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Metapopulations

Glanville fritillary butterfly (Melitaea cinxia) in the Åland Islands in Autumn 2005.
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Occupancy simulation - proportion of time occupied

t =1
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Positions: zi ∈ [−3, 3]2.

Tweaked spatial Poisson process.

Ease of movement:

D(z, z̃) = 5 exp(−‖z − z̃‖).

Areas:

ai = 6πR2
i , where R2

i ∼exp(5000).
Eai ' 0.00377.

Colonization function:

c(x) = 1− exp(−5x).

Survival probabilities:

McKinlay-Borovkov model with Lt ∼
Beta(1, 1), Rt ∼ Beta(1, 20), and
p(s) = 9(s − 0.9) I(s > 0.9).

Initial occupancy: 70%
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied

t =3
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Occupancy simulation - proportion of time occupied

t =4
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Occupancy simulation - proportion of time occupied

t =5
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Occupancy simulation - proportion of time occupied

t =10
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Occupancy simulation - proportion of time occupied

t =20
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Occupancy simulation - proportion of time occupied

t =50
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Occupancy simulation - proportion of time occupied

t =100
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Occupancy simulation - proportion of time occupied

t =200
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Occupancy simulation - proportion of time occupied

t =300
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Occupancy simulation - proportion of time occupied

t =1000
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Theoretical - proportion of time occupied

Theoretical
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SPOM

A stochastic patch occupancy model (SPOM)

Suppose that there are n patches.

Let X
(n)

t = (X
(n)

1,t , . . . ,X
(n)

n,t ), where X
(n)

i,t is a binary variable indicating whether or not
patch i is occupied at time t.

Colonization and extinction happen in distinct, successive phases.

For many species the propensity for colonization and local extinction is markedly different
in different phases of their life cycle. Examples:

The Vernal pool fairy shrimp (Branchinecta lynchi) and the

California linderiella (Linderiella occidentalis), both listed under

the Endangered Species Act (USA)

The Jasper Ridge population of Bay checkerspot butterfly

(Euphydryas editha bayensis), now extinct
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SPOM - Phase structure

Colonization and extinction happen in distinct, successive phases.

t − 1 t t + 1 t + 2

t − 1 t t + 1 t + 2

We will we assume that the population is observed after successive
extinction phases (CE Model).
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability

c

(
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj

)
,

where D(z , z̃) ≥ 0 measures the ease of movement between patches at z and z̃ , aj is a
weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Assumptions:

(A) ai ∈ (0,A] for some A <∞.

(B) zi ∈ Ω where Ω is a compact subset of Rd .

(C) D(z , z̃) is positive, uniformly bounded, and equicontinuous: for every ε > 0 there
exists a δ > 0 such that if ‖z1 − z2‖ < δ, then supz∈Ω |D(z1, z)− D(z2, z)| < ε.

(D) c is increasing and Lipschitz continuous, with c(0) = 0 and c ′(0) > 0.

Examples: D(z , z̃) = exp(−β‖z − z̃‖) and c(x) = 1− exp(−αx), where α, β > 0.
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SPOM - Phase structure

Colonization: unoccupied patch i becomes occupied with probability

c
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weight related to the size of the patch j and c : [0,∞)→ [0, 1] (colonisation function).

Extinction: occupied patch i remains occupied with probability si,t .

Then, given the current state X
(n)

t and survival probabilities S
(n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t , S
(n)

t

)
= si,tX

(n)

i,t + si,t c

(
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj

)(
1− X

(n)

i,t

)
.
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SPOM - Phase structure

Then, given the current state X
(n)

t and survival probabilities S
(n)

t = (si,t , i = 1, . . . , n),
the X

(n)

i,t+1 (i = 1, . . . , n) are independent with transitions

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t , S
(n)

t

)
= si,tX

(n)

i,t + si,t c

(
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj

)(
1− X

(n)

i,t

)
.

(E) We will assume that (si,t)
∞
t=0, i = 1, . . . , n, are independent Markov chains taking

values in [0, 1] with common transition kernel P(s, dr) that is assumed to satisfy the
weak Feller property: for every continuous function h on [0, 1], the function defined
by Ph(s) :=

∫
h(r)P(s, dr), s ∈ [0, 1], is also continuous.

This covers the simple but important case where patches are classified as being suitable
or unsuitable for occupancy:

P(s, dr) = q(s)δs∗(dr) + (1− q(s))δ0(dr).
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Example of the survival probability model

Henceforth the Markov chain (st)
∞
t=0 will be the survival probability model for any

particular patch (recall that they are independent from patch to patch).

