Where are the bottlenecks?

Phil. Pollett

The University of Queensland

European Conference on Queueing Theory

July 2016

The setting

A closed network:

- Fixed number of nodes J
- N items circulating random rounting
- $\phi_j(n)$ is the service effort at node j when n items are present
- The usual Markovian/irreducibility assumptions are in force

The setting

A closed network:

- Fixed number of nodes J
- N items circulating random rounting
- $\phi_j(n)$ is the service effort at node j when n items are present
- The usual Markovian/irreducibility assumptions are in force

Aim:

• To identify regions of congestion (bottlenecks) from the parameters of the model.

Bottlenecks

Common sense:

The nodes with the biggest traffic intensity will be the most congested.

Bottlenecks

Common sense:

The nodes with the biggest traffic intensity will be the most congested.

A formal definition:

If n_j is the (steady state) number of items at node j, then this node is a *bottleneck* if, for all $m \ge 0$, $Pr(n_j \ge m) \rightarrow 1$ as $N \rightarrow \infty$.

Simple examples

All nodes are random delay systems (infinite-server queues) $(\phi_j(n) = a_j n)$:

In the steady state n_j has a binomial $B(N, \alpha_j)$ distribution, where α_j (< 1) is proportional to the arrival rate at node j divided the (per-capita) service rate. Clearly $Pr(n_j = n) \rightarrow 0$ for each n as $N \rightarrow \infty$, and so all nodes are bottlenecks.

Simple examples

All nodes are random delay systems (infinite-server queues) $(\phi_j(n) = a_j n)$:

In the steady state n_j has a binomial $B(N, \alpha_j)$ distribution, where α_j (< 1) is proportional to the arrival rate at node j divided the (per-capita) service rate. Clearly $Pr(n_j = n) \rightarrow 0$ for each n as $N \rightarrow \infty$, and so all nodes are bottlenecks.

All nodes are single-server queues ($\phi_j(n) = a_j, n \ge 1$):

The steady state distribution of n_j cannot be written down explicitly, but one can show that if there is a node j whose traffic intensity is *strictly greater* than the others, it is the unique bottleneck.

Simple examples

All nodes are random delay systems (infinite-server queues) $(\phi_j(n) = a_j n)$:

In the steady state n_j has a binomial $B(N, \alpha_j)$ distribution, where α_j (< 1) is proportional to the arrival rate at node j divided the (per-capita) service rate. Clearly $Pr(n_j = n) \rightarrow 0$ for each n as $N \rightarrow \infty$, and so all nodes are bottlenecks.

All nodes are single-server queues ($\phi_j(n) = a_j, n \ge 1$):

The steady state distribution of n_j cannot be written down explicitly, but one can show that if there is a node j whose traffic intensity is *strictly greater* than the others, it is the unique bottleneck.

Moreover, for each node k in the remainder of the network, the distribution of n_k approaches a geometric distribution in the limit as $N \to \infty$, and $(n_k, k \neq j)$ are asymptotically *independent*.

Three single-serve nodes: N = 100, $\phi_1(n) = 3$, $\phi_2(n) = 2$, $\phi_3(n) = 1$

Three ∞ -server nodes: N = 100, $\phi_1(n) = 3n$, $\phi_2(n) = 2n$, $\phi_3(n) = n$

6 / 21

CEM

Three ∞ -server nodes: N = 1000, $\phi_1(n) = 3n$, $\phi_2(n) = 2n$, $\phi_3(n) = n$

7 / 21

ACEM

Markovian networks

The steady-state joint distribution π of the numbers of items $\mathbf{n} = (n_1, n_2, \dots, n_J)$ at the various nodes has the *product form*

$$\pi(\mathbf{n}) = B_N \prod_{j=1}^J \frac{\alpha_j^{n_j}}{\prod_{r=1}^{n_j} \phi_j(r)}, \qquad \mathbf{n} \in S,$$

where S is the finite subset of Z^{J}_{+} with $\sum_{j} n_{j} = N$ and B_{N} is a normalizing constant chosen so that π sums to 1 over S.

