Modelling population processes with random initial conditions

Phil Pollett

http://www.maths.uq.edu.au/~pkp

AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

Authors

Phil Pollett (MASCOS) Department of Mathematics The University of Queensland

Anthony Dooley (MASCOS) School of Mathematics University of New South Wales

Joshua Ross Mathematics Institute University of Warwick

- A paper by Bonnie Kegan (US Census Bureau Washington DC) and R. Webster West (now at Texas A&M University) ...
 - B. Kegan and R.W. West (2005) Modeling the simple epidemic with deterministic differential equations and random initial conditions. *Math. Biosci.* 194, 217–231.

The SI (Susceptible-Infective) Model

- *N* individuals (fixed)
- n_t susceptibles (random process in continuous time)
- $N n_t$ infectives

Start with a few infectives. Eventually everyone gets the disease. The per-encounter transmission rate β is specified.

Let $X_t = n_t/N$ be the *proportion* of susceptibles.

- Deterministic dynamics
- Randomness only in the initial state

Complex'07, July 2007 - Page 13

MASCOS

Kegan and West initial distribution

Is the deterministic approximation reasonable?

- Is the deterministic approximation reasonable?
 - $\hfill \textbf{.}$ Yes, provided N is large.

- Is the deterministic approximation reasonable?
 - $\hfill \textbf{.}$ Yes, provided N is large.

Questions

- Is the deterministic approximation reasonable?
 - $\hfill \textbf{.}$ Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

Questions

- Is the deterministic approximation reasonable?
 - $\hfill \textbf{.}$ Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

We can do this (and more) for a very large class of stochastic models called *density dependent Markov chains*.

- Is the deterministic approximation reasonable?
 - $\hfill \textbf{.}$ Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

We can do this (and more) for a very large class of stochastic models called *density dependent Markov chains*.

I will first explain how the Kegan and West approach (mapping an initial distribution) can be extended: *we do not need to evaluate the trajectories explicitly*.

Our population process

Our population process $(n_t, t \ge 0)$ is assumed to be a continuous-time Markov chain taking values in a subset *S* of \mathbb{Z}^D .

Our population process $(n_t, t \ge 0)$ is assumed to be a continuous-time Markov chain taking values in a subset *S* of \mathbb{Z}^D .

It has a (stable and conservative) set of transition rates $Q = (q(m, n), m, n \in S)$, so that q(m, n) is the transition rate from *m* to *n* for $n \neq m$ and q(m, m) = -q(m), where $q(m) = \sum_{n \neq m} q(m, n) \ (< \infty)$ is the total rate out of state *m*.

Our population process $(n_t, t \ge 0)$ is assumed to be a continuous-time Markov chain taking values in a subset *S* of \mathbb{Z}^D .

It has a (stable and conservative) set of transition rates $Q = (q(m, n), m, n \in S)$, so that q(m, n) is the transition rate from *m* to *n* for $n \neq m$ and q(m, m) = -q(m), where $q(m) = \sum_{n \neq m} q(m, n) \ (< \infty)$ is the total rate out of state *m*.

For example, in the SI model n_t is the number of susceptibles at time t, $S = \{0, 1, ..., N - 1\}$, where N is total number of individuals (we assume that there is at least one infective), and $q(n) = q(n, n - 1) = (\beta/N)n(N - n)$, where β is the per-contact transmission rate.

Our population process $(n_t, t \ge 0)$ is assumed to be a continuous-time Markov chain taking values in a subset *S* of \mathbb{Z}^D .

It has a (stable and conservative) set of transition rates $Q = (q(m, n), m, n \in S)$, so that q(m, n) is the transition rate from *m* to *n* for $n \neq m$ and q(m, m) = -q(m), where $q(m) = \sum_{n \neq m} q(m, n) (< \infty)$ is the total rate out of state *m*.

For example, in the SI model n_t is the number of susceptibles at time t, $S = \{0, 1, ..., N - 1\}$, where N is total number of individuals (we assume that there is at least one infective), and $q(n) = q(n, n - 1) = (\beta/N)n(N - n)$, where β is the per-contact transmission rate.

We suppose that the process is *density dependent* in the sense of Tom Kurtz (1970): there is a parameter N (usually a parameter of the model and often related to the size of the population) with the property that

$$q(n, n+l) = Nf\left(\frac{n}{N}, l\right), \quad n, n+l \in S,$$

for suitable functions f(x, l), $x \in E$, where $E \subseteq \mathbb{R}^D$.