Example Following McKinlay and Borovkov∗, suppose that

st+1 =

{
st(1− Lt+1) with probability p(st)

st + (1− st)Rt+1 with probability 1− p(st),

where p : [0, 1] 7→ [0, 1], and (Lt) and (Rt) are sequences of independent and identically
distributed random variables on [0, 1] with distributions FL and FR , respectively. If p is
continuous, then the transition kernel P(s, dr) satisfies the weak Feller property.

∗McKinlay, S. and Borovkov, K. (2015) On explicit form of the stationary distributions for a class

of bounded Markov chains. J. Appl. Probab. (to appear) [arXiv:1412.1278 (math.PR)].
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Climax community species
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Lt ∼ Beta(1, 1), Rt ∼ Beta(1, 20), and p(s) = 9(s − 0.9) I(s > 0.9).
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SPOM - Homogeneous case - Law of Large Numbers

In the homogeneous case, where D ≡ 1, a ≡ 1, and si = s is the same for each i , the
number N

(n)

t of occupied patches at time t is Markovian, and, letting the initial number
N

(n)

0 of occupied patches grow at the same rate as n we arrive at:

Proposition 1 If N
(n)

0 /n
p→ x0 (a constant), then

N
(n)

t /n
p→ xt , for all t ≥ 1,

with (xt) determined by xt+1 = f (xt), where

f (x) = s(x + (1− x)c(x)).
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Survival probability Colonization probability
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CE Model - Evanescence
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CE Model - Quasi stationarity
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Stability

Proposition 1 If N
(n)

0 /n
p→ x0 (a constant), then

N
(n)

t /n
p→ xt , for all t ≥ 1,

with (xt) determined by xt+1 = f (xt), where

f (x) = s(x + (1− x)c(x)).

Evanescence: 1 + c ′(0) ≤ 1/s. 0 is the unique fixed point in [0, 1]. It is stable.

Quasi stationarity : 1 + c ′(0) > 1/s. There are two fixed points in [0, 1]: 0 (unstable)
and x∗ ∈ (0, 1) (stable).
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CE Model - Evanescence

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100
CE Model simulation (n= 100, s = 0.56, c(x) = cx with c =0.7)

t

N
u
m
b
er

o
f
o
cc
u
p
ie
d
p
a
tc
h
es

Phil. Pollett (The University of Queensland) Population networks with local extinction probabilities that evolve over time 17 / 31



CE Model - Quasi stationarity
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nx
∗ = 64.29
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SPOM - General case

Return now to the general case, where patch survival probabilities evolve in time, and we
keep track of which patches are occupied . . .

Pr

(
X

(n)

i,t+1 = 1

∣∣∣∣X (n)

t , S
(n)

t

)
= si,tX

(n)

i,t + si,t c

(
1

n

n∑
j=1

X
(n)

j,t D(zi , zj)aj

)(
1− X

(n)

i,t

)
.
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Our approach - Random measures

Define sequences (σn,t) and (µn,t) of random measures by∫
h(s, z)σn,t(ds, dz) =

1

n

n∑
i=1

aih(si,t , zi ), h ∈ C+([0, 1]× Ω),

∫
h(s, z)µn,t(ds, dz) =

1

n

n∑
i=1

aiX
(n)

i,t h(si,t , zi ), h ∈ C+([0, 1]× Ω),

where C+([0, 1]× Ω) is the space of continuous functions h : [0, 1]× Ω 7→ [0,∞).

For example (h ≡ 1),
∫
µn,t(ds, dz) = 1

n

∑n
i=1 aiX

(n)

i,t , the proportion of occupied patches
at time t weighted according to patch size.
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Limiting behaviour of the landscape

(F) Assume that σn,0
d→ σ0 for some non-random measure σ0.

For example, if the random vectors (ai , si,0, zi ), i = 1, 2, . . . , are iid with distribution F ,

then σn,0
d→ σ0, where σ0(B) =

∫
aF (da,B), for any (measurable) B ⊂ [0, 1]× Ω.

Lemma 1 σn,t
d→ σt for all t = 1, 2, . . . , where σt is defined by the recursion∫

h(s, z)σt+1(ds, dz) =

∫
h(s, z)

∫
P(r , ds)σt(dr , dz), h ∈ C+([0, 1]× Ω).

[Recall that P(s, dr) is the common transition kernel of the (si,t)
∞
t=0, i = 1, . . . , n.]

