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The setting

A closed network:

Fixed number of nodes J

N items circulating - random rounting

φj(n) is the service effort at node j when n items are present

The usual Markovian/irreducibility assumptions are in force

Aim:

To identify regions of congestion (bottlenecks) from the parameters of the model.
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Bottlenecks

Common sense:

The nodes with the biggest traffic intensity will be the most congested.

A formal definition:

If nj is the (steady state) number of items at node j , then this node is a bottleneck
if, for all m ≥ 0, Pr(nj ≥ m)→ 1 as N →∞.
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Simple examples

All nodes are random delay systems (infinite-server queues) (φj(n) = ajn):

In the steady state nj has a binomial B(N, αj) distribution, where αj (< 1) is
proportional to the arrival rate at node j divided the (per-capita) service rate. Clearly
Pr(nj = n)→ 0 for each n as N →∞, and so all nodes are bottlenecks.

All nodes are single-server queues (φj(n) = aj , n ≥ 1):

The steady state distribution of nj cannot be written down explicitly, but one can show
that if there is a node j whose traffic intensity is strictly greater than the others, it is the
unique bottleneck.

Moreover, for each node k in the remainder of the network, the distribution of nk
approaches a geometric distribution in the limit as N →∞, and (nk , k 6= j) are
asymptotically independent.
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Three single-serve nodes: N = 100, φ1(n) = 3, φ2(n) = 2, φ3(n) = 1
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Three ∞-server nodes: N = 100, φ1(n) = 3n, φ2(n) = 2n, φ3(n) = n
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Three ∞-server nodes: N = 1000, φ1(n) = 3n, φ2(n) = 2n, φ3(n) = n
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Markovian networks

The steady-state joint distribution π of the numbers of items n = (n1, n2, . . . , nJ) at the
various nodes has the product form

π(n) = BN

J∏
j=1

α
nj
j∏nj

r=1 φj(r)
, n ∈ S ,

where S is the finite subset of Z J
+ with

∑
j nj = N and BN is a normalizing constant

chosen so that π sums to 1 over S .

Here

αj is proportional to the service requirement (in items per minute) coming into
node j (this will actually be equal to αjBN/BN−1). We will suppose (wlog) that∑

j αj = 1.

φj(n) is the service effort at node j (in items per minute) when there are n items
present. We will assume that φj(0) = 0 and φj(n) > 0 whenever n ≥ 1.

For example, node j is an sj -server queue if φj(n) = aj min{n, sj}.
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Generating functions

Our primary tool:

Define generating functions Φ1,Φ2, . . . ,ΦJ by

Φj(z) = 1 +
∞∑
n=1

αn
j∏n

r=1 φj(r)
zn.

Various quantities of interest can be expressed in terms of products of these generating
functions.

For example, B−1
N = <

∏J
j=1 Φj>N , where < ·>n takes the nth coefficient of a power

series.

Also, the marginal distribution of nj can be evaluated as

π
(N)
j (n) = BN<Φj>n<

∏
k 6=jΦk>N−n , n = 0, 1, . . . ,N.
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Single-server nodes

Suppose that node j is a single-server queue with φj(n) = 1 for n ≥ 1.

Then, <Φj>n = αn
j and so <Φj>n+m = αm

j <Φj>n. Summing

π
(N)
j (n) = BN<Φj>n<

∏
k 6=jΦk>N−n

over n, and recalling that B−1
N = <

∏J
j=1 Φj>N , gives Pr(nj ≥ m) = αm

j BN/BN−m.

Suppose that α1 ≤ α2 ≤ · · · ≤ αJ−1 < αJ , so that node J has maximal traffic intensity .

If we can prove that BN−1/BN → αJ as N →∞, then Pr(nJ ≥ m)→ 1 (node J is a
bottleneck) and Pr(nj ≥ m)→ (αj/αJ)m < 1 for j < J (the others are not).
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Why does BN−1/BN → αJ?

Define Θi to be the product Φ1 · · ·Φi , where now Φj(z) = 1/(1− αjz). Clearly Φj has
radius of convergence (RC) ρj = 1/αj ; in particular, Θ1 (= Φ1) has RC 1/α1.

Claim. The product Θi has RC 1/αi for all i , so that

BN

BN−1
=
<ΘJ>N−1

<ΘJ>N
→ 1

αJ
, as N →∞.

Proof. Suppose Θk has RC 1/αk and consider

<Θk+1>m =
m∑

n=0

αm−n
k+1 <Θk>n = αm

k+1

m∑
n=0

ρnk+1<Θk>n .

