# Modelling population processes with random initial conditions

**Phil Pollett** 

http://www.maths.uq.edu.au/~pkp



AUSTRALIAN RESEARCH COUNCIL Centre of Excellence for Mathematics and Statistics of Complex Systems

#### Authors

Phil Pollett (MASCOS) Department of Mathematics The University of Queensland

Anthony Dooley (MASCOS) School of Mathematics University of New South Wales

Joshua Ross Mathematics Institute University of Warwick







- A paper by Bonnie Kegan (US Census Bureau Washington DC) and R. Webster West (now at Texas A&M University) ...
  - B. Kegan and R.W. West (2005) Modeling the simple epidemic with deterministic differential equations and random initial conditions. *Math. Biosci.* 194, 217–231.

The SI (Susceptible-Infective) Model

- *N* individuals (fixed)
- $n_t$  susceptibles (random process in continuous time)
- $N n_t$  infectives

Start with a few infectives. Eventually everyone gets the disease. The per-encounter transmission rate  $\beta$  is specified.

Let  $X_t = n_t/N$  be the *proportion* of susceptibles.















- Deterministic dynamics
- Randomness only in the initial state



Complex'07, July 2007 - Page 13

MASCOS













## **Kegan and West initial distribution**



















































#### Is the deterministic approximation reasonable?



- Is the deterministic approximation reasonable?
  - $\hfill \textbf{.}$  Yes, provided N is large.















- Is the deterministic approximation reasonable?
  - $\hfill \textbf{.}$  Yes, provided N is large.

# Questions

- Is the deterministic approximation reasonable?
  - $\hfill \textbf{.}$  Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

# Questions

- Is the deterministic approximation reasonable?
  - $\hfill \textbf{.}$  Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

We can do this (and more) for a very large class of stochastic models called *density dependent Markov chains*.

- Is the deterministic approximation reasonable?
  - $\hfill \textbf{.}$  Yes, provided N is large.
- When N is small, what is the effect of ignoring random dynamics? And, can we quantify the variation "missed"?

We can do this (and more) for a very large class of stochastic models called *density dependent Markov chains*.

I will first explain how the Kegan and West approach (mapping an initial distribution) can be extended: *we do not need to evaluate the trajectories explicitly*.

# **Our population process**

Our population process  $(n_t, t \ge 0)$  is assumed to be a continuous-time Markov chain taking values in a subset *S* of  $\mathbb{Z}^D$ .

Our population process  $(n_t, t \ge 0)$  is assumed to be a continuous-time Markov chain taking values in a subset *S* of  $\mathbb{Z}^D$ .

It has a (stable and conservative) set of transition rates  $Q = (q(m, n), m, n \in S)$ , so that q(m, n) is the transition rate from *m* to *n* for  $n \neq m$  and q(m, m) = -q(m), where  $q(m) = \sum_{n \neq m} q(m, n) \ (< \infty)$  is the total rate out of state *m*.

Our population process  $(n_t, t \ge 0)$  is assumed to be a continuous-time Markov chain taking values in a subset *S* of  $\mathbb{Z}^D$ .

It has a (stable and conservative) set of transition rates  $Q = (q(m, n), m, n \in S)$ , so that q(m, n) is the transition rate from *m* to *n* for  $n \neq m$  and q(m, m) = -q(m), where  $q(m) = \sum_{n \neq m} q(m, n) \ (< \infty)$  is the total rate out of state *m*.

For example, in the SI model  $n_t$  is the number of susceptibles at time t,  $S = \{0, 1, ..., N - 1\}$ , where N is total number of individuals (we assume that there is at least one infective), and  $q(n) = q(n, n - 1) = (\beta/N)n(N - n)$ , where  $\beta$  is the per-contact transmission rate.

Our population process  $(n_t, t \ge 0)$  is assumed to be a continuous-time Markov chain taking values in a subset *S* of  $\mathbb{Z}^D$ .

It has a (stable and conservative) set of transition rates  $Q = (q(m, n), m, n \in S)$ , so that q(m, n) is the transition rate from *m* to *n* for  $n \neq m$  and q(m, m) = -q(m), where  $q(m) = \sum_{n \neq m} q(m, n) (< \infty)$  is the total rate out of state *m*.

For example, in the SI model  $n_t$  is the number of susceptibles at time t,  $S = \{0, 1, ..., N - 1\}$ , where N is total number of individuals (we assume that there is at least one infective), and  $q(n) = q(n, n - 1) = (\beta/N)n(N - n)$ , where  $\beta$  is the per-contact transmission rate.

We suppose that the process is *density dependent* in the sense of Tom Kurtz (1970): there is a parameter N (usually a parameter of the model and often related to the size of the population) with the property that

$$q(n, n+l) = Nf\left(\frac{n}{N}, l\right), \quad n, n+l \in S,$$

for suitable functions f(x, l),  $x \in E$ , where  $E \subseteq \mathbb{R}^D$ .

