
∑

k∈C pk(t)

the chance of being in state j given that the process has not
reached 0.

Definition . A distribution m = (mj , j ∈ C) satisfying m(t) = m

for all t > 0 is called a quasi-stationary distribution (QSD). If
m(t) → m then m is called a limiting-conditional distribution
(LCD).
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Characterizing QSDs

Since a is the initial distribution (with a0 = 0),

pj(t) = Pr(X(t) = j) =
∑

i∈C

aipij(t), j ∈ C, t > 0,

where pij(t) = Pr(X(t) = j|X(0) = i). Therefore, if m is a
QSD, then

∑

i∈C

mipij(t) = pj(t) = g(t)mj , j ∈ C, t > 0,

where g(t) =
∑

k∈C pk(t). It is easy to show that g satisfies:
g(s + t) = g(s)g(t), s, t ≥ 0, and 0 < g(t) < 1. Thus, g(t) = e−µt,
for some µ > 0. The converse is also clearly true.
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QSDs and µ-invariant measures

We have proved the following simple result:

Proposition. A probability distribution m = (mj , j ∈ C) is a
QSD iff, for some µ > 0, m is a µ-invariant measure, that is

∑

i∈C

mipij(t) = e−µtmj , j ∈ C, t ≥ 0. (1)

Note that for (1) it is necessary that µ ≤ λ, where recall that λ
is the decay parameter of C (Vere-Jones (1969)).

But, can we determine QSDs m from Q?
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Characterization in terms of Q

Rewrite (1) as

∑

i∈C: i6=j

mipij(t) =
(

(1 − pjj(t)) − (1 − e−µt)
)

mj

and use the fact that qij is the right-hand derivative of pij(·)

near 0. On dividing by t and letting t ↓ 0, we get (formally)

∑

i∈C: i6=j

miqij = (qj − µ)mj , j ∈ C,

or, equivalently,

∑

i∈C

miqij = −µmj , j ∈ C.
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Characterization in terms of Q

Accordingly, we shall say that m is a µ-invariant measure for Q
whenever

∑

i∈C

miqij = −µmj , j ∈ C.

Theorem. If m is a µ-invariant measure for P (µ > 0), then m
is a µ-invariant measure for Q.

R.L. Tweedie (1974) Some ergodic properties of the
Feller minimal process. Quart. J. Math. Oxford 25,
485–495.

Corollary. If m is a QSD then, for some µ > 0, m is a
µ-invariant measure for Q.
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Characterization in terms of Q

Is the converse true? Suppose that, for some µ > 0, m is a
µ-invariant measure for Q, that is

∑

i∈C

miqij = −µmj , j ∈ C.

Is m a µ-invariant measure for P? (So that if m is a probability
measure, then m is a QSD).

Sum this equation over j ∈ C: we get (formally), in the case
when m is a probability measure,

∑

i∈C

miqi0 = −
∑

i∈C

mi

∑

j∈C

qij = −
∑

j∈C

∑

i∈C

miqij = µ
∑

j∈C

mj = µ.
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Characterization in terms of Q

Theorem . Let m = (mj , j ∈ C) be a probability distribution
over C and suppose that m is a µ-invariant measure for Q.
Then, µ ≤

∑

j∈C mjqj0 with equality iff m is a QSD.

P.K. Pollett (1995) The determination of
quasi-stationary distributions directly from the
transition rates of an absorbing Markov chain.
Math. Computer Modelling 22, 279–287.

So, in order to determine QSDs we must solve

∑

i∈C

miqij = −

(

∑

k∈C

mkqk0

)

mj , j ∈ C.
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Example: catastrophe process

Suppose that

qi,i+1 = aρi, i ≥ 0,

qi,i = −ρi, i ≥ 0,

qi,i−k = ρibk, i ≥ 2, k = 1, 2 . . . i − 1,

qi,0 = ρi
∑∞

k=i bk, i ≥ 1,

where ρ, a > 0, bi > 0 for at least one i ≥ 1 and a +
∑∞

i=1 bi = 1.
Jumps occur at a constant per-capita rate ρ and, at a jump
time, a birth occurs with probability a, or otherwise a
catastrophe occurs, the size of which is determined by the
probabilities bi, i ≥ 1. Clearly, 0 is an absorbing state and
C = {1, 2, . . . } is an irreducible class.