We suppose that the process is *density dependent* in the sense of Tom Kurtz (1970): there is a parameter N (usually a parameter of the model and often related to the size of the population) with the property that

$$q(n, n+l) = Nf\left(\frac{n}{N}, l\right), \quad n, n+l \in S,$$

for suitable functions f(x, l), $x \in E$, where $E \subseteq \mathbb{R}^D$. The SI model is density dependent because

$$q(n, n-1) = \frac{\beta}{N}n(N-n) = N\beta\frac{n}{N}\left(1-\frac{n}{N}\right),$$

and hence $f(x, -1) = \beta x(1 - x)$, $x \in E = [0, 1)$.

Step I: Identify the deterministic model

Set $X_t = n_t/N$ and call $(X_t, t \ge 0)$ the *density process* (of course X_t would typically *be* a population density).

Set $F(x) = \sum_{l \neq 0} lf(x, l)$.

A deterministic model for X_t is

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

Step I: Identify the deterministic model

Set $X_t = n_t/N$ and call $(X_t, t \ge 0)$ the *density process* (of course X_t would typically *be* a population density).

Set $F(x) = \sum_{l \neq 0} lf(x, l)$.

A deterministic model for X_t is

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

Theorem 1. For every $\epsilon > 0$,

$$\Pr\left(\sup_{0\leq s\leq t} \left|X_s^{(N)} - x(s)\right| > \epsilon\right) \to 0 \quad \text{as} \quad N \to \infty.$$

Step I: Identify the deterministic model

For the SI model

Step II: Map the initial distribution

- Think of the initial population density X_0 as being a random variable with a specified probability density function (pdf) f_0 .
- Write $x(t, x_0)$ for the trajectory starting at x_0 .
- Determining the action of the map $g_t(x_0) = x(t, x_0)$ (assumed to be injective) on f_0 to obtain a pdf f_t that summaries the effect of random initial conditions in our population: for any t > 0,

$$f_t(y) = |J_t(y)| f_0\left(g_t^{-1}(y)\right), \quad y \in \mathcal{R}_t,$$

where J_t is the Jacobian of g_t^{-1} and $\mathcal{R}_t = g_t(E)$ is the image of *E* under g_t .

Step II: Map the initial distribution

For the SI model, $\mathcal{R}_t = E = [0, 1)$ for all t, and

$$f_t(y) = \frac{e^{-\beta t}}{(y + (1 - y)e^{-\beta t})^2} f_0\left(\frac{y}{y + (1 - y)e^{-\beta t}}\right), \quad y \in [0, 1).$$

Step II: Map the initial distribution

For one-dimensional models (D = 1) this can be done without evaluating the trajectories explicitly.

We are given

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

Let L(u) be the primitive $L(u) = \int^u dw / F(w)$. Suppose *L* is injective, so that L^{-1} is well defined (it is sufficient that *F* be everywhere positive or everywhere negative).

Theorem 2.

$$f_t(y) = \frac{F(L^{-1}(L(y) - t))}{F(y)} f_0(L^{-1}(L(y) - t)), \quad y \in \mathcal{R}_t.$$

Step III: Unexplained variation

The following result quantifies the variation not accounted for when random dynamics are ignored.

Theorem 3. For N large,

 $\operatorname{Cov}(X_s) \simeq V_s + \frac{1}{N} \int_E \Sigma_s(x_0) f_0(x_0) \, dx_0,$

where $V_s = Cov(x(s, X_0))$ (variation due to initial conditions)

$$\Sigma_s(x_0) = M_s \, \int_0^s M_u^{-1} G(x(u, x_0)) (M_u^{-1})^T \, du \, M_s^T \, ,$$

 $M_s = \exp(\int_0^s B_u du)$, $B_s = \nabla F(x(s, x_0))$ and G(x) is the $D \times D$ matrix with entries $G_{ij}(x) = \sum_{l \neq 0} l_i l_j f_l(x)$.

Step III: The one-dimensional case

Corollary. Suppose D = 1. For N large,

$$\operatorname{Var}(X_s) \simeq V_s + \frac{1}{N} \int_E \Sigma_s(x_0) f_0(x_0) \, dx_0,$$

where $V_s = Var(x(s, X_0))$ (variation due to initial conditions),

$$\Sigma_s(x_0) = M_s^2 \int_0^s M_u^{-2} G(x(u, x_0)) \, du$$

 $M_s = \exp(\int_0^s B_u \, du)$, $B_s = F'(x(s, x_0))$ and $G(x) = \sum_{l \neq 0} l^2 f_l(x)$.

For the SI model

$$\Sigma_t = e^{\beta t} x_0 (1 - x_0) \frac{(1 - x_0)^2 e^{2\beta t} - (1 - 2x_0 - 2\beta t x_0 (1 - x_0)) e^{\beta t} - x_0^2}{(x_0 + (1 - x_0) e^{\beta t})^4}.$$

Unexplained variation in the SI model