For a large population (n large), σt(ds, dz) describes the landscape at time t.
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Limiting behaviour of the metapopulation

Theorem 1 Suppose that µn,0
d→ µ0 for some non-random measure µ0. Then, µn,t

d→ µt

for all t = 1, 2, . . ., where µt is defined by the following recursion: for h ∈ C+([0, 1]×Ω),∫
h(s, z)µt+1(ds, dz) =

∫
s Ph(s, z)(1− ct(z))µt(ds, dz) +

∫
s Ph(s, z)ct(z)σt(ds, dz),

where

Ph(s, z) =

∫
h(r , z)P(s, dr) and ct(z) = c

(∫
D(z , z̃)µt(ds̃, dz̃)

)
.

[Recall that c( · ) is the colonization function.]

Think of ct(z) as being the limiting (n→∞) potential of the metapopulation at time t
to colonize a patch located at z .
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Limiting behaviour of the metapopulation

A consequence of the theorem is that the limiting occupancy of a single patch follows a
Markov chain (Xi,t , si,t)

∞
t=0 with time dependent transition probabilities:

Corollary 1 Fix i . Then, X
(n)

i,0

p→ Xi,0 implies that X
(n)

i,t

p→ Xi,t for all t = 1, 2, . . . , where

Pr (Xi,t+1 = 1 | Xi,t , si,t) = si,tXi,t + si,tct(zi ) (1− Xi,t) .

[Recall that ct(z) = c
(∫

D(z , z̃)µt(ds̃, dz̃)
)
.]
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When the landscape is in equilibrium

(G) Assume that the survival probability model is stationary, aperiodic, and Harris

positive recurrent with invariant measure ν: ν(dr) =
∫ 1

0
ν(ds)P(s, dr).

Lemma 2 As t →∞, σt converges to a product measure σ = ν × σ̄0, where
σ̄0(A) = σ0([0, 1]× A), for measurable A ⊂ Ω.

Let P∗ be the dual (or time-reverse) transition kernel:∫
A

ν(dx)P(x ,B) =

∫
B

ν(dx)P∗(x ,A), measurable A,B ⊂ [0, 1].

Theorem 2 The limiting measure µt is absolutely continuous with respect to σ and the
corresponding Radon-Nikodym derivative satisfies the recursion

∂µt+1

∂σ
(s, z) =

∫ 1

0

r
∂µt

∂σ
(r , z)P∗(s, dr) + ct(z)

∫ 1

0

r

(
1− ∂µt

∂σ
(r , z)

)
P∗(s, dr).
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When the landscape is in equilibrium

In addition to enabling a simplified recursion

∂µt+1

∂σ
(s, z) =

∫ 1

0

r
∂µt

∂σ
(r , z)P∗(s, dr) + ct(z)

∫ 1

0

r

(
1− ∂µt

∂σ
(r , z)

)
P∗(s, dr)

for the limiting measure µt , the Radon-Nikodym derivative has a nice interpretation as
the probability that a given patch is occupied when the number of patches is large:

Corollary 2 Fix i and let (Xi,t , si,t)
∞
t=0 be the Markov chain in the last corollary. If

Pr (Xi,0 = 1 | si,0 = s, zi = z) =
∂µ0

∂σ
(s, z),

then

Pr (Xi,t = 1 | si,t = s, zi = z) =
∂µt

∂σ
(s, z),

for all t = 1, 2, . . . .
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The limiting metapopulation in equilibrium

We seek fixed points ∂µ∞
∂σ

of the simplified recursion

∂µt+1

∂σ
(s, z) =

∫ 1

0

r
∂µt

∂σ
(r , z)P∗(s, dr) + ct(z)

∫ 1

0

r

(
1− ∂µt

∂σ
(r , z)

)
P∗(s, dr),

where (recall) ct(z) = c
(∫

D(z , z̃)µt(ds̃, dz̃)
)
.

Clearly

∂µ∞
∂σ

(s, z) = c(ψ(z))

∫
rP∗(s, dr) + (1− c(ψ(z)))

∫
r
∂µ∞
∂σ

(r , z)P∗(s, dr),

where ψ(z) =
∫
D(z , z̃)µ∞(ds̃, dz̃).

Think of ψ(z) as being the equilibrium large-metapopulation connectivity for a patch
located at z , and c(ψ(z)) as being the corresponding equilibrium potential of the
population to colonize that patch.
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The limiting metapopulation in equilibrium

Treating ψ as fixed,

∂µ∞
∂σ

(s, z) = c(ψ(z))

∫
rP∗(s, dr)+(1− c(ψ(z)))

∫
r
∂µ∞
∂σ

(r , z)P∗(s, dr)

is a Fredholm integral equation of the second kind: g(s, z) =φ(s, z)+(Ag)(s, z).