We suppose that the process is *density dependent* in the sense of Tom Kurtz (1970): there is a parameter N (usually a parameter of the model and often related to the size of the population) with the property that

$$q(n, n+l) = Nf\left(\frac{n}{N}, l\right), \quad n, n+l \in S,$$

for suitable functions f(x, l),  $x \in E$ , where  $E \subseteq \mathbb{R}^D$ . The SI model is density dependent because

$$q(n, n-1) = \frac{\beta}{N}n(N-n) = N\beta\frac{n}{N}\left(1-\frac{n}{N}\right),$$

and hence  $f(x, -1) = \beta x(1 - x)$ ,  $x \in E = [0, 1)$ .

## **Step I: Identify the deterministic model**

Set  $X_t = n_t/N$  and call  $(X_t, t \ge 0)$  the *density process* (of course  $X_t$  would typically *be* a population density).

**Set**  $F(x) = \sum_{l \neq 0} lf(x, l)$ .

A deterministic model for  $X_t$  is

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

## **Step I: Identify the deterministic model**

Set  $X_t = n_t/N$  and call  $(X_t, t \ge 0)$  the *density process* (of course  $X_t$  would typically *be* a population density).

**Set**  $F(x) = \sum_{l \neq 0} lf(x, l)$ .

A deterministic model for  $X_t$  is

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

**Theorem 1.** For every  $\epsilon > 0$ ,

$$\Pr\left(\sup_{0\leq s\leq t} \left|X_s^{(N)} - x(s)\right| > \epsilon\right) \to 0 \quad \text{as} \quad N \to \infty.$$

## **Step I: Identify the deterministic model**

#### For the SI model





# **Step II: Map the initial distribution**

- Think of the initial population density  $X_0$  as being a random variable with a specified probability density function (pdf)  $f_0$ .
- Write  $x(t, x_0)$  for the trajectory starting at  $x_0$ .
- Determining the action of the map  $g_t(x_0) = x(t, x_0)$  (assumed to be injective) on  $f_0$  to obtain a pdf  $f_t$  that summaries the effect of random initial conditions in our population: for any t > 0,

$$f_t(y) = |J_t(y)| f_0\left(g_t^{-1}(y)\right), \quad y \in \mathcal{R}_t,$$

where  $J_t$  is the Jacobian of  $g_t^{-1}$  and  $\mathcal{R}_t = g_t(E)$  is the image of *E* under  $g_t$ .

#### **Step II: Map the initial distribution**

For the SI model,  $\mathcal{R}_t = E = [0, 1)$  for all t, and

$$f_t(y) = \frac{e^{-\beta t}}{(y + (1 - y)e^{-\beta t})^2} f_0\left(\frac{y}{y + (1 - y)e^{-\beta t}}\right), \quad y \in [0, 1).$$



# **Step II: Map the initial distribution**

For one-dimensional models (D = 1) this can be done without evaluating the trajectories explicitly.

We are given

$$\frac{dx}{dt} = F(x) \qquad x(0) = x_0.$$

Let L(u) be the primitive  $L(u) = \int^u dw / F(w)$ . Suppose *L* is injective, so that  $L^{-1}$  is well defined (it is sufficient that *F* be everywhere positive or everywhere negative).

Theorem 2.

$$f_t(y) = \frac{F(L^{-1}(L(y) - t))}{F(y)} f_0(L^{-1}(L(y) - t)), \quad y \in \mathcal{R}_t.$$

# **Step III: Unexplained variation**

The following result quantifies the variation not accounted for when random dynamics are ignored.

Theorem 3. For N large,

 $\operatorname{Cov}(X_s) \simeq V_s + \frac{1}{N} \int_E \Sigma_s(x_0) f_0(x_0) \, dx_0,$ 

where  $V_s = Cov(x(s, X_0))$  (variation due to initial conditions)

$$\Sigma_s(x_0) = M_s \, \int_0^s M_u^{-1} G(x(u, x_0)) (M_u^{-1})^T \, du \, M_s^T \, ,$$

 $M_s = \exp(\int_0^s B_u du)$ ,  $B_s = \nabla F(x(s, x_0))$  and G(x) is the  $D \times D$ matrix with entries  $G_{ij}(x) = \sum_{l \neq 0} l_i l_j f_l(x)$ .

## **Step III: The one-dimensional case**

**Corollary**. Suppose D = 1. For N large,

$$\operatorname{Var}(X_s) \simeq V_s + \frac{1}{N} \int_E \Sigma_s(x_0) f_0(x_0) \, dx_0,$$

where  $V_s = Var(x(s, X_0))$  (variation due to initial conditions),

$$\Sigma_s(x_0) = M_s^2 \int_0^s M_u^{-2} G(x(u, x_0)) \, du$$

 $M_s = \exp(\int_0^s B_u \, du)$ ,  $B_s = F'(x(s, x_0))$  and  $G(x) = \sum_{l \neq 0} l^2 f_l(x)$ .

For the SI model

$$\Sigma_t = e^{\beta t} x_0 (1 - x_0) \frac{(1 - x_0)^2 e^{2\beta t} - (1 - 2x_0 - 2\beta t x_0 (1 - x_0)) e^{\beta t} - x_0^2}{(x_0 + (1 - x_0) e^{\beta t})^4}.$$

#### **Unexplained variation in the SI model**