Does Q admit a QSD?
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Example: catastrophe process

On substituting the transition rates into the equations
∑

i∈C miqij = −µmj , j ∈ C, we get:

−(ρ − µ)m1 +
∞
∑

k=2

kρbk−1mk = 0,

and, for j ≥ 2,

(j − 1)ρamj−1 − (jρ − µ)mj +
∞
∑

k=j+1

kρbk−jmk = 0.
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Example: catastrophe process

If we try a solution of the form mj = tj , the first equation tells
us that µ = −ρ(f ′(t) − 1), where

f(s) = a +
∑

i∈C

bis
i+1, |s| ≤ 1,

and, on substituting both of these quantities in the second
equation, we find that f(t) = t. This latter equation has a
unique solution σ on [0, 1]. Thus, by setting t = σ we obtain a
positive µ-invariant measure m = (mj , j ∈ C) for Q, which
satisfies

∑

j∈C mj = 1 whenever σ < 1.

The condition σ < 1 is satisfied only in the subcritical case,
that is, when (the drift) D = a −

∑

i∈C ibi < 0; this also
guarantees that absorption occurs with probability 1.
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Example: catastrophe process

Further, it is easy to show that
∑

i∈C miqi0 = µ:

∑

i∈C miqi0 =
∑∞

i=1(1 − σ)σi−1ρi
∑∞

k=i bk

= ρ
∑∞

k=1 bk

∑k
i=1(1 − σ)iσi−1

...
= ρ(1 − f ′(σ)) = µ.

Proposition . (Pakes (1987)) The subcritical birth-death and
catastrophe process has a geometric QSD m = (mj , j ∈ C).
This is given by mj = (1− σ)σj−1, j ∈ C, where σ is the unique
solution to f(t) = t on the interval [0, 1].
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Characterization in terms of Q

There are more general necessary and sufficient conditions.

P.K. Pollett (1986) On the equivalence of µ-invariant
measures for the minimal process and its q-matrix.
Stochastic Process. Appl. 22, 203–221.

Theorem. A µ-invariant measure m for Q is µ-invariant for P
iff the equations

∑

i∈C

yiqij = νyj , 0 ≤ yj ≤ mj , j ∈ C,

have no non-trivial solution for some (and then for all) ν > −µ.
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Characterization in terms of Q

Because of the similarity with Reuter’s (1957) condition for
there to be a unique solution to the forward equations, we
came up with the following (Hart and Pollett (1996)):

Corollary. (The Reuter FE Condition) If the equations

∑

i∈C

yiqij = νyj , j ∈ C,

have no non-trivial, non-negative solution such that
∑

j∈C yj < ∞, for some (and then for all) ν > 0, then all
µ-invariant probability measures for Q are µ-invariant
measures (and hence QSDs) for P .
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Birth-death processes

We are given strictly positive birth rates (λj , j ∈ C) (λ0 = 0

since 0 is absorbing) and death rates (µj , j ∈ C). We have
assumed that absorption occurs with probability 1, that is,

∞
∑

i=1

1

λiπi
= ∞,

where π1 = 1 and, for j ≥ 2,

πj =

j
∏

i=2

λi−1

µi
.
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Birth-death processes

Erik van Doorn proved the following characterization,
extending early work of Cavender (1978), in terms of

D :=

∞
∑

i=1

1

λiπi

∞
∑

j=i+1

πj .

Theorem. If D = ∞, then either λ = 0 and there is no QSD,
or λ > 0 and there is a one-parameter family of QSDs, being
the normalized µ-invariant measures (0 < µ ≤ λ). If D < ∞,
then λ > 0 and there is exactly one QSD, being the
normalized λ-invariant measure.

E.A. van Doorn (1991) Quasi-stationary distribut
-ions and convergence to quasi-stationarity of birth
-death processes. Adv. Appl. Probab. 23, 683–700.

MASCOS Fields Institute Workshop, July 2005 - Page 41



Existence of QSDs

Since D = ∞ (for birth-death processes) is arithmetically
equivalent to the Reuter FE condition, we have the following
conjecture for our absorbing Markov chain:

Conjecture. If the Reuter FE Condition holds, then either
λ = 0 and there is no QSD, or λ > 0 and there is a
one-parameter family of QSDs. If the Reuter FE Condition
fails, then λ > 0 and there is exactly one QSD.

Conjecture. If limi→∞ E(T |X(0) = i) = ∞, then either λ = 0
and there is no QSD, or λ > 0 and there is a one-parameter
family of QSDs. If limi→∞ E(T |X(0) = i) < ∞, then λ > 0 and
there is exactly one QSD.