It has a unique solution given by the Neumann series

∂µ∞
∂σ

(s, z) =
∞∑
n=0

(Anφ)(s, z) =
∞∑
n=0

c (ψ(z)) (1− c(ψ(z)))n E (s∗n+1 · · · s∗1 | s∗0 = s) ,

where (s∗t ) is the Markov chain with transition kernel P∗.

Then, using the duality relationship (time reversal),

∂µ∞
∂σ

(s, z) =
∞∑
n=0

c (ψ(z)) (1− c(ψ(z)))n E (s0 · · · sn | sn+1 = s) .
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The limiting metapopulation in equilibrium

Now

ψ(z) =

∫
D(z , z̃)µ∞(ds̃, dz̃) =

∫
D(z , z̃)

∂µ∞
∂σ

(s̃, z̃)σ(ds̃, dz̃).

So, from

∂µ∞
∂σ

(s, z) =
∞∑
n=0

c(ψ(z))(1− c(ψ(z)))n E (s0 · · · sn | sn+1 = s) ,

we get a fixed point equation for ψ(z):

ψ(z) =

∫
D(z , z̃)

∞∑
n=0

c(ψ(z̃))(1− c(ψ(z̃)))n E (s0 · · · sn | sn+1 = s)σ(ds, dz̃).

=

∫
D(z , z̃)

∞∑
n=0

c(ψ(z̃))(1− c(ψ(z̃)))n E (s0 · · · sn) σ̄0(dz̃).

Note that the equilibrium proportion of time a patch at location z is occupied is∫
∂µ∞
∂σ

(s, z)ν(ds) =
∞∑
n=0

c (ψ(z)) (1− c(ψ(z)))n E(s0 · · · sn).
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The limiting metapopulation in equilibrium

Now

ψ(z) =

∫
D(z , z̃)µ∞(ds̃, dz̃) =

∫
D(z , z̃)

∂µ∞
∂σ

(s̃, z̃)σ(ds̃, dz̃).

So, from

∂µ∞
∂σ

(s, z) =
∞∑
n=0

c(ψ(z))(1− c(ψ(z)))n E (s0 · · · sn | sn+1 = s) ,

we get a fixed point equation for ψ(z):

ψ(z) =

∫
D(z , z̃)

∞∑
n=0

c(ψ(z̃))(1− c(ψ(z̃)))n E (s0 · · · sn | sn+1 = s)σ(ds, dz̃).
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The limiting metapopulation in equilibrium

To justify these steps and to elicidate stability conditions, we need the following
assumptions.

(H) The colonisation function c is strictly concave.

( I ) For every z ∈ Ω and every open neighbourhood Nz of z , σ([0, 1]× Nz) > 0.

(J) The survival probability model satisfies infs E(s0 | s1 = s) = infs
∫
uP∗(s, du) > 0.

Theorem 3 Let G : C(Ω) 7→ C(Ω) be the bounded linear operator defined by

Gφ(z) := c ′(0)
∞∑
m=0

E (s0 · · · sm)

∫
D(z , z̃)φ(z̃)σ̄0(dz̃), φ ∈ C(Ω),

and let r(G) be the spectral radius of G. If r(G) ≤ 1, then the simplified recursion has
only the trivial fixed point ∂µ

∂σ
(s, z) = 0, and this fixed point is globally stable

(evanescence). If r(G) > 1, then it has a unique non-zero fixed point and all non-zero
trajectories converge to this fixed point (persistence).
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The limiting metapopulation in equilibrium
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the following assumptions.

(H) The colonisation function c is strictly concave.

( I ) For every z ∈ Ω and every open neighbourhood Nz of z , σ([0, 1]× Nz) > 0.

(J) The survival probability model satisfies infs E(s0 | s1 = s) = infs
∫
uP∗(s, du) > 0.

Theorem 3 Let G : C(Ω) 7→ C(Ω) be the bounded linear operator defined by

Gφ(z) := c ′(0)
∞∑
m=0

E (s0 · · · sm)

∫
D(z , z̃)φ(z̃)σ̄0(dz̃), φ ∈ C(Ω),

and let r(G) be the spectral radius of G. If r(G) ≤ 1, then the simplified recursion has
only the trivial fixed point ∂µ

∂σ
(s, z) = 0, and this fixed point is globally stable

(evanescence). If r(G) > 1, then it has a unique non-zero fixed point and all non-zero
trajectories converge to this fixed point (persistence).

Phil. Pollett (The University of Queensland) Population networks with local extinction probabilities that evolve over time 29 / 31



Occupancy simulation - proportion of time occupied

t =1
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Positions: zi ∈ [−3, 3]2.

Tweaked spatial Poisson process.