Clearly
∑∞

n=0 ρ
n
k+1<Θk>n = Θk(ρk+1) <∞, since ρk+1 < ρk , and so

<Θk+1>m

<Θk+1>m+1
→ 1

αk+1
as m→∞,

implying that Θk+1 has RC 1/αk+1.
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The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence

of the power series Φ1,Φ2, . . . ,ΦJ , where recall that Φj(z) = 1 +
∑∞

n=1

αn
j∏n

r=1 φj (r)
zn.

Proposition 1

Suppose Φj has radius of convergence ρj and that ρJ < ρJ−1 ≤ ρJ−2 ≤ · · · ≤ ρ1.
Suppose also that

<Φ1 · · ·ΦJ−1>n−1

<Φ1 · · ·ΦJ−1>n
(1)

has a limit as n→∞. Then, node J is a bottleneck.

Example. Suppose node j is an sj -server queue with φj(n) = min{n, sj}, so that the
traffic intensity at node j is proportional to αj/sj . Since φj(n)→ sj , we have
<Φj>n−1/<Φj>n → sj/αj , and so ρj is proportional to the reciprocal of the traffic
intensity at node j . It can be shown that (1) holds.
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Three nodes: N = 100, s1 = 3, s2 = 2, s3 = 1
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Compound bottlenecks

What happens when the generating functions corresponding to two or more nodes share
the same minimal RC?

Proposition 2

In the setup of Proposition 1, suppose that ρL = ρL+1 = · · · = ρJ(= ρ) and that ρ < ρj
for j = 1, 2, . . . , L− 1. Then, nodes L, L + 1, . . . , J behave jointly as a bottleneck in that
Pr(

∑J
i=L ni ≥ m)→ 1 as N →∞.
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Three nodes: N = 100, s1 = s3 = 1, s2 = 2
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Three nodes: N = 100, s1 = s3 = 1, s2 = 2
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When two nodes share the same minimal RC

It might be conjectured that when the generating functions corresponding to two nodes
share the same minimal RC, they are always bottlenecks individually . While this is true
when all nodes are single-server queues (since Pr(nj ≥ m)→ (ρ/ρj)

m, j = 1, . . . , L− 1),
it is not true in general.

Consider a network with J = 2 nodes and suppose that α1 = α2 = 1/2. In the following
examples Φ1 and Φ2 have the same RC ρ = 2.

Only one node is a bottleneck.

Suppose that φ1(n) = (n + 1)2/n2 and φ2(n) = 1 for n ≥ 1.

Then, it can be shown that Pr(n1 = n)→ 6/(π2(n + 1)2) and Pr(n2 = n)→ 0 as
N →∞.

Neither node is a bottleneck.

Suppose that φ1(n) = φ2(n) = (n + 1)2/n2 for n ≥ 1.

Then, Pr(n1 = n)→ 3/(π2(n + 1)2) as N →∞.
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Two nodes: N = 100, φ1(n) = (n + 1)2/n2, φ2(n) = 1
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Two nodes: N = 100, φ1(n) = φ2(n) = (n + 1)2/n2

0 0.5 1 1.5 2 2.5
t

×105

0

10

20

30

40

50

60

70

80

90

100
n
1
(t
)

Phil. Pollett (The University of Queensland) Where are the bottlenecks? 19 / 21



And finally ...

Proposition 3

Suppose that Φ1,Φ2, . . . ,ΦK have the same strictly minimal RC ρ, and that φj(n)
converges monotonically for some j ∈ {2, . . . ,K}. Then, node 1 is a bottleneck if and
only if

Pr(n1 ≥ m |
∑K

i=1ni = N)→ 1 as N →∞.

A sufficient condition for node 1 to be a bottleneck is that Φ1 diverges at its RC and

<Φ2 · · ·ΦK>n−1

<Φ2 · · ·ΦK>n
converges as n→∞.

This latter condition is not necessary. In the setup of the previous examples, suppose
that φ1(n) = (n + 1)3/n3 and φ2(n) = (n + 1)2/n2 for n ≥ 1. Then, Φ1 and Φ2 have
common RC ρ = 2 and both converge at their RC. But, it can be shown that Pr(n2 = n)
is bounded above by a quantity which is O(N−1) as N →∞, implying that node 2 is a
bottleneck.
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Two nodes: N = 100, φ1(n) = (n + 1)3/n3, φ2(n) = (n + 1)2/n2
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