Here

- α_j is proportional to the *service requirement* (in items per minute) coming into node *j* (this will actually be *equal to* $\alpha_j B_N/B_{N-1}$). We will suppose (wlog) that $\sum_j \alpha_j = 1$.
- $\phi_j(n)$ is the service effort at node j (in items per minute) when there are n items present. We will assume that $\phi_j(0) = 0$ and $\phi_j(n) > 0$ whenever $n \ge 1$.

For example, node j is an s_j-server queue if $\phi_j(n) = a_j \min\{n, s_j\}$.

Generating functions

Our primary tool:

Define generating functions $\Phi_1, \Phi_2, \ldots, \Phi_J$ by

$$\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_j(r)} z^n.$$

Various quantities of interest can be expressed in terms of *products* of these generating functions.

Generating functions

Our primary tool:

Define generating functions $\Phi_1, \Phi_2, \ldots, \Phi_J$ by

$$\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_j(r)} z^n.$$

Various quantities of interest can be expressed in terms of *products* of these generating functions.

For example, $B_N^{-1} = \langle \prod_{j=1}^J \Phi_j \rangle_N$, where $\langle \cdot \rangle_n$ takes the n^{th} coefficient of a power series.

Generating functions

Our primary tool:

Define generating functions $\Phi_1, \Phi_2, \ldots, \Phi_J$ by

$$\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_j(r)} z^n.$$

Various quantities of interest can be expressed in terms of *products* of these generating functions.

For example, $B_N^{-1} = \langle \prod_{j=1}^J \Phi_j \rangle_N$, where $\langle \cdot \rangle_n$ takes the n^{th} coefficient of a power series.

Also, the marginal distribution of n_j can be evaluated as

$$\pi_j^{(N)}(n) = B_N < \Phi_j >_n < \prod_{k \neq j} \Phi_k >_{N-n}, \qquad n = 0, 1, \dots, N.$$

Single-server nodes

Suppose that node j is a single-server queue with $\phi_j(n) = 1$ for $n \ge 1$. Then, $\langle \Phi_j \rangle_n = \alpha_j^n$ and so $\langle \Phi_j \rangle_{n+m} = \alpha_j^m \langle \Phi_j \rangle_n$. Summing $\pi_j^{(N)}(n) = B_N \langle \Phi_j \rangle_n \langle \prod_{k \neq j} \Phi_k \rangle_{N-n}$

over n, and recalling that $B_N^{-1} = \langle \prod_{j=1}^J \Phi_j \rangle_N$, gives $Pr(n_j \ge m) = \alpha_j^m B_N / B_{N-m}$.

Suppose that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_{J-1} < \alpha_J$, so that node J has maximal traffic intensity.

If we can prove that $B_{N-1}/B_N \to \alpha_J$ as $N \to \infty$, then $Pr(n_j \ge m) \to 1$ (node J is a bottleneck) and $Pr(n_j \ge m) \to (\alpha_j/\alpha_J)^m < 1$ for j < J (the others are not).

Why does $B_{N-1}/B_N \rightarrow \alpha_J$?

Define Θ_i to be the product $\Phi_1 \cdots \Phi_i$, where now $\Phi_j(z) = 1/(1 - \alpha_j z)$. Clearly Φ_j has radius of convergence (RC) $\rho_j = 1/\alpha_j$; in particular, Θ_1 (= Φ_1) has RC $1/\alpha_1$.