Conjecture. The above conjectures are the same!
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Existence of QSDs and LCDs

Suppose that E(T |X(0) = i) < ∞. The existence of a QSD is
guaranteed under asymptotic remoteness (AR):
limi→∞ Pr(T > t|X(0) = i) = 1.

P. Ferrari, H. Kesten, S. Martínez, and P. Picco
(1995) Existence of quasi-stationary distributions. A
renewal dynamic approach. Ann. Probab. 23,
501–521.

Theorem. Under AR a QSD exists iff λ > 0. If Q is bounded
(supi qi < ∞), the LCD exists.
(Note the absence of λ-classification in the latter.)

But (Pakes (1995)), AR can be arbitrarily badly violated : even
limi→∞ Pr(T > t|X(0) = i) = 0.
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Killer blow

Recall the Good (1968)–Van Doorn (1991) result for
birth-death process and Yaglom’s theorem for branching
processes: the LCD exists iff λ > 0. And, for Q bounded AR is
sufficient (Ferrari, et al. (1995)).

H. Kesten (1995) A ratio limit theorem for (sub)
Markov chains on {1, 2, . . .} with bounded jumps.
Adv. Appl. Probab. 27, 652–691.

Suppose Q is bounded (supi qi < ∞). If the chain has bounded
jumps and satisfies a uniform irreducibility condition, then
there is at most one QSD, and the LCD exists iff λ > 0.

Kesten also provided an example (25 journal pages) for which
a QSD exists, but the LCD does not exist.
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Open problems

• Obtain necessary and sufficient conditions in terms of Q
for the SRLP to hold and for the LCD to exist. (Kesten’s
result and example suggest that this might be difficult.)

• Does Kesten’s result hold when supi qi = ∞.
• Obtain workable sufficient conditions in terms of Q.
• Solve the domain of attraction problem. Whilst the

answer is known for branching processes, and several
examples, it is not known for birth-death processes.

• Obtain necessary and sufficient conditions for λ > 0 for
various models (solved recently for birth-death
processes by Hanjun Zhang).

• Numerical methods: truncation procedures, and the GTH
algorithm for dominant eigensolutions.
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Barlett’s idea

When the process hits 0, send it back:

M.S. Bartlett (1960) Stochastic Population Models
in Ecology and Epidemiology , Methuen, London.

In continuous time, we send it back instantaneously. Let
ν = (νj , j ∈ C) be a probability measure on C, and define Qν

by qν
ij = qij + qi0νj , i, j ∈ C. This is a stable and conservative

q-matrix over Q. Note, in particular, that
∑

j∈C qν
ij

=
∑

j∈C qij + qi0 = 0. Indeed, the Qν process is (irreducible
and) recurrent, since originally absorption occurred with
probability 1; if E(T |X(0) = i) < ∞, then it is positive recurrent.
Let π be its equilibrium distribution (πQν = 0). Barlett’s idea
was to use π to model the long-term behaviour of the original
process.
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Barlett’s idea

Define a map Φ as follows. If ν is the “resurrection measure”,
and π is the equilibrium distribution of Qν , let π = Φ(ν).

Observation. Any QSD m satisfying Em(T ) < ∞ is a fixed
point of this map (m = Φ(m) means mQ = −µm, where
µ =

∑

i∈C miqi0).

This was exploited by Ferrari, et al. (1995), and also by
Clancy and Pollett (2003). We exhibited the map explicitly for
birth-death processes and showed that it preserves
likelihood-ratio ordering (and hence stochastic ordering). So,
for example, if ν(1) ≺LR m ≺LR ν(2), then
Φn(ν(1)) ≺LR m ≺LR Φn(ν(2)). So, bounds on m can be
obtained.
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When absorption is not certain

If αi := limt→∞ pi0(t) < 1, we employ an h-transform: define
transition probabilities P̄ (t) = {p̄ij(t), i, j ∈ S} by
p̄ij(t) = pij(t)αj/αi, and corresponding transition rates
Q̄ = {q̄ij , i, j ∈ S} by q̄ij = qijαj/αi, Then, in an obvious
notation, P̄(A) = 1 and P( · |A) = P̄(·), where A is the event
{absorption eventually occurs}. This result can be traced
back to Waugh (1958).

Now just reinterpret any given result for P̄ . For example, if C is
λ-positive recurrent and

∑

i∈C miαi < ∞, then

lim
t→∞

Pr(X(t) = j |X(t) ∈ C, A) =
mjαj

∑

k∈S mkαk

,

where m is the essentially unique λ-invariant measure for P .
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