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A “quasi-stationary” distribution

Think of an observer who at some time t is aware of the
occupancy of some patches, yet cannot tell exactly which
of n patches are occupied.
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What is the chance of there being precisely i patches
occupied?

If we were equipped with the full set of state probabilities

pi(t) = P(X(t) = i), i ∈ {0, 1, . . . , n},

we would evaluate the conditional probability

ui(t) = P(X(t) = i|X(t) 6= 0) =
pi(t)

1− p0(t)
,

for i in the set S = {1, . . . , n} of transient states.
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Quasi-stationary distributions

We seek a distribution u = (ui, i ∈ S) over S such that if
ui(t) = ui for a particular t > 0, then ui(s) = ui for all s > t.

Such a distribution u is called a stationary conditional
distribution or quasi-stationary distribution (QSD).



Quasi-stationary distributions

We seek a distribution u = (ui, i ∈ S) over S such that if
ui(t) = ui for a particular t > 0, then ui(s) = ui for all s > t.

Such a distribution u is called a stationary conditional
distribution or quasi-stationary distribution (QSD).

Key message: u can usually be determined from the
transition rates of the process and u might then also be a
limiting conditional distribution (LCD) in that ui(t) → ui as
t → ∞, and thus be of use in modelling the long-term
behaviour of the process.
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Domain of attraction problem

Let T = inf{t ≥ 0 : X(t) = 0} be the absorption time (or
survival time), and recall that a distribution u is a QSD if, for
all t, Pu(X(t) = j |T > t) = uj, j ∈ S.

Let u = (ui, i ∈ S) be a given QSD. If u is a LCD for some
initial distribution w = (wi, i ∈ S), that is

lim
t→∞

Pw(X(t) = j |T > t) = uj , j ∈ S,

we say that w is in the domain of attraction of u.

Problem: Identify the domains of attraction.
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The Yaglom limit
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establishing the existence of such for the subcritical
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∗Yaglom, A.M. (1947) Certain limit theorems of the theory of branching
processes. Dokl. Acad. Nauk SSSR 56, 795–798 (in Russian).



The Yaglom limit

Yaglom∗ was the first to identify explicitly a LCD,
establishing the existence of such for the subcritical
Bienaymé-Galton-Watson branching process.

∗Yaglom, A.M. (1947) Certain limit theorems of the theory of branching
processes. Dokl. Acad. Nauk SSSR 56, 795–798 (in Russian).

If the expected number λ of offspring is less than 1, then

ui = lim
n→∞

P(Xn = i|Xn 6= 0, X0 = 1), i ∈ S,

exists and defines a proper probability distribution
u = (ui, i ∈ S) over S.



Subcritical - quasi stationarity?
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The Yaglom limit
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The quasi-stationary distribution
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Origins of the idea

The idea of a limiting conditional distribution goes back
much further than Yaglom, at least to Wright∗ in his
discussion of gene frequencies in finite populations:

“As time goes on, divergences in the frequencies of fac-

tors may be expected to increase more and more until

at last some are either completely fixed or completely

lost from the population. The distribution curve of gene

frequencies should, however, approach a definite form if

the genes which have been wholly fixed or lost are left

out of consideration.”

∗Wright, S. (1931) Evolution in Mendelian populations. Genetics 16, 97–159.



Origins of the idea

The idea of “quasi stationarity” was crystallized by Bartlett∗:

“While presumably on the above model [for the interactions

between active and passive forms of flour beetle] extinction

of the population will occur after a long enough time, this

may (for a deterministic ‘ceiling’ population not too small,

but fluctuations relatively small) be so long delayed as to

be negligible and an effective or quasi-stationarity be es-

tablished.”

∗Bartlett, M.S. (1957) On theoretical models for competitive and predatory bio-
logical systems. Biometrika 44, 27–42.



Origins of the idea

Bartlett∗ later coined the term “quasi-stationary
distribution”:

“It still may happen that the time to extinction is so long

that it is still of more relevance to consider the effectively

ultimate distribution (called a ‘quasi-stationary’ distribution)

of [the process] N .”

∗Bartlett, M.S. (1960) Stochastic Population Models in Ecology and Epidemiol-
ogy. Methuen, London.



The setting of our most recent work

We consider a time-homogeneous finite-state Markov
process (X(t), t ≥ 0) taking values in {0} ∪ S, where 0, the
sole absorbing state, is reached with probability 1.

Note: S is not necessarily irreducible.

∗Van Doorn, E.A. and Pollett, P.K. (2009) Quasi-stationary distributions
for reducible absorbing Markov chains in discrete time. Markov Process.
Related Fields 15, 191–204.

∗Van Doorn, E.A. and Pollett, P.K. (2008) Survival in a quasi-death pro-
cess. Linear Alg. Appl. 429, 776–791.
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Communicating classes: S comprises S1, S2, . . . , SL.

Partial ordering: Si ≺ Sj means Si is accessible from Sj.

Assume: Si ≺ Sj ⇒ i ≤ j, so that
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Decay parameters

Eigenvalues. Clearly Sp(Q) = ∪iSp(Qi). Also, we know
(Theorem 2.6 of Seneta’s book∗) that the eigenvalue −αk of
Qk with maximal real part is unique, simple (multiplicity 1),
and strictly negative.

∗Seneta, E. (1981) Non-negative Matrices and Markov Chains. Revised
Edition. Springer, New York.

Hence, −α, where α = mink αk > 0, is the (possibly
degenerate) eigenvalue of Q with maximal real part.

Note that the αk and α are decay parameters:

Pij(t) ≤ Cije
−αkt ≤ Cije

−αt, i, j ∈ Sk.
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Two species A and B affect one another’s ability to survive
on a habitat patch. Which has survived given that the patch
has been inhabited for a long time?

State at time t: X(t) = (X
A
(t), X

B
(t)), where X

A
(t) and X

B
(t)

are the numbers of A and B.

Extinction state: 0 = (0, 0).

S is not irreducible: Let S
AB

, S
A

and S
B

be the
communicating classes corresponding to the presence of
both species, just A, and just B, respectively.

Partial ordering: {0} ≺ S
A
≺ S

AB
and {0} ≺ S

B
≺ S

AB
.



Example: two competing species

Transition rates:
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