Claim. The product Θ_i has RC $1/\alpha_i$ for all *i*, so that

$$\frac{B_N}{B_{N-1}} = \frac{<\Theta_J >_{N-1}}{<\Theta_J >_N} \to \frac{1}{\alpha_J} \,, \ \, \text{as} \ \, N \to \infty.$$

Proof. Suppose Θ_k has RC $1/\alpha_k$ and consider

$$<\Theta_{k+1}>_m = \sum_{n=0}^m \alpha_{k+1}^{m-n} <\Theta_k>_n = \alpha_{k+1}^m \sum_{n=0}^m \rho_{k+1}^n <\Theta_k>_n.$$

Clearly $\sum_{n=0}^{\infty} \rho_{k+1}^n < \Theta_k >_n = \Theta_k(\rho_{k+1}) < \infty$, since $\rho_{k+1} < \rho_k$, and so

$$\frac{<\Theta_{k+1}>_m}{<\Theta_{k+1}>_{m+1}}\rightarrow \frac{1}{\alpha_{k+1}} \ \, \text{as} \ \, m\rightarrow\infty,$$

implying that Θ_{k+1} has RC $1/\alpha_{k+1}$.

The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series $\Phi_1, \Phi_2, \ldots, \Phi_J$, where recall that $\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_j(r)} z^n$.

The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series $\Phi_1, \Phi_2, \ldots, \Phi_J$, where recall that $\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_i(r)} z^n$.

Proposition 1

Suppose Φ_j has radius of convergence ρ_j and that $\rho_J < \rho_{J-1} \le \rho_{J-2} \le \cdots \le \rho_1$. Suppose also that

$$\frac{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_{n-1}}{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_n}$$

has a limit as $n \to \infty$. Then, node J is a bottleneck.

(1)

The general case

Message. Bottleneck behaviour depends on the relative sizes of the radii of convergence of the power series $\Phi_1, \Phi_2, \ldots, \Phi_J$, where recall that $\Phi_j(z) = 1 + \sum_{n=1}^{\infty} \frac{\alpha_j^n}{\prod_{r=1}^n \phi_i(r)} z^n$.

Proposition 1

Suppose Φ_j has radius of convergence ρ_j and that $\rho_J < \rho_{J-1} \le \rho_{J-2} \le \cdots \le \rho_1$. Suppose also that

$$\frac{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_{n-1}}{\langle \Phi_1 \cdots \Phi_{J-1} \rangle_n}$$

has a limit as $n \to \infty$. Then, node J is a bottleneck.

Example. Suppose node *j* is an *s_j*-server queue with $\phi_j(n) = \min\{n, s_j\}$, so that the traffic intensity at node *j* is proportional to α_j/s_j . Since $\phi_j(n) \to s_j$, we have $\langle \Phi_j \rangle_{n-1}/\langle \Phi_j \rangle_n \to s_j/\alpha_j$, and so ρ_j is proportional to the reciprocal of the traffic intensity at node *j*. It can be shown that (1) holds.

(1)

Three nodes: N = 100, $s_1 = 3$, $s_2 = 2$, $s_3 = 1$

Compound bottlenecks

What happens when the generating functions corresponding to two or more nodes *share* the *same* minimal RC?

Compound bottlenecks

What happens when the generating functions corresponding to two or more nodes *share* the *same* minimal RC?

Proposition 2

In the setup of Proposition 1, suppose that $\rho_L = \rho_{L+1} = \cdots = \rho_J(=\rho)$ and that $\rho < \rho_j$ for $j = 1, 2, \dots, L-1$. Then, nodes $L, L+1, \dots, J$ behave jointly as a bottleneck in that $\Pr(\sum_{i=1}^J n_i \ge m) \to 1$ as $N \to \infty$.

Three nodes: N = 100, $s_1 = s_3 = 1$, $s_2 = 2$

15 / 21

ACEM

Three nodes: N = 100, $s_1 = s_3 = 1$, $s_2 = 2$

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \ge m) \rightarrow (\rho/\rho_j)^m$, j = 1, ..., L-1), it is *not true* in general.

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \ge m) \rightarrow (\rho/\rho_j)^m$, j = 1, ..., L-1), it is *not true* in general.

Consider a network with J = 2 nodes and suppose that $\alpha_1 = \alpha_2 = 1/2$. In the following examples Φ_1 and Φ_2 have the same RC $\rho = 2$.

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \ge m) \rightarrow (\rho/\rho_j)^m$, j = 1, ..., L-1), it is *not true* in general.