Ease of movement:

D(z, z̃) = 5 exp(−‖z − z̃‖).

Areas:

ai = 6πR2
i , where R2

i ∼exp(5000).
Eai ' 0.00377.

Colonization function:

c(x) = 1− exp(−5x).

Survival probabilities:

McKinlay-Borovkov model with Lt ∼
Beta(1, 1), Rt ∼ Beta(1, 20), and
p(s) = 9(s − 0.9) I(s > 0.9).

Initial occupancy: 70%
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied
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Occupancy simulation - proportion of time occupied

t =4
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Occupancy simulation - proportion of time occupied

t =5
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Occupancy simulation - proportion of time occupied

t =10
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Occupancy simulation - proportion of time occupied

t =20
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Occupancy simulation - proportion of time occupied

t =50
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Occupancy simulation - proportion of time occupied

t =100
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Occupancy simulation - proportion of time occupied

t =200
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Occupancy simulation - proportion of time occupied

t =300
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Occupancy simulation - proportion of time occupied

t =1000
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Theoretical - proportion of time occupied
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EXTRAS: Interpretation of the operator G

Once a patch has been colonised, it remains occupied until the local population dies out
during an extinction phase. The probability of the local population surviving at least m
extinction phases is E(s0 · · · sm−1). Thus, the factor

∑∞
m=0 E (s0 · · · sm) is the expected

number of extinction phases a local population survives before going extinct.

If patch j is the only patch occupied, then the probability that patch i is colonised during
the next colonisation phase is approximately c ′(0)n−1D(zi , zj)aj . Therefore, when n is
large, the probability that patch j is colonised by patch i prior to the local extinction at
patch i is approximately

Gij = f ′(0)
1

n
D(zi , zj)aj

∞∑
m=0

E (s0 · · · sm) .

Under Assumptions (A)-(C) and (F), the matrix G converges to the operator G in the
sense that, for any φ ∈ C(Ω),

n∑
j=1

Gijφ(zj)
d→ c ′(0)

∞∑
m=0

E (s0 · · · sm)

∫
D(zi , z̃)φ(z̃)σ̄0(dz̃), as n→∞.
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EXTRAS: Interpretation of the operator G

Theorem 3 tells us that the landscape dynamics affects the persistence of the
metapopulation through the quantity

∑∞
m=0 E (s0 · · · sm).

Hölder’s inequality allows us deduce that this is maximised for the static landscape:

Corollary 3 If the survival probability model (st) is stationary, then

E (s0 · · · sm) ≤ E(sm+1
0 ),

the upper bound achieved when st = s0 for all t, corresponding to a static landscape.

The persistence of the metapopulation with static landscape is determined by the
spectral radius of the operator G̃ : C(Ω) 7→ C(Ω) given by

G̃φ(z) = f ′(0)

∫
D(z , z̃)

s̃

1− s̃
φ(z̃)σ(ds̃, dz̃), φ ∈ C(Ω).

The operators G̃ and G coincide for the static landscape when σ is a product measure.

In the case of persistence, our fixed point is bounded above by the fixed point for a
corresponding static landscape.
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EXTRAS: The case D ≡ 1, a ≡ 1

The random measures: for h ∈ C+([0, 1]),∫
h(s)σn,t(ds) =

1

n

n∑
i=1

h(si,t) and

∫
h(s)µn,t(ds) =

1

n

n∑
i=1

X
(n)

i,t h(si,t).

The recursion for the limiting measure, with ct = c
(∫
µt(ds)

)
, Ph(s) =

∫
h(r)P(s, dr):∫

h(s)µt+1(ds) = (1− ct)

∫
s Ph(s)µt(ds) + ct

∫
s Ph(s)σt(ds), h ∈ C+([0, 1]).

The recursion for the Radon-Nikodym derivative of µt with respect to σ:

∂µt+1

∂σ
(s) =

∫ 1

0

r
∂µt

∂σ
(r)P∗(s, dr) + ct

∫ 1

0

r

(
1− ∂µt

∂σ
(r)

)
P∗(s, dr).

We get evanescence if r := c ′(0)
∑∞

m=0 E (s0 · · · sm) ≤ 1, and persistence if r > 1.
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EXTRAS: Survival probability simulation
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Lt ∼ Beta(1, 20), Rt ∼ Beta(1, 20), and p(s) = 0.62.
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EXTRAS: CE Model - Evanescence
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EXTRAS: CE Model - Persistence
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EXTRAS: CE Model - Persistence
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EXTRAS: CE Model - Evanescence
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EXTRAS: CE Model - Evanescence
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EXTRAS: CE Model - Persistence
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