Consider a network with J = 2 nodes and suppose that $\alpha_1 = \alpha_2 = 1/2$. In the following examples Φ_1 and Φ_2 have the same RC $\rho = 2$.

Only one node is a bottleneck.

Suppose that $\phi_1(n) = (n+1)^2/n^2$ and $\phi_2(n) = 1$ for $n \ge 1$.

Then, it can be shown that $\Pr(n_1 = n) \to 6/(\pi^2(n+1)^2)$ and $\Pr(n_2 = n) \to 0$ as $N \to \infty$.

It might be conjectured that when the generating functions corresponding to two nodes share the same minimal RC, they are always bottlenecks *individually*. While this is true when all nodes are single-server queues (since $Pr(n_j \ge m) \rightarrow (\rho/\rho_j)^m$, j = 1, ..., L-1), it is *not true* in general.

Consider a network with J = 2 nodes and suppose that $\alpha_1 = \alpha_2 = 1/2$. In the following examples Φ_1 and Φ_2 have the same RC $\rho = 2$.

Only one node is a bottleneck.

Suppose that $\phi_1(n) = (n+1)^2/n^2$ and $\phi_2(n) = 1$ for $n \ge 1$.

Then, it can be shown that $\Pr(n_1 = n) \to 6/(\pi^2(n+1)^2)$ and $\Pr(n_2 = n) \to 0$ as $N \to \infty$.

Neither node is a bottleneck.

Suppose that
$$\phi_1(n) = \phi_2(n) = (n+1)^2/n^2$$
 for $n \ge 1$.

Then, $\Pr(n_1 = n) \to 3/(\pi^2(n+1)^2)$ as $N \to \infty$.

Two nodes: N = 100, $\phi_1(n) = (n+1)^2/n^2$, $\phi_2(n) = 1$

Two nodes: N = 100, $\phi_1(n) = \phi_2(n) = (n+1)^2/n^2$

19 / 21

ACEM

And finally ...

Proposition 3

Suppose that $\Phi_1, \Phi_2, \ldots, \Phi_K$ have the same strictly minimal $RC \rho$, and that $\phi_j(n)$ converges monotonically for some $j \in \{2, \ldots, K\}$. Then, node 1 is a bottleneck if and only if

$$\Pr(n_1 \ge m \mid \sum_{i=1}^{\kappa} n_i = N) \to 1 \text{ as } N \to \infty.$$

A sufficient condition for node 1 to be a bottleneck is that Φ_1 diverges at its RC and

$$rac{< \Phi_2 \cdots \Phi_K >_{n-1}}{< \Phi_2 \cdots \Phi_K >_n}$$
 converges as $n o \infty$.

And finally ...

Proposition 3

Suppose that $\Phi_1, \Phi_2, \ldots, \Phi_K$ have the same strictly minimal $RC \rho$, and that $\phi_j(n)$ converges monotonically for some $j \in \{2, \ldots, K\}$. Then, node 1 is a bottleneck if and only if

$$\Pr(n_1 \geq m \mid \sum_{i=1}^{K} n_i = N) \rightarrow 1 \text{ as } N \rightarrow \infty.$$

A sufficient condition for node 1 to be a bottleneck is that Φ_1 diverges at its RC and

$$\frac{\langle \Phi_2 \cdots \Phi_K \rangle_{n-1}}{\langle \Phi_2 \cdots \Phi_K \rangle_n} \text{ converges as } n \to \infty.$$

This latter condition is not necessary. In the setup of the previous examples, suppose that $\phi_1(n) = (n+1)^3/n^3$ and $\phi_2(n) = (n+1)^2/n^2$ for $n \ge 1$. Then, Φ_1 and Φ_2 have common RC $\rho = 2$ and both *converge* at their RC. But, it can be shown that $\Pr(n_2 = n)$ is bounded above by a quantity which is $O(N^{-1})$ as $N \to \infty$, implying that node 2 is a bottleneck.

Two nodes: N = 100, $\phi_1(n) = (n+1)^3/n^3$, $\phi_2(n) = (n+1)^2/n^2$

